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Introduc t ion 

The consequences of ignoring the effects of 

the design, and analysing survey data as if they 

arise from a simple random sample are now well 

known. For categorical data anal[sis the stand- 

ard Pearson chi-squared tests (XZ) and likeli- 

hood ratio tests (G 2) can yield unacceptably 

large significance levels under cluster sampling. 

A number of alternatives that take account of the 

design have been developed. Weighted least 

squares methods based on the Wald Statistic 

(Koch, Freeman and Freeman, 1975) have been 

extensively used by several survey organizations, 

and computer software based on this approach is 

available. Fay (1979) proposed jackknifed chi- 

squared test statistics based on a replication 

strategy, and has applied this approach to 

hierarchical log-linear models via a computer 

program CPLX (Fay, 1983a). 

Two alternative test statistics for categori- 

cal data have been proposed by Rao and Scott 

(1981, 1984), based on an asymptotic analysis of 

the distribution of X 2 and G 2. The first 
2 2 statistic, X c or G c, was designed for use with 

published tables, for which neither the full co- 

variance matrix required for the Wald Statistic, 

nor the detailed replicate level data required 

by Fay's method, are generally available. In the 

k-category goodness of fit case, for example, 

this method requires knowledge only of the vari- 

ance (or design effects) of the k cell estimates, 

instead of the full covariance matrix. The 

second statistic, X~ or G~ , uses a Satterth- 

waite approximation to the asymptotic distribu- 

tion of X 2 and G 2, but requires knowledge of 

the full covariance matrix. 

In this paper, the finite sample relative 

performance of the above test statistics is 

assessed, under simulated cluster sampling. The 

Monte Carlo study is confined to the simple 

goodness-of-fit problem. 

degree of freedom chi-squared random variables, 

and the I. 's are eigenvalues of the "general- 

ized design 1 effect" matrix ~-Iv. Here ~ = 

diag(z) - zz' . When all the I i are equal to 

unity, X2~~recovers the traditional chi-squared 

distribution on k-i degrees of freedom. 

Clearly then, our model must be capable of gener- 

ating alternative patterns of eigenvalues. 
Brier (1978) proposed a model for cluster 

sampling in which second stage sampling within 

each cluster was conditionally multinomial, based 

on probability vectors pl , with the first stage 

pi's being sampled independently from a Dirich- 

let distribution having parameters ~ (> 0) and 

. Under this model all the eigenvalues I i 

are equal to (m+~)/(l+~). This model mimics 

only one aspect of cluster sampling, namely 

I > 1 , so we need to extend Brier's model to 

generate non-constant design effects. An appro- 

priate extension is obtained by drawing pl , 

the multinomial probability vector for the ~th 

cluster, from a mixture of L Dirichlet distri- 

butions, having parameters (~, [j) , j=l ..... L . 

Under this model, we have [ = Z~j[j , and 

L 

A-Iv: ~)I" + (l+v) j:l j~ ~j ~ ~3 ~ 
~ ~ (m+~ (m-l)~ . X ~ A-I(z -z)(z -z)' (i) 

where the mixture weights ~j and Dirichlet 

parameter vectors Z. satisfy 
~3 

S. = I , and X S.IT. = IT . (2) 
3 3~3 ~ 

When L = 2, this model yields one distinct and 

k-2 equal eigenvalues, which can be explicitly 

evaluated, giving (Rao and Scott, 1979): 

k-i 
m+~ (m-i) ~6 

I : E l./(k-1) : + 
i l+v (k-l) (l+v) 

i=l 

(3) 

Tile Cluster Sampling Model 

We will consider two-stage cluster sampling 

in which a k-category sample of m units is 

drawn independently from each of r sample 

clusters. Let m~ = (m~l ..... m~,k_ I) ' represent 

the vector of category counts for the ith 
! 

cluster, i = 1 ..... r , and let m = (m I ..... mk_ I) 

represent the category counts for the whole 

sample. The total number of observations in the 

r 

sample is thus n = mr = 7. ml . Further, let 

£:i 
A A A ! 

