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I. Introduction: 

When sampling from a frame where values for 
some correlated auxiliary variable are known for 
for each unit of observation, the sampler has a 
choice of how to use the auxiliary variable. 
Reduction of sampling error is of primary impor- 
tance but ease of sampling, processing, and ad- 
ministering the survey may also also influence 
the decision. Two alternatives which are often 
used are : 

i. Take a simple random sample and use a 
ratio estimator. 

2. Sample with probability proportional to 
the auxiliary variable and use the Horvitz- 
Thompson estimator. 

In general practice, it is difficult to choose 
between these two with regard to smaller variance, 
unless the form of the regression of the response 
on the auxiliary variable is known. Suppose one 
is interested in the situation where there are 
two domains of interest. Examples are: 

i. Yields are to be estimated for each of 
two crops and acreage planted for each crop is 
known for each farm in a particular area. 

2. Retail receipts for men's and women's 
shoes are to be individually estimated for shoe 
stores which sell both and prior year receipts 
are available for each store and each subdomain 
(men's and women's). 

Sampling proportional to a single measure may 
present difficulities. If a weighted average of 
the auxiliary variables is used as a measure of 
size, the sampling variance may increase substan- 
tially, particularly for one of the variables. 
If two independent samples are chosen, the costs 
may increase substantially, since the number 
of units common to both samples will be relative- 
ly small. 

In this paper, the feasibility of using condi- 
tional probabilities to select the second sample 
which maximize the expected number of units 
common to both samples are examined. All sample 
selection is assumed to be without replacement. 
The methods and programs for sample selection 
are described in Section II. In Section III, 
comparisons are made to ratio estimation for 
simple random samples drawn without replacement 
from four synthetic universes, all of size 365. 
In Section IV, observations from the study are 
noted and paths for further research are dis- 
cussed. 

II. Description of the Procedure: 

In Causey, Cox, and Ernst (1983), a general 
solution is presented for maximizing the overlap 
between two samples. The solution uses general 
linear programming algorithms. For a design 
with a large number of strata, where very few 
units (perhaps 1 or 2) are being chosen per 
stratum, and particularly when stratum defini- 
tions change, this proc@dure is quite efficient. 
However, it is necessary to formulate every 
possible first sample and its probability of 
selection and every possible (or desired) second 

sample and its probability of selection consis- 
tent with predetermined selection probabilities 
(i.e., sizes) for each unit. For large universes 
and sample sizes these methods may become imprac- 
tical. 

In the case being discussed here, there are 
two important restrictions which can simplify 
comput at ion. 

i. The units (.clusters) in the frame are ident- 
ical (e.g., corn and soybean yields are to be esti- 
mated for the same farms). 

2. Systematic PPES sampling is used for the 
first sample. 

The importance of the second condition is that 
for any sample size, n, there are at most N (the 
universe size) possible systematic samples (see 
Hartley (1966)). 

It is still necessary to formulate every possible 
first sample and its selection probability, but 
since it is restricted to size N, moderate size 
universes (or strata) can be accommodated. 

As stated above, the first step is to identify 
all possible systematic PPES samples for the 
first domain. These samples are indexed by j, j=l, 
...N. The choice of "first variable" is arbitrary 
unless there is a natural order. For example, 
if selection is for the same characteristic in two 
time periods, "first" is obviously determined by 
the time period. For each unit, i, an initial 
conditional probability, for selection in the second 
sample, conditional on first sample j , Pij, is 
assigned as follows: 

i. If P2i >I Pli 
Pij = 1 when the ~ unit is in first Sample j 

P2i - Pli 
= if not selected 

1 - Pli 

2. If P2i < Pli 

Pij = P2i when the ~ unit is in first Sample j 

Pli 

= 0 if not selected 
where Pli, P2i are the predetermined probabili- 
ties of selecting unit i in the first and second 
samples, respectively. In either case, the ex- 
pected second selection probability is P2i and 
the expected number of units common to both samples 
will be maximal. I/ The problem here is that the 

N 

expected second sample size I Pij is not fixed 
i 

for any given first sample, though the expected 
size over all possible first samples is 
N 

~-- Pi2 = n2" [The examples presented in the 
i=l 
next section all use n I = n 2, though this is 
not necessary. The flexibility of sample size 
may, in fact, be an advantage of this procedure 
over the ratio estimation procedure or any 
single sample procedure but is not explored in 
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this study.] It should be noted that if the 
second sample is large enough so that a small 
variation in the sample size is tolerable, these 
initial conditional probabilities are sufficient 
for selecting the second sample. They are very 
simple to calculate, since they depend only on 
the first sample actually drawn, rather than all 
possible first samples, and so can be easily 
used for any type of PPES sampling. 

