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1. INTRODUCTION

There are situations where one wants to use a
subset of sample primary sample units (PSUs) for a
survey. This paper compares two strategies for
accompliishing this. Consider, for example, taking
a subsample of the Current Population Survey
(CPS), conducted by the Census Bureau for the
Bureau of Labor Statistics to collect labor force
data. This survey is a two-stage stratified
design of 729 sample areas, one sample PSU per
stratum. We might be interested in a subsample of
CPS PSUs for a much smaller scale one-time survey.
For such a survey, it would be very inefficient to
conduct it in all the CPS sample PSUs. It would,
of course, be possible to independently stratify
and select sample PSUs for the new survey, but
that would cause such high sampling and interview-
ing costs in PSUs not in the CPS sample as to
usually be infeasible. Also, extra calendar time,
not usually available, is needed to independently
stratify PSUs. Thus, a preferred design would
guarantee complete overlap in sample PSUs between
the two surveys. Throughout this paper, we assume
that complete overlap is a requirement for the
sample design of the new survey.

Some aspects of the general problem of how best
to take a subset of sample PSUs for a reduced
survey are addressed in this paper. We confine
our remarks to the case where the original survey
selected one PSU per stratum, possibly in a
dependent manner between strata. One general
approach is to collapse together strata from the
ortiginal survey. For example, if about a 1/2
subsample of PSUs is desired, one might form pairs
of the nonself-representing strata and retain only
one sample PSU from the pair with probability
proportionate to the size of stratum. Collapsing
would be done by using available information for
auxiliary variables believed or known to be
correlated with the most important survey charac-
teristics to form homogeneous collapsed strata, or
superstrata. Other approaches for taking the
subsample could also be used: sample PSUs could
be sorted in an appropriate manner and a system-
atic sample taken.

The issue addressed in this paper is which of
two general strategies for subsampiing a set of
sample PSUs 1is better: wuse estimates of the
auxiliary vartables based on the original survey's
samplie PSUs or each stratum as a whole. The first
strategy uses information on the outcome of PSU
selection by the original survey in determining
the sample design; the second does not. We call
them the informed and the uninformed strategies.
At first glance, the informed strategy appears
potentially biased. To many people, it appears to
yleld higher variances than use of full strata
data. However, we show in this paper that use of
sample PSU information is unbiased. We also
explain why it tends to yield lower between-PSU
vartances for the stratification variables or
function. Section II of the paper gives a
non-mathematical explanation for why use of sample
PSU data 1is preferable. Section III compares the
components of variance between the two strategies
and gives an example to further clarify the
comparison. Section IV provides variance estima-
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tors for both one sample PSU and two sample PSUs
per superstratum in the new survey. The methodol-
ogy for two sampie PSUs is innovative and of
potential application to other situations.

II. ARGUMENT FOR USE OF SAMPLE DATA

The issue to be discussed here {s whether the use
of data on the whole strata or on the sample PSUs
in designing a new survey tends to yield the
smaller true between~PSU variance for the new
survey. (Estimating the between PSU variance is
addressed fn Section IV.) It is helpful to think
of this as a double sampling situation. In the
first phase of sampling, we stratify the PSUs for
the original survey and select one sample PSU per
stratum. Thus, the initial sample consists of the
original survey sample PSUs. If the new survey is
considerably smaller than the original survey,
the natural method of subsampling these sample
PSUs is superstratification. (We will explicitiy
refer only to this specific method for the rest of
this section. The discussion is, however, equally
relevant to other methods for subsampiing.) In
the second phase then, we stratify these sample
PSUs (or equivalently, the strata represented by
the sample PSUs) into superstrata and select one
{or more) of the sample PSUs per superstratum.
Viewed in this way, if we formed the superstrata
based on characteristics of the whole strata, we
would be failing to use the information on the
outcome of PSU selection obtained in the first
phase of sampling. (This information {s used
directly in the informed strategy when we make
strata homogeneous with respect to the original-
survey sample PSUs.) Thus, use of the stratum
data rather than the sample PSU data utilizes
less, not more, information. Since the goal in
the second phase of sampling s to obtain a set of
sample PSUs as much like the original set of
sample PSUs as possible, the non-use of this
information would be expected to increase vari-
ances.

