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Introduction 

One almost certain result of a survey will 

be the presentation of one or more cross-tabula- 

tions of frequencies. These cross-tabs may then 

be subjected to contingency table analysis to 

determine whether or not the factors represented 

by the rows are independent of those represented 

by the columns. In the past few years, great 

strides have been made in facilitating the analy- 

sis of multidimensional contingency tables with 

such software packages as BMDP4F and C-TAB. If a 

particular table exhibits independence, then that 

table may be replaced in a report with only the 

marginals, making the report shorter and easier 

to assimilate. (It is our observation that in 

market research, at least, these tests for multi- 

dimensional tables are seldom carried out and the 

client is still being buried with pounds of cross- 

tabs which may be unnecessary.) 

Now, suppose one has a contingency table 

which contains one or more significant interac- 

tions. How are these conditions to be described? 

If the number of levels is fairly small, a glance 

at the table itself, or the table of residuals, 

may be sufficient to determine the nature of the 

lack of independence. If the table is larger, 

and in particular has more than two dimensions, 

this may not be so easy to do. There have been a 

number of analytical techniques proposed to aid 

this process but most of them still require some 

insight into the nature of the problem. In this 

day and age, graphical procedures are becoming 

quite useful in many fields of statistical diag- 

noses and and we would like to describe one such 

technique, Correspondence Analysis , for use with 

contingency tables. 

CORRESPONDENCE ANALYSIS 

Correspondence Analysis (CA)is a multi- 

dimensional scaling technique. The concept goes 

back to the thirties (Hill, 1974) but it is only 

in the past ten years or so that much headway has 

been made towards making the technique operation- 

al. The principal activity in this area has come 

from the French who, more properly, refer to this 

as the Analysis of Correspondence although it has 

also been called the method of rgciprocal avemsges 

(see for example, Lebart et al., 1977, 1984). 

There are many alternate motivations and formu- 

lations for CA in the literature [Fisher (1940), 

Hill (1974), Nishisato (1980) and Lebart et al 

(1977, 1984) etc.] Due to space considerations, 

we will not consider these various formulations 

but will look at the characterization of CA from 

the singular value decomposition viewpoint. For 

those familiar with other multi-dimensional 

scaling techniques, it is similar in many ways to 

such point-vector (linear compensatory) models 

such as Biplots (Gabriel, 1981) or MDPREF (Green 

and Rao, 1972). Both of these can be used to 

represent dominance data (e.g. preference scores 

or ranks) for t stimuli by n respondents such that 
m 

the stimuli and respondents may be represented on 

the same graph. Essentially, these methods de- 

compose an nxt data matrix X into the product of 

two matrices (X=AB) where A is an nxk matrix rep- 

resenting the respondents, B is an kxt matrix 

representing the stimuli and k is the dimension- 

ality required to adequately represent this set 

of data [k < min (n,t)]. A and B are obtained by 

the singular value (Eckart-Young) decomposition 

of X which essentially amounts to obtaining the 

eigenvectors of both X'X and XX'. For preference 

data, the stimuli are customarily represented as 

points and respondents as vectors. The locations 

of the projections of the individual stimuli on 

each vector should be correlated with the stimu~s 

ratings for the respondent. While often used for 

preference data, these techniques may in theory, 

be used to represent any two-dimensional array. 

Our application of CA is a singular value 

decomposition of a contingency table with r rows 

and c columns into an rxk matrix representing 
m 

the row characteristics and a kxc matrix repre- 

senting the columns. In addition to the starting 

matrix being a matrix of counts rather than pre- 
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ferences or ranks, CA is differentiated from other 

similar techniques in that a certain amount of 

preprocessing of the contingency table must be 

carried out before the singular value decomposi- 

tion. Also, CA is based on a chi-square metric 

rather than the usual euclidean metric. While CA 

was designed with contingency tables in mind, it 

could be used for any other data matrix where the 

chi-square metric might be appropriate. 

The discussion to follow shows for CA both 

its relationship to the chi-square test for inde- 

pendence in a contingency table and its relation- 

ship to principal component and biplot analysis. 

Consider the matrix Z=D-IpD -I -J where: 
r c 

P = an rxc contingency table of frequencies 

f.. divided by n, the sum of entries 
13 

in the table, 

D = a diagonal matrix of row sums, ri, of 
r 

P, 

Dc= a diagonal matrix of column sums, cj, 

of P, and 

J = an rxc matrix of ones. 