To comply with the further restriction of a 
constant second sample size, the matrix of initial 
conditional probabilities Pij (a column is a given 
first sample, a row is a unit in the frame) is 
converted to a matrix of joint probabilities of 
selecting first sample j, and unit i in the second 
sample. Pf. ~ wh ~ is the probability 

selectin J g = Pij ere 
of lirst sample j. Proportional itera- 
tive allocation (raking procedure) is used to find 

11 
find a matrix of joint probabilities Pij that 
satisfy the following: 

I/ 

(I) I Pij - P2i (Horvitz Thompson estimation 
for variable 2 using P2i 
is design unbiased) 

(2) I P##ij = n2 ~j (constant sample size n2) 
i 
" ~j (3) Pij = Pij = when Pij = 1 (conditional 

certainty units remain cer- 
#1 tainty) 

(4) eij = 0 when Pij = 0 

Condition (3) is easily accomplished by substi- 
tuting 0 for p~lj whenever P~ = "~ and subtract- 
ing ~7"j from the appropriate marginals. The 
raking procedure.muStiplies each entry in column 
j by n" ~/ ~ ptmr) (where n' = n -C). C is 

2 ~ Y ij 2 2 j j 

the number of conditional certainty units in 

column j and p(mr) is the value of the joint 
lJ 

probability after m row iterations; P(m ) , the 
ij 

joint probability after m column iteration) and 

then each row by 

! ._ 
P2i / 3~ p(mc) where 71 ~i if P2i < 7i 13 

- P2i otherwise 
- -Pli ' 

This is done iteratively until the matrix con- 
verges to some predetermined level. Conditions 
(3) and (4) will ensure maximum overlap, since 
the raking will then redistribute the joint 
probability within overlap cells (for Pli > P2i) 
or nonoverlap cells (for Pli < P2i), only. In 
practice, three or four iterations are almost 
always sufficient. Conditions for convergence 
are discussed in Greenberg and Fagan (1984).2_ / 
The second sample can then be selected with the 
resultant probabilities. 

The following simplified example illustrates 
the procedure. Here, N = 6, n I = n 2 = 3; the 
units will be referred to as A i with the follow- 
ing selection probabilities: 

Unit P__l P__2 

A I .8 .6 
A 2 .7 .4 
A 3 .4 .5 
A 4 .5 .6 
A 5 .4 .5 
A 6 .2 .4 

Taking systematic samples with Pli, there are five 
possible first samples. 

Sample Probability (~j~ 

S I A I A 2 A 4 .4 
S 2 A 1 A 2 A 5 .I 
S 3 A 1 A 3 A 5 .3 
S 4 A 2 A 3 A 6 .I 
S 5 A 2 A 4 A 6 .I 

The initial conditional probabilities are then: 
unit (samples) selected not selected 

A 1 (SIS2S 3) .750 0 
A 2 (SIS2S4S 5) .571 0 
A 3 ($3S 4) 1.000 .167 
A 4 (SIS 5) 1.000 .200 
A 5 ($2S 3) 1.000 .167 
A 6 ($4S 5) 1.000 .250 

This can be expressed in the matrix of joint pro- 
babilities as : 

Sl S2 $3 S4 S 5 
unit P2i n2~:j 1.2 .3 .9 .3 .3 

A 1 .6 
A 2 .4 
A 3 .5 
A 4 .6 
A 5 .5 
A 6 .4 

.300 .075 .225 0 0 

.229 .057 0 .057 .057 

.067 .017 .300 .i00 .017 

.400 .020 .060 .020 .i00 

.067 .i00 .300 .017 .017 

.i00 .025 .075 .i00 .i00 

Note the respective expected sample sizes are 
2.91, 2.94, 3.20, 2.94 and 2.91. 