This can also be looked at in a slightly
different manner. There are three componehts of
variance: the within-PSU, the between-PSU within-~
stratum variance, and the between-stratum (within
superstratum) variance. The within-PSU-variance
is not predictabiy affected by the choice of
strategy. The between-PSU-within-stratum variance
is fixed once the original survey is designed and
unaffected by whether we use stratum or sample PSU
characteristics for subsampling. The between-
stratum variance that is relevant here is an
expected conditional variance, conditioned on the
original-survey sampie PSUs. We consider this
component more carefully. If we were not con-
strained to select only original-survey sample
PSUs, then we would of course want to ignore
sample-PSU characteristics. However, we shauld
expect use of sample-PSU characteristics to be
useful in minimizing the expected conditional
variance under consideration since it is un-
reasonable to expect to minimize the expected
conditional variance by ignoring what we know
about the conditions, namely, the identity and




characteristics of the sampie PSUs. Granted,
there can exist situations where use of known
conditions may not reduce an expected conditional
variance, but it s difficult to conceive of a
situation in which use of known conditions would
increase the expected value of a conditional
variance.

There are two side comments of finterest: (1)
If the stratification c¢riteria are the same for
the original and new surveys, then it makes 1ittle
or no difference which of the two strategies is
used, because if two sample PSUs were similar to
each other, so must be the strata that they
represent. (2) If one 1s designing the smaller
survey at the same time as the larger survey, it
is sti11 preferable to select the larger survey's
PSUs first so that a double sampling approach can
be used. Only if the smaller survey need not use
a subset of the larger survey's sample PSUs, will
it be better to independently stratify the smaller
survey to take full advantage of the survey's
stratification criteria.

I11. VARIANCE DERIVATION WITH EXAMPLE

This section contains a technical comparison of
the two strategies. We first make formal defini-
tions of the strategies. We then define a very
general estimator of population totals and show
that it is unbiased under either strategy. Using
a decomposition of the variance of this estimator,
we argue that the most reasonable approach to the
problem of minimizing the total variance on
characteristics of interest is to minimize the
between-strata variance of ancillary character-
istics. We close the section with a concrete,
though artificial, example where the total
variance is smaller with the informed strategy.
Strateqy Definition

Let D be the set of all PSUs. As stated
previously, we are assuming that the original
survey drew one PSU per stratum with dependence
between strata. Thus, the only subsets of D that
are admissible sets of sample PSUs for the
original survey are those that consist of exactly
one PSU from every stratum. Let G be this set of
all sets of PSUs that were admissible for the
original survey.

For every geG, let Hg be the set of all subsets

of gq. There is an important correspondence
between the elements of H_and H_, for every g
and g’'eG. g g

Let g = { dys dyy vvny d
g' = { d'), d'yy oiny d
Hg is h = day d2 The corresponding element
of Hg. is h'= d'l, d'2 }; i.e., the subset of ¢’

that contains one sample PSU from each of the
strata represented by the sample PSUs in h. HWe
call this correspondence n__, and write

h' = moqi(h) for heH. 99

In order to select geG, the original survey
defined some probability measure w on 6. This
measure may be arbitrary except that every PSU
must have a nonzero chance of selection. A
strategy for selecting a subset of g for the new
survey 1s just a method for defining a proba-
bility measure on Hg. Given the uncountable

it is clear

and
m

m-( A typical element of

number of possible measures on Hg,

249

that some algorithm is needed. We do not discuss
specific algorithms. Rather, we are concerned
with what constraints are placed on whatever
algorithm is actually used.

Under the informed strategy, any available
information on the PSUs contained in g may be used
to define the measure X{g) on H_ . For example, if
unemployment is related to characteristics of
interest and it is known that some of the PSUs
selected for the original survey have zero
unemployment while the rest have 100 percent
unemployment, then x{g) should give positive
measure only to those heH_ that contain a balance
of high and low unemployment PSUs. Note that
[x(g)](h) 1s the probability that the new survey
selects heH_, given that the original survey
selected g.