: (ZI ..... Zk-i ) : m/n be the vector of cell 
A 

proportions in the sample, and define [ : E(~), 

where E denotes expectation under the model, 

yet to be defined. Similarly, let V/n repre~ 

sent the (k-l) x (k-l) covariance matrix of [ . 

For a goodness of fit hypothesis Ho : [ :[0 

on the model vector Z , Rao and Scott (1981) 

showed that the Pearson X 2 test (hence also G 2) 
2 

has the asymptotic null distribution IIZ 1 +...+ 

Ik-l~'k-l=2 , where the Z 2.1 are independent, one 

k-i 

( z (xi-Y)2)½ 
i=l (k-2) ½ (m-l) v6 

a = = (4) 
~(k-l) ½ [ (k-l) (m+v)+(m-l)v6] ' 

)'A -I 0<6<1 , 
where @ = ~162([i-[2 ([i-[2), 

and a is the coefficient of variation of the 

%'s. Thus non-zero values of a can be model- 

led, and this mixture model with L = 2 has 

been adopted for the study. Though other, 

possibly more realistic distributions of eigen- 

values, could be modelled using L > 2 , the 

adopted model has the advantage of simplicity. 

It can generate suitably large values of a for 

fixed values of % , and can hence be used to 

simulate the behaviour of the various test 

statistics over a wide range of conditions, from 

multinomial through highly non-homogeneous 

clustering. 

Design of the Monte Carlo Study 

The Parameters 
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The parameters to be controlled are: (i) e , 

the nominal significance level for the tests; 

(2) z , the model probability vector; (3) k , 

the number of categories; (4) r , the number of 

independent clusters; (5) m, the (constant) 

number of units drawn per cluster; (6) ~ , the 

mean of the eigenvalues of A-Iv , the general- 

ized design effect matrix; (7) a , the coeffi- 

cient of variation of the eigenvalues. 

From equations (2), (3) and (4), it can be 

seen that, for fixed values of k and m , the 

parameters [ , I and a are functions only of 

~' 61 and [i- The latter parameters are not 

controlled in the study, but are varied to pro- 

vide the desired combinations of values of the 

controlled parameters. Given the large number 

of these, it is not feasible to examine a 

complete factorial set of combinations. Thus 

the bulk of the Monte Carlo simulation has been 

carried out for one value of I (l = 2) under 

the equiprobable case z : (i/k ..... l/k)'. 

Generation of Random Numbers 

Brier's (1978) method of generating Dirichlet 

variates from k-i beta random variables was 

used. The betas were generated using subroutine 

GGBTR (IMSL, 1980), while the required source of 

uniforms was supplied by the generator GOFCAF 

(NAG, 1983) , a multiplicative congruential 

generator of modulus 259 . For each of the i000 

Monte-Carlo trials, independent Dirichlet k- 

vectors were generated for fifty clusters. Then, 

for each cluster, a k-category conditional multi- 

nomial sample was constraucted by referring each 

of m independent (0,i) uniforms to the 

appropriate interval associated_ with pl . For 

given values of m, k, ~, I and a , all test 

statistics under consideration were then applied 

to the same subset of r independent sampled 

clusters, thus increasing the precision of com- 

parisons between different test procedures at 

the same parameter settings (Schruben and Margo- 

fin, 1978; Olson, 1974). 

The precision of comparisons between the same 

test procedures at different settings was also 

increased by a synchronized reuse of the basic 

set of uniform random numbers. For each of the 

i000 sets of 50 clusters, all test procedures 

were applied in turn to the i000 x r array of 

clusters, for r = 5, i0, 15, 20, 30 and 50. 