This matrix has entry 

f.. - r. c. 
l] l l 

nf.. 
n 13 z.. = = - I 

13 r.c. r.c. 
i i i i 

which is the ratio of the observed frequency to 

the expected frequency under chi-square indepen- 

dence minus i. Thus, the matrix Z displays the 

deviations from the independence assumption. 

The generalized singular value decomposition 

of Z is 

Z = ND M', 
e 

where the rows of M and N are orthonormal with 

respect to D and D respectively, i.e. 
r c 

N'D N=M'D M=I 
r c 

and D is the matrix of generalized eigenvalues 

associated with Z(Greenacre, 1982). 

A generalized least squares rank k approxi- 

mation to the matrix Z is obtained by using the 

k largest eigenvalues and their associated vec- 

tors. One measure of the goodness of fit of this 

approximation is: 

k q 

~i / ~.. l 

i=l i=l 

where e i are the eigenvalues of Z and q is the 

rank of Z. 

For the graphical representation of the rows 

and columns of Z, consider the matrices F of row 

point coordinates and G of column point coordi- 

nates where: 

a b 
F=N(k ) Do(k) and G=M(k ) De(k). 

The subscript k indicates a rank k approximation 

to Z is being used. The different characteriza- 

tions of CA correspond to the different choices 

of a and b in F and G respectively. 
m n 

In the classical French characterization of 

correspondence analysis, a=l and b=l. In the 

corresponding CA plot, the row point configuration 

approximates the weighted chi-square distances 

between them in the original P-matrix. The chi- 

square distance between the row points i and % 

is 

dx2 (i,%) = n Z (i/ci) (fij/ri- f£j/r£) 2. 

It should be noted that in these chi-square dis- 

tances, the I/cj weighting tends to equalize the 

contributions to the structure of the space of 

the low and high frequency columns. A similar 

interpretation is given to the column points. In 

this characterization, only global relationships 

between column and row points relative to the 

principal axes can be made. Essentially, only 

within row points (or within column points) rela- 

tionships can be inferred from the plot. 

When a+b=l, the biplot interpretation of 

Gabriel (1981) is applicable, i.e. the inner pro- 

duct of the ith row vector of F and the ith row 

vector of G approximate the datum entry z... 
13 

This characterization will permit interset com- 

parisons to be made as well as intraset compari- 

sons. The reciprocal averaging characterization 

of CA has a=l and b=0, or a=0 and b=l. In parti- 

cular, the symmetric characterization a=b=(i/2), 

used in the examples discussed below, produce row 

and column points on the same scale. (See 

Greenacre, 1981, 1982; Heiser and Muelman, 1983; 

and Kester and Schriever, 1982 for further inter- 

pretive information on these characterizations.) 
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NUMERICAL EXAMPLES 

The numerical examples which we will use to 

illustrate correspondence analysis are taken from 

Discrete Multivariate Analysis T~_eory and Practice 

(Bishop, Fienberg and Holland, 1975). 

i. Cancer data. The first example deals 

with some breast cancer displayed in Table I 

(Morrison et al. 1973). A loglinear analysis of 

these data shows a number of significant two-way 

intractions. In particular, all of the column 

variables interact with location. In addition, 

the malignant-benign breakdown interacts both with 

the size of the inflammation and the probability 

of survival. Age and location also interact. 

There are no three-way interactions. The fact 

that some of the column and row variables inter- 

act suggest that a CA plot might be useful and 

this is shown in Figure I. The first two dimen- 

sions account for 72% of the variability repre- 

sented in Table I. The various physical condi- 

tions (the columns of Table i) are represented by 

points. The interpoint distances between these 

points represent dissimilarities among these con- 

ditions. The three geographic locations: Tokyo, 

Boston and Glamorgan (Wales) broken down by the 

three age groups are shown as vectors. The choice 

of points and vectors is arbitrary depending on 

which one can best be used to describe the infor- 

mation in Table I. The interpoint distances be- 

tween the end-points of these vectors also rep- 

resent dissimilarities among these rows of data. 

One cannot say anything about the interpoint dis- 

tances between the column points and the endpoints 

of the vectors. This is NOT a point-point dia- 

gram. The relationship between the points and 

vectors is one of projection. The projection of 

the points perpendicularly on the vectors (exten- 

ded in both directions) should be related to the 

values of the chi-square deviates (the Z-matrix 

described in the previous section) which are 

given in Table II. If one projects all eight 

points on the TY vector, the order of these pro- 

jections are the same as for these metrics with 

the exception of SMM and DGMwhich are reversed 

and which would be resolved by the inclusion of 

the third dimension. 