The uninformed strategy, on the other hand,
spurns this information. It places a restriction
on the algorithm of choice to only consider those
measures v(g) on Hg such that
[v(g)1(h) =

[v(g')](wgg'(h)) v thg and v g,9'eG. (1)

In other words, this means that the probabiiity
of selecting h for the new survey given that g was
selected for the original survey is equal to the
probability of selecting the natural correspondent
of h given that g' was selected for the original
survey. In a sense then, [v{(g}](h) is the
probability that the strata represented by the
sample PSUs in h will be selected for the new
survey, To put it yet another way, the probabil-
ity of h given g depends only on the charac-
teristics of the entire strata represented by the
sample PSUs in H_. Given this constraint on v(g),
we simply write 9 for v(g).

To summarize the notation developed so far:

D = All PSUs,

G = Al possible sets of original-survey sam-
ple PSUs,

p = Original survey measure on G,

H = A1l possible sets of new-survey sample

9 PSUs given geG
x{g) = Informed strategy measure on Hg,

v = uninformed strategy measure on Hg
Estimator Definition

Let Y, be the count of units (persons, house-
holds, é%cetera) with some characteristic for
deD. The quantity to be estimated is Y, the sum
of Y, over deD. We will assume that the within-
pPsu é%mp]ing is independent from PSU to PSU and is
independent of the selection of sample PSUs. Let
¥, then be some unbiased estimator of Yd' We
néxt define binary functions that indicate whether
a PSU is selected for the two surveys.

- § 1 1if deg
Let &(d,g) = { 0 otherwise, and
= 1 if d€h’
g(d,h) = { 0 otherwise,

Then the estimator of Y that we discuss is



5 8(d,g)p(d,h) ¥d for the selected geG
¥=2 Ep&(d,g) EX(g)B(d’h) and the selected haHg.

deD
Note that Eps(d,g) is the probability of

selecting PSU d for the original survey and that
Ex(g)s(d,h) is the conditional probability of

selecting PSU d for the new survey given that the
original survey selected PSU set g.
Also note that we must have Eus(d,g)>0 ¥ deD

and Ex(g)s(d,h)>0 ¥ deD and ¥geG such that
w(g)>0 and 6(d,g) = 1.

Proof of Unbilasedness of £stimator
Since the within-PSU sampling is independent of
the PSU sampling and Al 4 fixed given g,

3 g(d,h)
we have that r9) )

Y
a d s(d.,g)s{d,h}
EY'E“‘_""E
dep EPS(d’g) ( EX(Q)B(d,h)
Y

=3 d e | e 8(d,9)8(d,h), ¢
o5 ERET u | Ma) T (g |
Y
=3 -——{%-; £ 8(d,g)
4D Ep&( '8 H

= Y by definition.

Variance of £stimator , .

For convenience, let o, = Var (¥ JE é(d,g))
and o, be the between—ﬁSU variante ¥or the
origﬁ%a] survey. Then

Vary = Varu[Ex(g)(Ylg)l +

(2)
Eu{EX(g)[Var(Ylg,h)lg]} + Ev(VarX(g)[E(Ylg,h)lgl}-

The first term of (2), is the within-stratum-
between-PSU variance, o
The second term of (2)
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*; the within-PSU variance:

usa ).

,h
Ex(g)s(d )
is the between-strata

]

As we noted earlier, the within-stratum-between~
PSU variance is fixed; no subsampling method can
alter it. If var (%) is to be minimized, then it
must be by minimizing the within-PSU and between-
strata variances. However, to minimize thege
terms, some information must be avallable on o

and Y, respectively, for all deD. While it }s
rare ghat information will be available on o

for all deD, it is common for information to 89
available on Y, for all deD; that is, there is
some ancillary characteristic X which is related
in some manner to Y and for which X, is known for
all deD. {For example, Y coulg be current
unemplioyment and X could be low-income housing as
of the last census.) It is then clear that the

term 2 = 3
deD

The third term of (2}
vartance:

Y
- 8(d,q)8(d,h)'d
term 3 = £ 0Var) () [dfn E $(d,8)E, (),

250

within-PSU variance is uncontrollable and the only
promising approach to minimizing Var(¥) is to
minimize the between-strata variance of the
ancillary characteristic:

Ep Varx(g) [E (Rig,h)lg] ¢ .