Thus, test statistics for two different numbers 

of clusters r I and r 2 were correlated by 

having the min(rl,r2) clusters in common. For 

different values of k and m , correlations 

were induced by re-using distinct streams of 

uniforms for each Dirichlet vector and for each 

of the sets of uniforms used to generate the 

conditional multinomial distributions, for each 

of the i000 Monte Carlo trials. 

Test Statistics 

(i) X 2 and G 2 Statistics. The test proced- 

ure refers 

k k 

X2=n 7 (~i-~0i)2/~0i , or G2=2n ~ ~ilog(~i/~0i) , 
i:l i=l 

to Xk_12 , a chi-square variable with k-1 d.f. 

(2) The Wald Statistic: The test procedure 

refers 

2 

to Xk_l, 

X W : n(~-~0 )' ~- l (~_~O) 
A 

where V is given by 

r 
^ i i I , 
V - Z: (ml-rm)(m l- r m) . 
~ m(r-l) ~ 1 ~ 

An alternative test is obtained by referring 

(r-k+l) X 2 to F 
FW : (k-l) (r-l) W (k-l) , (r-k+l) ' 

(Fellegi, 1980; Hidiroglou et al., 1980). 

(3) Fay's Xj and G. Statistics. Fay's 
3 

(1979) version of X 2 is defined in terms of 

the following quantities: ~(-%) : r(r-l)-l(~ - 

n-lm%) , Q2 (_%) : Z(~i(_%)l~0i)2/~0i , p(%~ = 

n (Q2 (_%)_Q2) , where Q2 = x 2/n. Then, the 

jackknife statistic Xj is given by 

½ ½ 
(X 2 ) - (K s) 

Xj : 
(Vj/SX 2 ) ½ ' 

-i -I 
where K = r (r-l) ~.P(%) and V : r (r-l). 

J J 

Zp2 (%) . The jackknife version of G 2 , denoted 

Gj , is defined in an entirely analogous way. 

Both Xj and Gj are referred to the critical 
½ ½ 2 

points of (Xk_l) - (k-l) ] . 

(4) Rao and Scott's l Corrections. The 

method refers 

X 2 : X 2 /  2 , or G 2 : G2/2 
C c 

2 where l A : ~ ~ = 
Xk-I ' (k-l)-l?'(l-~i)~i ' i to 

vii/~i(l-~ i) is the i th estimated cell design 

effect, and vii is the i th diagonal element of 

V . An alternative test is obtained by referring 

FX 2 : X2c/(k-l) or FG 2 : G2/(k-l) 
C ' C 

to F an F distribution on 
(k-l), (r-l) (k-l) ' 

k-i and (r-l) (k-l) degrees of freedom. See 

Thomas and Rao (1984) for details. When H o is 
A A 

true, the modified estimator 1 , with ~i 
o 

replaced by ~0~ , is also a consistent estimator 

of ~. Modified X 2 and G 2 statistics based 

2 2 

on 1 will be denoted by X , Gco and 
O C o 

2 2 

FX c , FG c respectively . 
O O 

(5) Rao and Scott's Satterthwaite Corrections. 

The procedure consists of referring 

X 2 ~ ~2 
S : X /(l+a ) 

to Xk . , where k* = (k-l)/(l+a 2 ) . The estim- 

ate 22 can be obtained via the expression 

k 
A2 z~ 2 : z y v /(~ ~ ) . . . . .  

I i, j:l i 3  l 3 

208 



2 
As before, a version of X s can be Obtained by 

replacing ~ by ~ , and this version is denoted 

by XSo . Satter~°aite versions of G 2 , namely 

2 a n d  G 2 , can be defined analogously. F- GS S O 
o 2 

based versions, FX~ abd FX S , are obtained by 
2 o 

referring X2/(k-l) and Xco/2 (k-l) to 
2 

Fk*, (r-l)k* " Similarly, FG S and FGSo are 

obtained. 

(6) Fellegi's Correction. The procedure 

X 2 2 G 2 2 
/d to ×k-i ' refers = X2__ or = 

_ F ' GF 
A 

where d is the mean of the cell design effects 
d. (Fellegi, 1980) . 

