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SUMMARY 
A test statistic for comparing proportions 

should reflect the type of sampling scheme used 
to collect the data. This paper considers ob- 
taining a test statistic for proportions under 
cluster sampling. Brier (1980) used the Dirich- 
let Multinomial model for contingency tables gen- 
erated by cluster sampling schemes. Here the 
Dirichlet Multinomial is used for comparing vec- 
tors of proportions from different subpopula- 
tions. This model assumes that the covariance 
matrix of the estimated proportion under Dirich- 
let Multinomial sampling is a multiple of the co- 
variance matrix of the estimated proportions 
under multinomial sampling. Several methods are 
suggested for estimating this multiplier. A test 
for the fit of the model is obtained. The Dir- 
ichlet Multinomial model is used to analyze data 
taken from Brier (1980). 

i. INTRODUCTION 
In the analysis of categorical data most meth- 

ods have been developed extensively assuming mu!- 
tinomial sampling. Under this assumption it is 
well known that the usual goodness-of-~it statis- 
tics, namely the Pearson chi-squared X ~ a~d the 
likelihood ratio chi-squared statistic, G- have 
asymptotic chi-squared distributions if the fit- 

ted model is correct. 
In this paper we develop a test of proportions 

for several subpopulations under a Dirichlet Mul- 
tinomial model. This model assumes that the co- 
variance matrix of the proportions under the Dir- 
ichlet Multinomial model is a multiple of the co- 
variance matrix for the proportions under multi- 
nomial sampling. A test is obtained for the fit 
of the model and several methods are developed 
for estimating this multiplier. 

2. DIRICHLET MULTINOMIAL DISTRIBUTION 
Consider a population consisting of several 

clusters. A sample of s clusters is randomly 
chosen with replacement and with probability pro- 
portional to size (pps). A simple random sample 
of n secondary units is taken from each cluster, 
and the total sample size is N = ns. 

Let Pt = (PlL'P2t~ .... Pit )' for t = l,t2 t 
...s be~the vector proportlons for the h 
cluster of the population. Assume that the vec- 
tor P t is distributed independently and identi- 
cally with distribution function F(p). The dis- 
tribution F(p) is the Dirichlet distribution. 
Good (1965) ~escribed the Dirichlet distribution 
as a conjugate prior distribution for the cell 
probabilities for multinomial models. It has 

density function 
k~ -i 

F(k) I i 
f(Pt l~'k)~ : I ~ Pi " 

]~ r (k~i)i= I 

i=l 

The parameters are the vector ~ = (~I,~2 .... ~T )' 
and k(> 0). k is a scaling parameter. 

A_ 

With a Dirichlet prior the unconditional dis- 

tribution of X t~ - (Xit , X2t .... Xlt), ~ is given 
by 

l t , X 2 t ,  . . . .  XIt 

+ k~i) 1 F(k) I F(Xit 

F (n+k) H F (k i) " 
i=l 

We denote this unconditional distribution by 
DMT (n,~,k). Within each cluster the vector of 
ca~egor~ counts 

Xt = (X. , X_ r bl~ n t = 1, 2 .... . it zt' ... s; 
has multlnomial dist i o , with parameters n 
and p , conditional upon p . Wilks (1962) gives 

~t t 
the moments of the Dirichlet distribution as 

E(Pi) = ~i' 

E(p~) = ~i(l + k)-l(l + k~ i) 

and -i , 
E(PiPi ') = (i + k) k~i ~i , i # i'. 

The moments of the conditional distribution i.e. 
the multinomial distribution are well known. 
Thus the moments for the Dirichlet Multinomial 
are 

E(Xt)~ = n "~,~ 

V(X t = n C(A~ - ~~ ~~')' 

where A T is a ~iagonal matrix with elements ~i' 
and ~ 

-i 
C = (i + k) (n + k). 

Brier (1980) gives some methods of estimating C. 
In section 3.4 we obtain other methods of esti- 
mating C and obtain a lack-of-fit statistic for 
the model. 
2.2 Extension of the Dirichlet Multinomial Model 

The description given so far concentrates on 
one subpopulation so as to give a basic idea of 
the Dirichlet Multinomial model. Consider ex- 
tending this basic idea for J > i subpopulations. 
Assume that for j th subpopulation, j = i, 2 .... 
J; the number of sampled clusters within that 
subpopulation is S., and a simple random sample 
of size n. is take~ from each of the sampled 
clusters ~ith replacement. Let X denote the 

~t. 

vector of counts for the t th cluster with the 
j th subpopulation. Further, assume that 

Xt. ~ iid DM l(nj,~..~,kj). 