Under the uninformed strategy,
algorithm can be used to minimize

(3)

the chosen

(-Z}l {Varv[E(ilg,h)lg]} subject to the constraint

(1). Let v* be this optimal v. Because of the
constraint, in most subsampling problems involving
real as opposed to artificial populations, there
will exist some v° and g such that

var, JE@id,mig | < var Je@idnig)

It is then immediately clear that the informed
strategy leads to a strictly better value of (3)
than does the uninformed. Simply define

A(g) =

Even in the case where viand § do not
exist it is always true that the informed
strategy leads to a value of (3) no worse than
does the uninformed. In this case, just take i(g)
= v for all geG.

v'if g = g,
v* otherwise

Example
The example is given for an artificially simple

situation to keep the calculations short. The
purpose of the example is to reinforce the
foregoing discussion. The reader should not take
it as an illustration of the magnitude of the
difference between the strategies. Suppose that
there are 8 PSUs in B. The original survey formed
four strata of two PSUf each. It furthermore used
controlled selection” so that there are only two
sets in G. For the new survey, we want to form
two superstrata, select one stratum independently
from each superstratum, with probability propor-
tionate to a fixed stratum size, and then accept
the sample PSUs in the selected strata. Table 1
provides the required parameters. The parameters
Yd and ué are shown but assumed to be unknown.

The known ancillary characteristic is X, the value
of X for the d-th PSU is Xd'

In this situation, the uninformed strategy is
to make the superstrata homogeneous with respect
to

T X,/{Stratum Size).

destragum
The informed is to make the superstrata homoge-
neous with respect to

) (a(d,g)Xd/E §(d,g))/(Stratum Size).
destratum L3

Table 2 gives these statistics for the strata. It
is clear from this table that the best super-
stratification under the uninformed strategy is
{1,2,}, {3,1"}'

Under the informed strategy, the best super-
stratification is {1,3}, {2,4} if g=g, and {1,2},
{3,4} if g=g,. Table 3 shows the 1ndu%ed measures
on H_ for eacg g.

We now calculate the variance on ¥. Table 4
contains some intermediate calculations for term 3
of (2).



Note that 80997 _ 1561.43 and
e a T———— . an
deD EFG(d,g)
5(d,92)Yd
2.4 - 4500,
& £300.9)

Thus (5) is (.7)(37177.2) + (.3)({6780.5) = 28058
Whereas (8) is (.7)(3057.5) + (.3)(6780.5) = 4174

For completeness, term 2 of (2) is either 325
for the uninformed strategy or 326 for the
informed strategy. Term 1 of (2) is 1,236,393.

Thus the total variance of ¥ under the
uninformed strategy is 1,264,776 versus 1,240,893
under the informed.

IV. VARIANCE ESTIMATION

We now focus on two specific sampling plans
which are commonly used in practice and propose a
reasonable variance estimator for each of the two
sample designs. These are traditional variance
estimators with modifications to suit each
specific design. We have been unable, however, to
give the precise expression for the expected
values of the estimators under the informed
strategy.

Sample Design I: The new survey forms super-

strata of the strata and
then selects one stratum per
superstratum with proba-
bility proportionate to
stratum size. The selection
of strata is independent
between superstrata.
The same as sample design I
except that 2 strata are
selected with replacement
from each superstratum.

As in the last section the within-PSU sampling
is assumed to be independent from PSU to PSU and
independent of the selection of sample PSUs.
Without loss of generality, for variance estima-
tion we will ignore the within-PSU sampling and
consider only the cases where the true values are
known at the PSU level.

It should be pointed out that the sample design
1 1s being used by the Census Bureau for the
redesigned sample of the American Housing Survey
(AHS) which uses the informed strategy, while a
sampling plan similar to the sample design 1l is
being used for the General Purpose Sample (GPS)
which uses the uninformed strategy. The Current
Population Survey is the original survey for both
these sample designs.