1 

Re s ul ts 

All results are given in terms of realized 

significance levels, i.e. the proportion of 

actual rejections of a correct hypothesis, at a 

nominal level of ~ = 5% in i000 independent 

trials. 

2 2 
X and G tests. 

Table 1 gives the actual significance levels 

(SL) for the uncorrected X 2 and G 2 tests, for 

the case of r =50 clusters. The results are in 

fact quite insensitive to r , the number of 

clusters, even for values of r as low as 5. 

Clearly, these uncorrected tests are unacceptable 

unless 1 is close to unity, i.e. unless the 

effect of the clustering is very small. The 

distortion in significance levels is primarily 

related to ~ ; for constant ~ , increasing the 

coefficient of variation of the li's , namely 

a, appears to decrease the significance levels, 

though the relative effect of changes in a is 

minor. It can also be seen that for constant I, 

the performance of X 2 and G 2 deteriorates rapid- 

ly as k , the number of categories, increases. 

For example, SL(X 2) for ~ = 2.0 and a = 0 

increases from 20.8 to 50.3 as k increases 

from 3 to i0. 

Table 1 

Actual Significance Levels (%) for the 

2 2 
Unadjusted Tests X and G 

r = 50 , d = 5% , z = (i/k ..... l/k) 

k ~ a m SL(X 2) SL(G 2) 

3 1.5 0.0 i0 13.4 13.7 

3 1.5 0.5 i0 13.6 13.9 

3 2.0 0.0 i0 23.3 23.0 

3 2.0 0.5 i0 20.8 20.7 

5 2.0 0.0 i0 31.7 32.1 

5 2.0 0.5 I0 28.3 28.7 

i0 2.0 0.0 20 50.3 50.0 

i0 2.0 0.5 20 48.4 46.6 

i0 2.0 1.0 20 44.5 44.2 

i0 1.05 0.0 20 6.0 6.4 

2 
Wald X versus Wald F tests. 

Table 2 compares the actual significance levels 
(SL) of the and Hotelling' S F versions of 

the Wald statistic, for a range of Walues of r. 

Several important conclusions can be drawn. 
First, ~z performs poorly even for r =50 

clusters when k =i0, yielding an actual signifi- 

cance level close to 20%. As k decreases, its 

performance improves, the actual level for k = 3, 

r = 50 being 6.0%. For a given combination 

(k,m, a) , the performance of ~2 deteriorates 

rapidly as r decreases; for ~k =5, m=10, 

a =0.5, its significance level goes from 12.6% at 

r =30 to 37.4% at r =i0. Clearly, unless k 

is small (< 5), the chi-squared version of the 

Wald test must be used with caution. Even for 

small k , it should not be used unless the number 

of clusters is 50 or more. It should be noted 

that this poor behaviour of X 2 is not merely a 
-- W -- 

function of large 1 and a . Even for a 1 of 

1.05 and a = 01i.e., approximately the multi- 

nomial case), f~ has an actual significance 

level of 17.4% r k = i0 and r = 50. These 

findings confirm the warnings given by Fay (1983b) 

regarding the use of the Wald procedure. 

Table 2 

Comparison of the Actual Significance 

Levels (%) of X 2 and F W 

= 50% , I = 2.0 , ~ = (i/k ..... i/k) ' 

k m a r SL( 4 ) SL (Fw) 

3 i0 .5 

5 i0 .5 

i0 20 1.0 

50 6.0 4.7 

30 7.1 5.5 

i0 15.5 7.4 

50 9.1 5.9 

30 12.6 7.7 

i0 37.4 10.8 

50 20.5 7.9 

30 32.5 10.4 

20 49.4 12.5 

i0 95.4 5.5 

From the point of view of significance level, 

the F W version of the Wald test is more stable, 

though it too attains an excessive significance 

level of over 12% for k = i0 and r = 20. Though 

F W gives better control of test size, its power 

for small to moderate numbers of clusters, how- 

ever, is likely to be small. 
A 

Rao-Scott procedures based on z and [o " 

In general, the l and Satterthwaite adjusted 

tests are not very sensitive to the choice of ~o 

or ~ in the calculation of ~ and ~2.. For 
1 

moderate to large r (30-50), differences 

attributable to the use of ~~ or To are minor. 