J 
This model permits a different distribution for 
the vectors of proportions within each subpopula- 
tion. Define 

So 
J 

X. = ~ X j = i, 2 .... J; 
~j t= 1 ~t. J 

Then, the covariance matrix for the vector of 

sample totals, X i, is 
.J 

Var(Xj) = njSjCj(A T 7. ~.') 
~j ~J ~J 

where 
-i 

C.j = (i + kj) (nj + kj). 

Let the total sample size for the j th subpopula- 
tion be denoted by 

N. =n.S. 
J ] O 

then, 

Var(Xj) = NjCj (A T - ~j ~j'). 
~ 

Define a vector of observed proportions for the 
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j th subpopulation as 
A 

z. = N.-1X., 
~3 J ~J 

A 

t h e n  ~.  i s  an u n b i a s e d  e s t i m a t o r  o f  7 . .  The c o -  
variance matrix for ]7 is ~J ~j 

B. = N.-Ic.(A - z. ]7.'). 

~J A 

The vector of deviations (~. - z.) has a mean 

vector 0 and covariance matrix ~3.. By the Cen- 

- +  o o ,  tral Theorem as Sj %(~j #j) ÷~O,NjBj). 

3. TESTING OF HYPOTHESES CONCERNING 7. 
~3 

3.1 Test of Homogeineity 

Suppose the interest is in testing the hypoth- 

esis 

H : ~. = ]7 j = i, 2 .... J; (i) 
0 ~J ~0 ^ 

where ~ is a known vector. Then, ]7. - ~ is an 
~O ~J ~O 

unbiased estimatgr for the vector ]7. - ]7 , and 

the variance of ~. - ~ is given bySB..~°Under 
~3 ~o j 

the null hypothesis a consistent estimator of B. 
J 

is ^ -I ^ 
B. = N. C.(A - ~ z '), (2) 

j ^ j j ~ ~o~o 

where C. is a con~°stent estimator for C.. Then, 
J J 

a test of the form considered by Wald (1943) is 

2 ^ ^ 

XDM H = (TT- ]7 )'B-(IT- ]7 ) (3) 
~ O ~ ~O 

where ^ ^ ^ 
A ~" ~" ~" ~" ~" 

(~-~o) : ( ~  - ~o' ~2 - ~ o  . . . . .  L -  ~o ") 
A A 

and B is a consistent estimator of Var(]7 - ~ ) 
A "~ "~O 

and^B i s  t h e  g e n e r a l i z e d  M o o r e - P e n r o s e  i n v e r s e  
A 

o f  B. B i s  a b l o c k  d i a g o n a l  m a t r i x  w i t h  e n t r i e s  
^ 

g i v e n  b y  B j ,  j = 1 ,  2 . . . .  J ;  o n  t h e  d i a g o n a l .  
2 

The  s t a t i s t i c  XDMtt c a n  b e  w r i t t e n  a s :  

2 J ^ ^ ^ 
= X - 'Bj - #o ) (4) XDMH j=~(~ ~o ) -(~ 

J ^ 

= Z c.-i x 2 
j=l ] mj 

where 
^ h 

2 v - 
X mj = Nj(zj~ - Zo)_ (A - ]7 ~ ') (]7. - z )(5) ~ ~ ~ o ~ o  ~ j  .,.o 

~0  

d e n o t e s  a P e a r s o n  g o o d n e s s - o f - f i t  s t a t i s t i c  f o r  
t h e  j t h  s u b p o p u l a t i o n  and C. i s  a c o n s i s t e n t  
estimator for C., j = i, 2, J...J. Since 

^ ] 

#-N.3(zj~ - ~o Z ) has a limiting normal distribution 

with mean vector 0 and covariance matrix B., a 

test statistic based on a consistent estimJtor of 

B has an asymptotic chi-square distribution, 

(Moore, 1977). 

Therefore, XDM H has a limiting chi-square distri- 

bution with J(I-l) degress of freedom since B has 

a rank of J(I-l). 