Before the derivation of variances and their
estimators for these two specific sample designs,
we need the following additional notation:

Let

L total number of superstrata

K1 total number of original-survey sample
PSUs {or equivalﬁnt1y original-survey
strata) in the 1" superstratum
the estimated total of character-
istic Y based on the or{%1na1-survey
sample PSU for the kK t@rigina]
survey stratum in the 1 super-
stratum ¥

a d
(i.e., ¥ - -E;;rajg)where d is the

Sample Design II:

nn

Yok~
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original-survey sample PSU.)
th

LI probability of selecting the kth
original-survey sample PSU {or k
ogﬂg1na]-survey stratum) within the
1 superstratum.

PN Ki s th
Y= b2 Yik’ the i superstratum total
k=1

estimated from all
original-survey samplie PSUs in the
superstratum.

Sample Design [

Under this sample design, the estimator of the
total of Y can be expressed as
§ Yi4
i=1 "id
where d denotes the sample PSU selected by the new
survey. Its variance, derived from equation (2)
in Section I1I, is given by

o 2 Ly " ’
Var(Y.) = 0 + E T OIx -3 (5)
I 1 M g1 ka1 B ik 1

2
where o, is the between-PSU variance for the
original survey as defined in Section III.

Since only one PSU was selected from a stratum
in bothAphases of sampling, no unbiased estimator
of Var{Y. ) exists. The customary approach is t
use co11a§sed superstrata to estimate %ﬁriances.—/

Let observations in a typical h pair of
superstrata be
T

"1 "h2
tor of Var (?I) can then be constructed as

?’

I (&)

, where h goes from 1 to %. An estima-

L/2 £ % ¥ 2
var(@p = 3 [ 2 - b2 (6)
h=1 \ "hl h2

Under the uninformed strategy, this estimator
has a closed-form non-negative bias. Since the
formation of superstrata in the informed strategy
is dependent upon the outcome of PSU selection for
the original survey, we have not been able to
derive a satisfactory algebraic expression for the
expected value of var(Y )when this strategy is
used. However, based on the form of this estima-
tor we believe that var(Y¥ ) in general overesti-
mates Var(Y¥_). The bias may be reduced by
pairing the superstrata based on superstrata
totals of a correlated characteristics x,. More
definitive studies on the properties of~€ar(? )
under the informed strategy and the comparisons of
these properties between the two strategies are
needed.

Sample Design I/ th
Let Z K be the selection propﬂbility of the k
original<survey PSU in the i superstratum on
each draw (i.e., sample size 1), then »,, =2 Z, .
Using the notation of this section, tﬂé unbiaggd

estimator of the total of Y given 1
can be written as given in Section 111




L 2 ¥

ik

=T I 3
171 k=1 %44k

According to equation (2) in Section III, the
vartance of Y11 can be written as

R 2 LK L
Var(Y. ) =0, +EJ4 3 Tz 8 =-%}) ks
11 1 s il z, T

It is easy to show that the second term in (8)
can be unbiasedly estimated by

,ﬁ(iu_._g :
=1\ 211 %2

Since only one PSU is selected from each
stratum for the original survey, it is not
possible to obtain an unbiased estimator of ¢2
in (8). One cannot use the pair of or1g1nall
survey strata within each superstratum because
they are grouped into the same superstratum based
on sample estimates. Such an approach would yield
an underestimate of variance. However, one may
pair strata from different superstrata based on

superstrata totals of characteristics Xo- Let
observations in a typical hth pair be ~

¥ ¥ o
hik .o h2k

Zh1k Zhoxe

?II (7}

where h goes from 1 to L/2.
(k=1,2; k'=1,2)

This leads to the foliowing proposed variance
estimator for Yar(¥y1).