After replacing certainty cases by zero, we have: 

S1 S2 S 3 $4 $5 
.8 .2 .3 .I .I 

A 1 .6 .300 .075 .225 0 0 
A 2 .4 .229 .057 0 .057 .057 
A 3 .i .067 .017 0 0 .017 
A 4 .i 0 .020 .060 .020 0 
A 5 .i .067 0 0 .017 .017 
A 6 .2 .i00 .025 .075 0 0 

Four iterations of proportional allocation (two 
across rows, two across columns) and replacing 
certainty probabilities yields the final solution. 

Sl $2 $3 $4 $5 
1.2 .3 .9 .3 .3 

A I .6 .334 .080 .186 0 0 
A 2 .4 .226 .054 0 .060 .060 
A 3 .5 .064 .016 .300 .I00 .020 
A 4 .6 .400 .023 .053 .024 .i00 
A 5 .5 .064 .I00 .300 .016 .020 
A 6 .4 .112 .027 .061 .i00 .100 
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or, in terms of selection probabilities: 
S 1 S 2 S 3 S4 S 5 

A 1 
A 2 
A 3 
A 4 
A 5 
A 6 

.835 .800 .620 0 0 
• 565 .540 0 .600 .600 
.160 .160 1.000 1.000 .200 

1.000 .230 .177 .240 1.000 
.160 1.000 1.000 .160 .200 
.280 .270 .203 1.000 1.000 

The expected overlap is 2.5 units• 

III. Relative Efficiency: 

In this section, the CV's for four artificially 
generated populations of size 365 will be compar- 
ed for fixed costs, between ratio estimates from a 
single simple random sample without replacement 
and the dual PPES (without replacement) samples 
with maximum overlap• These four populations were 
constructed so that PPES sampling would be effi- 
cient, relative to simple random sampling, for 
different correlations among the measures and the 
two response variables. The objective is to see 
the effect of the dual sample method on the CV's 
of the s ubdomains. 

First, 365 random numbers between 1 and 2,000 
were generated for measures of size of the first 
subdomain, Mli (i-I,... ,365). Then a random error, 
ai, independent of Mli was generated for each unit 
each unit such that E(ai) = 0, and scaled so that 

~o (Mli, M2i = Mli + ai) ='.96, where M2i is then 
the measure of size for the second subdomain. 
To meet the criteria for efficient PPES samples, 

values eli were generated such that Yli = Mli + 
eli Mli [YI is the first response variable]; and 
E(eli/Mli) -" 0. The eli were scaled so that 

2 
so that E (l eli ) =' .024, i.e.~ (Mli , Yli ) = 

• 2 

el .99 and E(ei) was not a function of the Mli. 
Similarly, e2i was generated so that ~2 .99. 

These conditions on eli and e2i yielded a 
universe where PPES sampling would be preferred 
for each domain, individually. (See Cochran, 
Section 9.12). The condition on a i (i.e. fo 
= .96) ensured high maximum overlap• This set 

of 365 x 4 [Mli, M2i, Yli, Y2i] values is refer- 
red to as U1 in Tables 2a and 2b below• U2, U3 
and U4 were then generated from UI by increasing 
the scaling factors used to generate eli and 
e2i (decreasing ~I and ~2) and also increasing 
the scaling factors for a i to achieve decreasing 
values of ~o, or, in turn, the maximum overlap• 

One of the important objectives of this study 
was to test computing feasibility of the proce- 
dure. The programs were written for a mini-com- 
puter which dictated the population and sample 
sizes studied• From each population, all samples 
of sizes i0 through 50, in increments of 5, were 
selected systematically, proportional to Mli. 
Estimates were computed for each sample and first 
stage CV's for each sample size. After condition- 
al probabilities were computed, as described in 
the previous section, systematic samples were 
selected and CV's computed for Y2" Using the con- 

ditional selection probabilities, the second 
samples were taken systematically using the 
same order as in the first sample. This order 
was the same in all four populations. Also, the 
expected overlap was computed for each sample 
size. Since, for a particular order, the var- 
iances for PPES without replacement sampling 
are not directly proportional to the inverse of 
the sample size, the CV's were smoothed over the 
given range of 10-50. In a few cases, in fact, 
the CV for a larger sample was greater than for 
a smaller sample• The values given in Tables 2a 
and 2b are interpolated from the smoothed curves 
obtained. Since only a single order was used 
throughout the study, the smoothing of CV's was 
used in place of averaging the CV's over all 
possible orders. The CV's for the simple random 
sample were computed by standard formulas which, 
of course, are not dependent on any particular 
ordering of the units. CV's for ratio estimates 
were computed without regard to ratio estimation 
bias, which is assumed to be negligible. 