3.2 A Test of Independence 

Suppose the vector z is unknown in the hypo- 
~O 

thesis 
H " ]7. = ]7 

o "3 ~o (6 )  
and is estimated by a linear combination of the J 
unbiased estimators obtained from each of the J 

subpopulations. Then, an estimator for ]7 is 
~O 

A J " "  

= Y ~.Z., 
~o j=l 3~3 

(7) 

where the ~.'s are positive and sum to one. The 
J^ ^ 

estimator ([j - ~o ) is an unbiased estimator of 

z. - ~ if the ~'s are fixed. Let T.. denote 
~j ~o ^ ^ JJ 
the variance of ~. - ~ and T denote the co- 

~3^ ~o^ jj'" ^ 

- z ) and , - [o ). Then variance between (~j ~oj (~j 

T.. = B. - 2~.-iB. + Z ~2 B~ (8) 
JJ J J J ~-i 

and J 

T j j ,  = - ° c ' - 1 B j  j - (~'J ' - I B j '  + %=1X c~%2B£, 

a t e s t  s t a t i s t i c  f o r  t h e  h y p o t h e s i s  i n  (2 )  w h e r e  
]7 i s  a n  u n k n o w n  v e c t o r ,  c a n  b e  c o n s t r u c t e d  u s i n g  
~ O  

a c o n s i s t e n t  e s t i m a t o r  o f  t h e  c o v a r i a n c e  m a t r i x  
for ^ ^ ^ ^ ^ ^ 

(~- ~ ) = (~i - 7T '~2 - ~o 
~O ~O ' "''' 

A A 

~" -- 

]7I ~~o ") " " 
Let M denote the covariance matrix for 

(~- ~ ). Then M has T.. as the j th diagonal 
~ ~o J3 

block and Tii , as the corresponding off diagonal 

block. Let M denote the generalized Moore-Pen- 

rose inverse of M. In estimating M, B. is re- 
J 

placed by 
^ -i A A 
Bo = N. c.(A ̂  -- ~ Z '). 
J ] 3 ~ ~o~o 

~0 

By Wilson (1984) a Wald test statistic as con- 

sidered by Wald (1943) is given by 

. . . . .  J ^ -i 
X 2 = (7-~ )'M-(]7- ]7 ) = Z N C ! DMI ~ ~o ~ ~o j=l j j 

A A 

I (7.. - 2 
_ - L j  ^ ~io )_ ~ (9 )  

i=l ]7. 
lO 

where 
A J ^ 
IT. = Z ~.~.. 
io j=l J LJ 

and the ~.'s are chosen inversely proportional to 
J 

the variance, such that 

~. = N. C-i J -i -I 

J j j " (i0) 

The Wald test statistic X 2 DMI resembles the usual 

Pearson statistic for a test of independence 

under multinomial sampling. However, it differs 

from the Pearson statistic in that the multiplier 

I ^ ^ 2 ^ -I ^ -i 
X (~.. - ~. ) 7. is N.C. and not N_, also 

i= 1 13 io Io J J ] 
A 

7. is not the maximum likelihood estimator ob- 
iO 

tained under multinomial sampling. If C. - 1 for 

all j then 2 J , XDM I reduces to the usual Pearson 

statistic ^ 

JX I (~i~ - ~i0)2 
X2MI = N. Z ^ • . (I i) 

j=l 3 i=l ~. 
iO 
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If the C. 's are all equal to sQme value C then 
3 

the statistic reduces to a multiple of the usual 
Pearson statistic, A 

MI = C X2MI 

3.3 Estimation of C. 2 
To be able to use XDM I an estimate of each C. 

3 
is required. Altham (1976) and Cohen (1976) 

< nj and this can point out the fact that i < Cj _ , 

be used to obtain a conservative test. Brier 
(1980) gave a possible method of estimating Co 

3 
based on the method of moments, as a multiple of 
the Pearson Chi-square statistic for testing 
equality of the S° probability vectors in the 
I x S° table formed by classifying units by clu- 

J 
sters and by categories. Here we consider sev- 
eral different estimators for which we compute in 
the example given below. 

Under the Dirichlet Multinomial model each of 
2 

the I elements of the covariance matrix is C 
times the corresponding elements under the multi- 
nomial model. Recall that the variance of ~. 

~J 
under the Dirichlet Multinomial model is 

_i C . .' VarDM(j) = n. .(A - z z ) (12) 
3 3 7T. ~j ~ j  

~3 
and under the multinomial model the variance is 

~ - 1  , 
Var M ( j )  - n_; (A - 7r. Tr. ) .  (13)  

~T. ~J ~j 
~J A 

A simple moment estimator fOrs varDM(~~j) i s  
A j A A 

VarDM(~;)  = n j  - l ( s j - 1 )  -1  I ( ~ t j  - ~j ) 
.. A t = l  

(#tj - ~j )'' (14) 

where S. 
^ -i J ~ 

= S. Z IT . .  
~ ] t=l ~3 

The sample covariance matrix in (14) can be ex- 
pressed in a vector form by writing 

- 4 

S. 
J A A 

X (~itj-~lj) 2 
t=l 
S. 