For small numbers of clusters (r =i0), use of 
~o 

results in lower attained significance levels, 

which is beneficial when the coefficient of vari- 

ation of I i is not small. Hence forth, the 

results are given for procedures based on ~ . 
~O 
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Table 3 
m 

Variants of the Rao-Scott I Adjusted Test: 

Significance Levels 

= 5% , ~ = 2.0 , ~ = (i/k ..... l/k)' 

k m a r SL(X 2 ) SL(FX 2 ) SL(X 2) 
c c 
o o 

3 i0 0.0 

3 i0 0.5 

i0 20 0.0 

i0 20 1.0 

50 5.5 5.1 5.4 

30 4.7 4.0 4.4 

I0 6.7 4.7 6.3 

50 5.9 5.5 5.7 

30 7.2 6.7 6.7 

i0 10.7 7.1 9.8 

50 5.5 5.3 5.9 

30 4.7 4.1 5 .i 

i0 5.0 3.5 5.4 

50 11.5 ii.i 11.4 

30 12.7 12.1 13.1 

i0 14.1 12.6 15.9 

Variants of the Rao-Scott I Test. 

2 2 
Significance levels for Xco and FXco are 

shown in Table 3 for a selection of k and a 

combinations that exhibit both liberal and con- 

servative behaviour. Also shown is Fellegi's 

heuristic adjustment to X 2. It can be seen that 

X 2 can become overly liberal for large values 
c° 2 

of a , as expected. In all cases, FXco exhibits 

2 
a lower significance level than Xco , without 

being excessively conservative, even for the case 

k = i0, a = 0. Thus FX 2 will be used from now 
2 co 

on in preference to Xco.. Fellegi's procedure 

yields significance -eve±s that are similar to 

those produced by X 2 , a conclusion that holds 
c O 

true for a wide variety of test conditions. For 

this reason, Fellegi's procedure will not be dis- 

cussed separately in what follows. 

2 2 
X S versus FX s . 

o o 

2 
The modification FXSo always yields lower SL 

2 
than does XSo , but tends to be unnecessarily 

conservative fo[ k > 5. However, for k = 3 the 

lower SL of FXs are advantageous. Thus, in 
o 9 

the comparisons ofo Table 4, X~o~ is used for 

k > 5 , while FX~ is used for k : 3. 
o 

Overall Comparisons of the Rao-Scott, Fay and 

Wald Tests. 

It can be seen from Table 4 that, for the 

equiprobable case, the significance levels of 

tests based on X 2 and G 2 are quite similar. 

When there are noticeable differences, they 

usually favour X 2 , e.g. for k = i0, r : i0, 

a : 1.0 , the I , Satterthwaite and Fay proced- 

ures are two to three percentage points more 

liberal for 02 than for X 2 . Remaining compari- 

sons will therefore focus on X 2 based tests. 

2 

As previously noted, FXco , the F version of 

the Rao-Scott ~ adjusted test, can be liberal 

for large values of a , particularly so for 
2 

k = i0. For k = 3 and k = 5, FXco behaves well 

over a wide range of values of r. It should be 

noted that application of FXco requires know- 

ledge of only the estimated cell design effects, 
A 

whereas the other tests require knowledge of V 

or the replicate level data. 