Since the situation being discussed involves 
cluster sampling, variable survey costs can be 
put into two components, contacting the cluster 
(by personal interviewer, mail or telephone) and 
enumerating the individual elements within that 
cluster. The second component may involve sub- 
sampling, as well. Hence, for a single sample, 
the cost can be expressed as: 

- 2~ 2 C R = n (CI + ), where: 
n : number of clusters sampled 
C I: average first component (cluster) cost 
C2: average second component (element) cost 

per cluster for each domain. 

We assume equal costs for enumerating each domain. 
In the dual sample case, we have 

Cp = n o (C I + 2C2) + 2n I (C 1 + C2) 
where 

no: number of clusters common to both samples 
n I: number of clusters in sample I, only. 

We assume each sample has the same number (nl) of 
clusters unique to that sample. 

Hence, for the same cost °D we _ ,_C R = C , have 

(~I + 2 C-2) +2nl (CI + C2) = n (CI + 2-C2) n o 

Letting k = 2 C2/~ I and r = nl/no, we have: 
n o = n / [i + r(2+k) / (l+k) ] 

This form for n o is convenient since r is expli- 
citly calculated for each population. Note that 
k is the ratio of average second stage costs to 
first stage costs where both variables are enum- 
merated. One other assumption that has been 
made for the sake of simplicity is that the ex- 
pected cluster size is the same for both types 
of samples. In general, the PPES sample will 
have larger clusters, but in the case where 
multi-stage sampling is used, we can assume the 
subsampling fractions are such that the number 
of second stage units per cluster in the respec- 
tive samples is the same. The value of k may vary 
greatly from survey to survey• For example, 
suppose one is interested in new single-family 
residential construction. The cluster might be 
a permit office and an element would be the 
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individual permits issued over the previous year. 
If the variable of interest were the average num- 
ber of square feet in a unit, this is usually 
available on the permit and so by sending an in- 
terviewer to sampled offices (first stage cost) 
and then enumerating the permits in that office 
(second stage costs), the value of k would be 
small. If, however, the variable of interest 
were not available on the permit, let us say the 
type of financing involved with the unit, it might 
be necessary to contact the owners of each unit 
or draw a subsample of units, thereby making the 
value of k quite substantial. In the tables be- 
low, values of 0, I, 3, and o°are used for k to 
get an idea of the relative costs. 

In Table I, the values for "r" were empirically 
calculated from the four populations generated 
for this study. Since "r" is a function of the 
measures of size of the two subdomains, and is 
independent of the order of the units in the 
population, it does not affect the smoothed CV's 
obtained from each population. 

Table 1 shows solutions to the equation above 
for differing values of k and "r" corresponding 
to ~o = .96, .76, .54 and -.06, for n = 30. (n o 
+ nl) is the number of clusters surveyed for 
each domain and n o + 2nl, for the entire survey. 

In other words, consider the entries for k=l 
and ~o - .76, i.e., 27.24 (21.72). For the 
same cost as a single sample with 30 clusters, one 
would select an expected 21.72 clusters for which 
both types of elements would be enumerated, 5.52 
(expected value) clusters in which only type 1 
elements were enumerated and 5.52 in which only 
type 2 elements were enumerated. For any other 

, n / no i and n~ = value of n~ 3/ say n/, we have n~=T~ 
l 

rn o . 

In Tables 2a and 2b the CV's corresponding to 
the sample sizes (n o + nl) in Table 1 are present- 
ed for each domain in each of the four popula- 
tions. 