L/2 ¥ ¥ ..,
var(¥,) =3 % [( hlk _ h2k )ZJr

hel a1k Zhoke

e T )L B Yy
o, I N el 9
hik'  Zh2k i \ 21 %o

where superstrata hl and h2 are paired together as
described above. Within each superstrata pair,
each of the two sample PSUs (or equivalently,
original-survey strata) in one superstratum is
randomly paired with one of the two sample PSUs in
the other superstratum,

Under the uninformed strategy, it can be shown
that the estimator has a closed-form non-negative

—

1 Controlled selection is a procedure that
goes beyond stratification in restricting the
number of possible selection outcomes. Among
other applications, it was used at the Bureau
in the early 1970's to ensure representation of
every state in the Current Population Survey.
It 1s assumed here to keep the calculations
2 short.

An apparently superior approach is given by
Shapiro and Bateman (1979), but will not be
discussed here,
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bias. For the informed strategy, since the compo-
sition of superstrata are dependent upon the
sample outcome of the original-survey selection
and for the same reasons as stated for sample
design I, we have not been able to show
algebratcally the bias of var(¥y;). However, we

think that var(¥;y) will be a satisfactory

estimator of Var(¥ry). Again, additional investi-

gations on the properties of var(¥y;) under both

strategies are needed.

V. CONCLUSION

This paper has compared two general strategies
for stratification when 1t {s desired to select a
subset of sample PSUs from an original survey for
a new survey. It was explained in Sections II and
IIT why we expect that lower variance will result
when sample PSU characteristics rather than

stratum characteristics are used in forming strata
and in other methods of subsampiing. The easiest
way to understand why this happens 1s to think in
terms of double sampling and using the information
from the first phase of sampling in the second
phase. An example has also been given. Finally,
variance estimators were provided for one sample

PSU and two sample PSUs per superstratum in the
new survey. For the case with two sample PSUs, an
innovative approach was taken in which pairs of
PSUs across different superstrata instead of from
the same superstrata are used in the variance
estimator in order to avoid underestimating the
variance. We were unable, however, to derive
expected values for the variance estimators.

This paper is of value in two ways. First, the
results can be applied to use sample PSU charac-
teristics rather than stratum characteristics for
stratification and other methods of subsampling
when a subset of sample PSUs is desired for a new
survey. Second, it is instructive to understand
why use of sample PSU characteristics is prefer-
able for those readers whose intuition tells them
otherwise.

ACKNOWLEDGMENTS

Beverley D. Causey at the Census Bureau made
significant contributions to our early work in
conceptualizing superstratification as a well-
defined random event. We would also like to thank
Joan George, Ovalecia High, and Edith Oechsler for
doing the typing of this paper. Any errors in
this paper are the sole responsibility of the
authors.,



TABLE 1.

2
d Stratum Stratum Xq Yd % c(d,gl) s(d,gz) EMG(d,g)
Size
1 1 1000 250 494 41 1 t] .7
2 250 515 32 0 1 .3
3 2 1200 240 493 51 1 0 .7
4 300 591 28 0 1 .3
5 } 3 800 200 429 36 1 0 .7
6 80 158 39 0 1 .3
7 } 4 900 180 377 az 1 0 .7
8 90 176 45 0 1 .3
TABLE 2.
Stratum Homogeneity Measure
Uninformed Strategy Informed Strategy
9 92
1 .500 .357 .833
2 .450 .286  .833
3 . 350 .357  .333
4 .300 .286  .333
TABLE 3.
h (Set of Selected v({h) [ (g;)}(h) [x(g,1(h)
strata for survey 2)
{1,2} 0 .31746 0
{1,3} .21390 4] .21390
{1,4} . 24064 .23810 . 24064
{2,3} .25668 .25397 .25668
{2,4} .288717 Q .28877
{3,4} ] .19048 0
TABLE 4.
Uninformed Strategy Informed Strategy
E(¥lg,.h) E(¥lg,,h) E(¥lg,.h) E(‘?Igz,h)
{1,2} N/A NA 2502.79 NA
{1,3} 2854.89 4895.83 NA 4895.83
{1,4} 2569.87 4884.81 2526.95 4884.81
{2,3} 2593.51 4730.83 2611.43 4730.83
{2,4} 2308.49 4719.81 NA 4719.81
{3,4} N/A NA 2635.60 NA
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