In addition to deciding what should be 

represented by points and what by vectors, the 

analyst has a second problem in examples such as 

this one in that the original data form a five- 

way contingency table yet this must be reformat- 

ted into two dimensions to carry out the corres- 

pondence analysis. There again, this choice is 

dictated by the specific problem but this will 

have an important bearing on the results. For 

this example, we let all of the physical condi- 

tions be represented in the columns and the demo- 

graphics by the rows. This example could also be 

analyzed using Multiple Correspondence Analysis, 

a generalization of CA to more than two-way tab~s 

(Lebart et al, 1977). 

Now, how may this display be of use? First, 

it can be seen that all of the benign conditions 

are in the top half of this display and the 

malignant conditions in the lower half. Consid- 

ering combinations of conditions with the size of 

inflammation, the pair DGB and SGB are farther 

apart from SMB and DMB than are their counter- 

parts for the malignant conditions. When con- 

sidering probability of survival, one notes that 

SMM and DMM are located in the southeast quad- 

rant while the other pairs, e.g. SGM and DGM are 

related primarily to the vertical axis alone. 

While it may appear from this plot that a three- 

way interaction may exist among these three fac- 

tors, we already know from the contingency table 

analysis that this is not so. Always run this 

analysis first. If the interactions are not sig- 

nificant, there is no need for CA (or cross-tabs 

as we have already noted). There may be some 

concern about PGB since it represents only seven 

individuals and six empty cells. The deletion of 

this column had little effect on the location of 

the other points or on the orientation of the 

vectors. 

The interaction between these factors and 

location is fairly easy to see. The age vectors 

for each location are grouped together but the 

locations themselves do not overlap at all. 

Boston and Glamorgan tend to have higher death 

rates than Tokyo. Boston also tends to have a 

higher benign rate than the other two. Glamorgan 

and Tokyo differ in the size of inflammation. 

There is also an interaction between location and 
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age. Both Glamorgan and Tokyo vectors sweep out 

an arc of roughly 45 degrees and are in order by 

age group. The Boston vectors, on the other hand, 

sweep out about 90 degrees. This seems to be due 

to the 50-69 year old group which may be pulled 

out of the normal pattern because it contained two 

of the seven DGB cases as well as large number of 

both SMB and DMB. Not shown in this display are 

the correlations between the projections of each 

point on each vector with their corresponding 

deviations in the Z-matrix. These correlations 

ranged from r=.69 to r=.98 except for the over 70 

segment in Tokyo which had a correlation of only 

r=.12 for this two-dimensional case and will re- 

quire a higher order representation to explain it. 

2. Father-son data. Our other example, dis- 

played in Table III, has the distribution of 637 

men by various occupations crossed by the occupa- 

tions of their fathers (Pearson, 1904). (The 

original data consisted of 775 men but we deleted 

teaching, agriculture, and the navy because of the 

paucity of data.) These data differ from the last 

set in that one would not expect the columns to 

be independent of the rows; rather, one would ex- 

pect a heavy concentration of frequencies along 

the diagonals reflecting the notion (at that point 

in time) that sons generally followed the same 

occupations as their fathers. In this example, 

only 56% of the variability is explained by two 

dimensions and it was necessary to go to three 

dimensions to get up to 70%. (The fourth dimen- 

sion adds 12%, the fifth, 7%.) Most multidimen- 

sional scaling articles show examples that can be 

represented in two dimensions but the world is not 

always flat. Once one gets beyond two dimensions, 

one needs to be a bit creative with one's 

graphics. In Figure 2, we have represented the 

third dimension of the points (the son's occupa- 

tions) by circles of varying radii. For the vec- 

tors (the fathers) which depart markedly from the 

plane of the f~rst two dimensions, we have indi~ 

cated by a s~gn the nature of the departure and a 

douDle si~gn (i.e. ++ or --)for those who extend 

the most along the third axis. Some procedures, 

such as MDPREF, avoid some of these problems by 

obtaining vectors of unit lengthT departure from a 

unit circle then indicates the amount of the third 

dimension involved in each vector.) 