^ 

vech[var(~j) ]=nj -I -i 3 . . . .  
(Sj-I) t Z=l(~Itj-~lj). • (~2tj-~2J. 

. 

S A A 

2 

t~l(ZJ-l, tj -~(l-l)j ) 

-Iv =n. . . (15) 
J ~J A 

The expected value for vech [var (~j)] is 

2 

E{n-Iv } : -i ~ij 
j ~j nj ~lj ~2j 

~21_ij 

A graph of the elements of the covariance ma- 
trix in (14) versus the corresponding elements of 
the covariance matrix in (13) should resemble a 

straight line when the model is true. This 
straight line must pass through the origin. 
Then, a generalized least squares estimator for 
C. is given by 
3 ^ A 

COW = (w.'~.-lw.)-lw.'~-Iv. (16) 
~J 3 ~J J J ~3 

A 

where Y. is a consistent estimator of the covar- 
J ^ 

lance matrix for V° and 
A 

~ J~i-" ~ j~2-" ....... l-l,j . (17) ij' ~3 

The generalized least squares technique for esti- 
mating Co also provides an approximate goodness- 

J 
of-fit test for the model. This estimation pro- 
cedure assumes that the W.'s are fixed. An al- 

~J 
ternate procedure taking into account the random 
W.is given in the appendix. 
~j 

° Three possible estimators for C. are now 
J 

given. The first is a non parametric estimator 
associated with V.. Because V. is expressed as 

~J ~j 
a mean, an estimator of the covariance matrix 
for V. is 

~j S. 
A 3 A A A A 

Xjl = (Sj-I) -2 Z (V t = Vj) (V t - Vj)' (18) 
t=l j j 

where 
A A ^ A 2 

Vt. = (~21t,~itj~2t j ......... ~ (l_l)tj)" 
3 

This estimator requires a few assumptions, but 
-i 

the number of clusters must exceed 2 (I-l)I if 
~jl is to be nonsingular. 

The second estimator of Co uses the Dirichlet 
J 

Multinomial model and assumes that the cluster 
sizes are large enough so that the normal dis- 
tribution can be used to approximate the covar- 
lance matrix of the sample variances. We con- 
sider the transformed observations 

-i - X) R ' (19) Ytj~ = nj (Xtj ~ J 

-- ! 

= (~tj - ~j )Rj ; 

where 
S. 
J 

- = X ~ , 
~t. 

~j t=l J 

R. is the matrix such that 

001 I - 1  

Rj 7,mj R j '  = u l  0 '  (20)  

and Z . i s  t h e  m t i n o m i a l  c o v a r i a n c e  m a t r i x  f o r  
mj 

a s a m p l e  of  s i z e  n . .  Under  t h e  mode l  t h e  c o v a r -  
J 

i a n c e  m a t r i x  of  t h e  f i r s t  I - 1  e l e m e n t s  o f  ~ JYt- i s  

a multiple of the identity matrix. Let 
A 

s 0 j Vjyy ~ 

(Sj - i) -I Z Y' = . (21) 
t= I ~tj Ytj 

0' 0 

Then u n d e r  t h e  mode l  

E(Vyy) = Vjyy : c.¢ . (22) 
J 
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If Y . is normally distributed, 
~tj ^ -i 2 
Var{vech Vjyy} = (S.-I) C. DB, (23) 

] J 
where 

D B = diag (2, i, 1 ........ 2, i, 2) (24) 

and the element of the diagonal matrix D B for an 

estimated variance is two and the element for an 
estimated covariance is one, Anderson (1958). 
Because Y is unknown it is necessary to replace 

m 
Y . with Y . where 
mj mj 

A A A 

R. X. R'= J. 
J mJ ] 

Then the estimated generalized least squares es- 
timator C. is 

J 
A 

CBj = (A'DB-IA)-IA'DB-IHj, (25) 

where 

A = vech~ , 
A 

H.j = vech(Vjyy), (26) 

which is identical to the estimator proposed by 
Brier (1980). Under the normal assumption, and 
with X . known, an estimator of the variance of 
^ mj 

CBj i s  
A A 

V {CBj} = (I-i) -I C 2 , - -i B.(A D B IA) . (27) 
J 

A lack-of-fit statistic for the model is 

2 = ^ -2 -i H _ Hj,DB-I A ^ X Bj (I-I)CBj [Hj'D B ~j ~ CBj]. 