Table 4 

Significance Levels of Rao-Scott and Fay Tests: 

X 2 and G 2 versions 

: 5% , I : 2.0 , [ : (I/k ..... l/k)' 

k m a r SL(X 2) SL(Gs2) SL(F4)SL(FG 2) SL(Xj) SL (Gj) 

o o o o 

3 i0 .5 50 5.1" 5.0* 5.5 5.7 4.9 5.0 

30 5.1" 5.3* 6.7 7.0 5.4 5.2 

i0 5.6* 5.9* 7.1 7.9 9.2 8.3 

5 i0 .5 50 5.1 5.1 6.2 6.5 4.8 5.0 

30 5.1 4.9 6.2 6.7 5.8 6.0 

i0 7.8 7.6 9.0 9.3 10.4 10.9 

i0 20 1.0 50 7.3 8.2 ii.i ll.2 5.6 4.4 

30 8.1 8.8 12.1 11.8 8.0 7.1 

i0 6.5 9.5 12.6 14.9 13.8 16.5 

* These values correspond to F 2 2 X S and FG S . 
o o 

Fay's Xj procedure exhibits some interesting 

characteristics. Though only an approximate test 

for a > 0, it displays the best 'asymptotic' 

behaviour of the four competing tests studied. 

(See Table 2 for results for FW.) For r = 50, 

its actual significance levels are very close to 

5%. It does not exhibit any tendency to conserva- 

tiveness, and for r ->_ 30 , it limits the actual 

significance levels to 8% or less. However, for 

r : i0, Xj can become quite liberal, exhibiting 

significance levels well over 10%. 

Over the complete range of k , r and a 

studied, the original Satterthwaite approximation 
2 

X 2 , supplemented by FXSo for k : 3 , seems 
S o 

to provide the best compromise. Though a little 

liberal for the extreme case k = i0 , a = 1.0 , 

significance levels are for the most part within 

+ 3 points of the nominal 5% level. 

The Effect of Skewness in ~ . 

The effect of varying degrees of skewness in 

, the population probability vector, has been 

examined for the case k : 5 (see Thomas and Rao, 

1984). The results are summarized below. 

If the minimum cell expected count is > 1 , 

then skewness has little effect on significance 
2 

levels for the statistics FXco , XSo and Xj . 

The actual significance levels of F W , however, 

become more liberal with increased skewness, 

especially for small numbers of clusters. 

If the minimum expected cell count per cluster 

is 0.5, then for the case of moderate r , there 

is again no evidence of a skewness effect on the 
2 

significance levels of FXco , XSo and Xj . 
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For small numbers of clusters, however, there is 

clear evidence of increasing liberality with 
increasing skewness for these three procedures. 

Results for F W follow its previous pattern, 
but the effects are more pronounced. Even for 

moderate r , the significance level for the 

least skewed case studied (.3, .3, .3, .05, .05) 

is at least twice as great as in the uniform 

case (.2, .2, .2, .2, .2), which puts F W into 

the unacceptable category. For small r , sig- 

nificance levels of F W are even higher, 
reaching over 26% for the highly skewed case 
(.8, .05, .05, .05, .05). 

Summary and Conclusions 

Monte Carlo techniques were used to examine 

the type I error performance of a number of 

chi-squared goodness-of-fit test statistics under 

cluster sampling. A study of a number of vari- 

ants of the basic statistics under consideration 

has reduced the comparison to four procedures, 

namely an F-based version of the Rao-Scott 

adjusted X 2 statistic, the original Rao-Scott 
Satterthwaite adjusted X 2 , Fay's jackknifed X 2 

and a modified Wald statistic referred to an F 

distribution. The h adjusted X 2 statistic 

depends only on the cell design effects unlike 
the others. This statistic performs well 

provided that the coefficient of variation a 

of the ~. 's , the eigenvalues of the design 
effect matrix, is small. In general, the 

Satterthwaite adjusted test and Fay's jackknifed 

test perform well even when a is not small. 

The modified Wald statistic behaves reasonably 

well for goodness-of-fit tests of uniform 

probability vectors [ , but it is sensitive to 

skewness in Z , particularly when the expected 

cell count per cluster is less than one. 
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