For a given sample size, the case k = ~o gives 
the CV's for sampling each subdomain without 
regard to the other. Hence comparisons to the 
ratio estimates are for the same sample size, or 
equivalently, for sampling each subdomain indivi- 
dually. 

The tables show that when PPES is a preferred 
estimate for k =¢x~ it still seems to be a strong 
competitor for two variables when k - 0 and ~o - 
.54. Even, in the worst case studied, where ~o 
= -.06, the associated CV's are not very far 
from those for ratio estimation. For example, for 
Table 2a; column U2-YI for k =oo, (i.e., 30dus- 
ters) a single PPES sample would give a CV of 
2.68, 18 percent lower than the ratio estimate. 
When the number of sampled clusters is reduced 
because of costs for a second variable (with 
k=l) and ~o --.06, the computed CV is 3.04, 
still 7 percent below the ratio estimate. 

IV. Summary and Further Research 

It should be emphasized that this study was not 
at all a rigorous treatment of the problem, but 

only an indication of whether this methodology 
Should be explored any further. In practice one 
would generally encounter sampling units where 
the measures of size for the two types of elements 
(or variables) were reasonably well correlated. 
That is, the selection probabilities would not 
differ by a great amount. Judging from Tables 
2a and 2b, the increase (from k = OO) in sampling 
error for populations with only moderate correla- 
tion of the measures (.54 and .76) is in the 
range of 15-30 percent where second stage costs 
are negligible relative to first stage costs 
(i.e., k=0). If, then, second stage costs were 
not negligible (say k > 2) and PPES sampling 
gives better results than ratio estimates (i.e., 
I0 percent or more) for k =oO, the dual sample 
approach 14 seems to give results that are still 
competitive with the single sample ratio estima- 
tion technique. Further research is needed to 
establish these results more rigorously so that 
one might use them with some degree of confidence. 

It might involve comparing a closed form of the 
PPES variances to the ratio estimator, either 
for a specific order or over all possible orders, 
and also relaxing the assumptions made in the 
cost functions. Other avenues of research that 
may prove useful are comparisons with other compe- 
titive procedures, such as a single PPES sample 
proportional to a weighted average of the two 
measures of size. Also, the effect of varying 
the sample sizes for the two variables should be 
examined. For example, if we were to use a 
combined measure of size M i = WlMli + w2M2i 
(w I + w 2 = I) where the w's are the relative 
subjective importance of the variables, we might 
consider the dual approach where nl/n 2 = Wl/W 2. 
The generalization of the procedure to more than 
two variables could prove fruitful. 

In this study, systematic sampling was used 
throughout; however, it certainly was not neces- 
sary for the second variable. Other types of 
PPES without replacement sampling might also be 
examined which may further reduce the sampling 
error. One drawback of systematic samples is 
the problem of estimating unbiased variances. 
In respect to the first variable, systematic 
sampling was used because it severely restricted 
the distribution of the samples. Perhaps other 
PPES schemes might accomplish the same objective. 
As far as this aspect, that is the computing of 
conditional probabilities is concerned, one 
could test the limits of larger computers to 
determine how big a universe-sample size combina- 
tion can reasonably be accommodated by the proce 
dure outlined in Section II. 

FOOTNOTES 

I._/ The fixed probabilities, Pli and P2i impose 
the condition: 

Pli ai + (I - Pli) bi = P2i 
or, Pli ai = P2i- (l-Pli) bl 

under the constraints 0 ~<ai ~< i; 0~ bi~ I 
where a i is the conditional probability of 
selecting unit i for sample 2, given it is 
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selected in sample I, and bi, given it is not (see Table I) and the CV's of Y1 and Y2 are 
selected for sample I; Pli,ai is the probabil- not a function of fo" 
ity that unit i is in both samples. The maxi- 
mum value of Pli°ai is therefore achieved when REFERENCES 

a i = Pli/P2 i (bi=0) for P2i < Pli and a i = I 
(bi = (P2i - Pli) / (I - Pli)) for P2i >/ Pli. Cochran, W. G., (1973), "Sampling Techniques:" 

Wi i ey 

2/ If the matrix does not converge, the problem 
can be solved as a transportation problem by 
dropping conditions (3) and (4). See Causey, 
et al. 