(28) 
If ~ . is known and the model is true, the large 

m] 2 
sample distribution of X Bj is approximately that 

-i 
of a chi-square random variable with 2 (I-l)I-i 
degrees of freedom. An alternative estimator of 

A 

the variance CBi and alternative lack-of-fit 

statistics are considered in the example of sec- 
tion 4. 

A third estimator of C. falls between the pre- 
J 

vious two in the amount of model information used 
in the construction. Under the model the covar- 
iance matrix of vech Vjyy is a diagonal matrix. 

An estimator of the variance of the rs-th element 
is S. 

-2 ] ^ 2 
Dwjrs = (s.-l) Y (YjrtYjst- VjYYr s) (29) 

] t=l 
A A 

where VjYYr s is the rs-th element of Vjyy defined 

in (22). Then a generalized least squares esti- 
mator of C. is 

] 
A 

Cwj = (A'Dwj-IA)-IA'Dwj-IH. (30) 
. . . .  J 

where 

D = diag ....... DW I-i I-1 ) (31) w (Dwll  ' DW21 , , " 

The associated test statistic is 

A 

X 2 = Hj -IH - H D -IA .. 
wj DWj ~j ~j wj Cwj ( 32 ) 

If E . is known and the model is true, the large 
m3 

sample distribution of X 2 . is that of a chi- 
wj -i 

square random variable with 2 (I-l)I-i degrees 
of freedom. 

4. A NUMERICAL EXAMPLE 
Data for this example were taken from Brier 

(1980). The data pertain to the manner in which 
the residents of Minnesota perceive the quality 
of their housing and their community housing. 
The variables of interest in this survey are the 
opinions of families about their homes and about 
their neighborhood. In each community, five 
homes were randomly selected and the families 
were questioned about two items: satisfaction 
with the housing in the neighborhood as a whole 
(unsatisfied, satisfied, very satisfied) and sat- 
isfaction with their own home. In this example, 
we examine only the data on the owners' satisfi- 
cation with their own homes. The groups of five 
homes are the clusters. There are 18 clusters in 
the metropolitan area and 17 clusters in the non- 
metropolitan area. These are the clusters with 
complete responses. Those clusters with less 
than 5 homes were deleted from the data. There 
were 2 such clusters in the metropolitan area and 
3 in the non-metropolitan area. 

In this analysis, the interest is in the dis- 
tribution of the responses for the two areas of 
satisfaction categories. The hypothesis is 

H • 7. = ~ j = i, 2; 
o ~j ~o 

where ~ is an unknown probability vector of di- 
do 

mension 3 and 7. is the probability vector of the 
~J 

j th subpopulation. The estimated vectors are 
A 

~i : (.5222, .4222,.0556)' 

and 
A 

~2 = (.3529.5059, .1412)'. 

The estimator of the covariance matrix for the 

metropolitan area is ~ml and for the non metro- 
A 

politian area is Xm2. The vector w I formed from 

Xml^in (17) is 
-4 

w I = (499.0,-441.0,487.9) x i0 . 

It is the right side of the regression equation 
A A 

vl = ciwi+~i' 
A 

where V I is formed from the estimated covariance 

matrix constructed using the cluster variance 

formula, 18 A ^ A 

~DMI : 17-1 ~ (~Ik- ~l)($1k~ - ~i )''~ 
k=l ^ 

The estimated vector V I is 
A --4 

V I~ = (1041.83,-899.35,888.89) x I0 , 
-i 

and the Cholesk~ decomposition of ~ ml is given 
A A 

by ~ - l m l  = R1R 1 ' ,  where  

R 1 = . 