As one would expect, most of the vectors 

track their corresponding points quite well indi- 

cating that the "null hypothesis" of following in 

the father's footsteps had some validity. The 

first two dimensions indicate the status quo and 

also indicate some clustering of occupations. 

One cluster consists of the army, politics, law 

and landowners. Another cluster consists of com- 

merce, medicine, literature, scholarship and 

science, and divinity. Arts and crafts appear by 

themselves. The third dimension is required to 

resolve medicine which does not follow the trend 

as well; true, most sons whose fathers were in 

medicine also went into that activity but so did 

some others, particularly those whose fathers 

were in divinity. (The fourth and fifth dimen- 

sions attempted to resolve similar situations in- 

volving the army, crafts, law and politics.) In 

this example, we associated the fathers with the 

vectors, but we could have just as well done it 

the other way around. 

CAUTION 

One requirement of multidimensional scaling 

procedures in general is that they require a rea- 

sonable number of entries to be worthwhile. This 

precludes the use of C~ for many contingency 

tables which have a small number of rows and/or 

columns. In these cases, however, any interac- 

tions which do exist should be easy enough to 

interpret without the need for CA. The principal 

advantage of CA lies in its ability to graphically 

portray large tables which otherwise may be dif- 

ficult to diagnose. 
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TABLE I 

CANCER DATA 

DIAGNOSTIC 

SURV. NO YES 

INFLM. MINOR MAJOR MINOR MAJOR 

DIAGN. MALIG. BENIG. MALIG. BENIG. MALIG. BENIG. MALIG. BENIG. 

CENTER AGE 

Tokyo TY < 50 

TM 50- 69 

TO > 70 

Boston BY <50 

BM 50 - 69 

BO > 70 

Glamorgan GY < 50 

GM 50- 69 

GO > 70 

DMM DMB DGM DGB SMM SMB SGM SGB 

9 7 4 3 26 68 25 9 

9 9 ii 2 20 46 18 5 

2 3 1 0 1 6 5 1 

6 7 6 0 ii 24 4 0 

8 20 3 2 18 58 I0 3 

9 18 3 0 15 26 1 1 

16 7 3 0 16 20 8 1 

14 12 3 0 27 39 i0 4 

3 7 3 0 12 Ii 4 1 

TY 

TM 

TO 

BY 

BM 

BO 

GY 

GM 

GO 

TABLE II 

Z-MATRIX FOR CANCER DATA 

DMM DMB DGM DGB SMM SMB SGM SGB 

- .40 - .61 - .45 1.17 - .i0 .15 .49 .82 

- .25 - .36 .89 .82 - .13 - .02 .35 .27 

.06 .34 .09 -i.00 - .72 - .19 1.37 .61 

.04 .02 1.14 -i.00 - .01 .06 - .38 -i.00 

- .34 .39 - .49 .79 - .23 .22 - .26 - .25 

.24 1.09 - .15 -I.00 .08 - .09 - .88 - .58 

1.27 - .16 - .13 -i.00 .18 - .28 .01 - .57 

.29 - .07 - .43 -i.00 .30 - .08 - .18 .12 

- .26 .45 .51 -i.00 .53 - .31 - .12 - .25 

TABLE III 

PEARSON'S FATHER-SON OCCUPATIONAL DATA 

OCCUPATIONS 

OF FATHERS 1 2 

1 28 0 

2 2 51 

4 0 12 

5 5 5 

7 17 1 

8 3 5 

9 0 1 

i0 12 16 

ii 0 4 

13 5 0 

14 5 3 

OCCUPATIONS OF SONS 

4 5 

0 0 

1 2 

6 5 

1 54 

0 14 

0 6 

0 4 

1 15 

0 1 

0 3 

2 6 

7 8 9 i0 ii 

1 3 3 0 3 

0 1 2 0 0 

0 1 7 1 2 

0 6 9 4 12 

6 ii 4 1 3 

2 18 13 1 1 

0 1 4 0 2 

0 5 13 ii 6 

0 0 3 0 20 

1 8 1 2 2 

1 3 1 0 0 

0CC. CODES: 1-Army 7-Landowners ll-Medicine 

2-Art 8-Law 13-Politic s 

4-Crafts 9-Literature 14-Scholarship and Science 

5-D~vinity 10-Commerce 

13 

5 

1 

0 

1 

17 

8 

1 

7 

5 

23 

1 

14 

2 

1 

i0 

13 

7 

5 

4 

15 

6 

1 

9 

217 