3/ In this study Mli/ ~Mli and M2i/I M2i were 
less than I for all i. The above statement 
assumes n is small enough so that all units 
have selection probabilities less than I. 

4/ For k =OOthere are no first stage costs, 
hence n units are selected for each variable 

Causey, B., Cox, L. and Ernst, L, (1983), 
"Application of Transportation Theory 
to Statistical Problems": Proceedings 
of the ASA, 1983. 

Fagan, J. and Greenberg, B., (1984), "Making 
Tables Additive in the Presence of 
Zeros": to appear in Proceedings of 
the ASA, 1984. 

Hartley, H. O., (1966), "Systematic Sampling 
With Unequal Probability and Without 
Replacement" : JASA, Vol. 61, p. 740. 

Table I: Equivalent Expected Sample Sizes (n o + nl) for n = 30 

o: .96 (r=.095) .76 (r=.254) .54 (r=.400) -.06 (r=.637) 
k 

m 

0 27.81(25.62) 24.95(19.90) 23.31(16.62) 21.60(13.20) 
1 28.86(26.59) 27.24(21.72) 26.26(18.78) 25.11(15.34) 
3 29.53(27.21) 28.56(22.77) 28.00(20.00) 27.33(16.70) 

30 (27.64) 30 (23.92) 30 (21.50) 30 (18.33) 

Values of n o (the expected number of overlap units) are given in parenthesis. 

Table 2a: CV's (%) for Equivalent PPES Samples n - 30 

t" ~i(i='1,2) 
Es imates 

SRS Unbiased 
Ratio 
PPES : 

c D _.4/ 

3 .96 
.76 
.54 

- .06 

I .96 
.76 
.54 

- .06 

0 .96 
.76 
.54 

- .06 

Ul U2 U3 U4 
YI Y2 YI 

.987 .989 .951 

10.23 12.76 10.52 
1.69 1.86 3.26 

1.66 2.03 2.68 

1.69 2.05 2.70 
1.74 2.09 2.77 
1.78 2.13 2.80 
1.82 2.19 2.87 

1.71 2.10 2.72 
1.80 2.18 2.85 
1.87 2.23 2.95 
1.94 2.30 3.04 

1.79 2.14 2.82 
1.95 2.33 3.07 
2.06 2.44 3.24 
2.18 2.58 3.42 

Y2 YI Y2 YI Y2 

.957 .839 .850 .687 .745 

11.13 11.67 12.28 14.09 16.53 
3 .25  6.37 6 .48  10.25 11.03 

3.04 5.91 6.48 8.87 9.40 

3.10 5.95 6.55 8.93 9.46 
3.22 6.04 6.74 9.14 9.60 
3.29 6.14 6.92 9.24 9.70 
3.37 6.24 7.33 9.41 

3.18 6.03 6.72 9.09 
3.28 6.23 7.08 9.39 
3.50 6.40 7.32 9.60 
3.65 6.57 7.53 9.88 

3.33 6 .17 6 .97 9 .28  
3 .69  6 .62  7 .62  9 .92  
3 .92 6 .90  8 .01 10.31 
4 .17  7 .32  8 .54  10.69 

,I 

9 .88  

9.56 
9.87 
I0.07 
10.30 

9 .78  
10.32 
10.63 
11.04 

Table 2b: CV's (%) for Equivalent PPES Samples n - 50 

UI U2 U3 U4 
Yi Y2 Y1 Y2 Yi Y2 Yl Y2 

~i(i=1,2) .987 .989 .951 .957 .839 .850 .687 .745 
Estimates 

SRS Unbiased 7.68 9.58 7.90 8.36 8.76 9.22 10.58 12.42 
Ratio 1.27 1.39 2.44 2.44 4.78 4.87 7.70 8.28 
PPES: 

1.02 1.31 1.81 1.82 3.91 4.13 6.00 7.56 

0 .96 1.08 1.38 1.83 1.83 4.18 4.36 6.40 7.73 
.76 1.19 1.53 1.97 2.14 4.66 4.75 7,00 8.06 
.54 1.29 1.62 2.12 2.33 4.92 5.03 7.38 8.30 

-.06 1.39 1.72 2.27 2.50 5.21 5.41 7.82 8.60 
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