0 4 .527  
The general ed least squares timator defined 
in (25) is 

A 

CBI = 1.61918 

ahd an estimated variance, of this estimator is 
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0.14548. The estimated lack-of-fit statistic us- 

X 2 - 2288 ing (28) is B1 " " 

The estimated generalized least squares esti- 

mator defined in (30) is 
A 

Cwl = 1.662 ^ 

with an estimated variance of Cwl = .1716 using 

(31). The associated lack-of-fit statistic from 

X 2 (32) is wl = 3.1194. The values of the lack- 

of-fit statistics indicate that the model is a 

good approximation. Because Y ml is estimated for 

the transformation, the lack-of-fit statistic is 

biased. 
Similar results were obtained for the metro- 

A A A 

politan area. CB2 ~ 1.632, V {CB2} = .0520, 

Cw2 = 1.563 and V {Cw2} = .0774. The associated 

X 2 lack-of-fit statistics are = 5.24 and 
B2 

X 2 = 6 35 On the basis of these lack-of-fit 
W2 " " 

statistics the model is not rejected at the one 
percent level. Since ~. is non singular, another 

J 
method of estimating C° based on (18) is 

J 
A A A 

(w "= -- . . W . . . .  
Cjwls ~j j ^J ~J J ~J 

Then for the non metropolitan data the estimator 

is 

Clwls  = 1 .96148  

and for the metropolitan data the estimator is 

C = 1.19843. 
2wls 

A test-of-fit for the model, X2jwls which is 

approximately distributed as a chi square random 
variable with two degrees of freedom is equal to 

.0788 for the non metropolitan data and .7452 for 

the metropolitan data. 
A summary of the C estimators for the two 

areas and the value of the statistic X 2 in (9) 
DMI 

is given in the following table. 

TABLE 4.1 A SUMMARY OF STATISTICS 

C 
Estimators Metro Non Metro X 2 p-value 

DMI 
A 

C B 1.6192 1.6320 4.1881 .10<p<.20 
A 

C 1 .6617  1 .5634  4 .2079  . 1 0 < p < . 2 0  
W 

A 

Cwl s 1 .9615  1 .1984  5 . 3 7 3  . 0 5 < p < . 1 0  
A 

C 1 . 0  1 . 0  6 . 8 0 7 7  .02<p< .05  

P X2DMI The v a l u e  o f  when t h e  C e s t i m a t o r s  a r e  one 

i s  e q u i v a l e n t  to  the  u s u a l  P e a r s o n  C h i - s q u a r e  
t e s t  f o r  i n d e p e n d e n c e .  

Wilson (1984) constructed tests of the form 

considered by Wald (1943) without any assumptions 
on the covariance matrix. One such statistic was 

obtained for a two-stage sampling scheme in J 
different strata, j = i, 2, ..., J. Such a 
scheme is referred to as a stratified two-stage 
sampling scheme. Consider testing H : ~. = IT 

o ~3 ~o 

for some unknown vector ~ and j = i, 2, ..., J. 
~O 

Define A J 
= Z ~ . ~ .  

~o j=l J~J 

as an unbaised estimator for 
J 

IT = Y. ~.IT.. 
~o j=l 3~3 

The variance-covariance matrix for ~ - IT is 
^ ^ ~j ~o 

Mjj = var(~j - ~o ) 
J 

= Rj - 2~j-IRj + Y, ~.-2R% 
%=1 1 A 

and the matrix covariances between (IT. - IT ) and 
^ ^ ~j ~o 

(lj~ - ~i o), is ^ ^ A ^ 

M.Sj.~ = cov(~j~ - ~o'~j" - ~o IT ) j -2 

-i - 1  R = - ~. R. - ~. .~ + Z o~ Rj, 
J J J J L = l  

where 2 no 
In. j 

--- =l -~.) Rj = Y (j) + 2j ' i ~j~(pj~ ~J 
m N. N~ Z 1 o ~ 

J 
(pj~- ~j)', 

p. i s  a v e c t o r  o f  p r o p o r t i o n  f o r  t h e  ~ th  c l u s t e r  

i n  t h e  j th  s u b p o p u l a t i o n  and 

Xm ( j )  = Nj - 1  (ATr. - IT'~3 ~3 IT' " ) "  
~j 

L e t  X be t h e  c o v a r i a n c e  m a t r i x  f o r  
A A A A A A A A 

(~- ~ ) = (~ - #o #2- #o ....... #J- #o ) ~ ~o ~i i i 
then, X has M..~ as off diagonal blocks and M°., 

JJ JJ 

as diagonal blocks. 
Let X denote the value of X under H and R 

O O O. 

the value of R. under H . Consider J = 2, then j 
j o 

under Ho 2 2 2 

Zo = 2 2 2 
I -~ IR1  - 0c2R 2 + ~0c R~(1 -2~2)R  2 + Z~ R ] 

L = l  L ~ ~=i ~ L J 

where /Yn 2 ~j) S 

...o j 

{Pj% - #o ) (Pj% - #o )'} 

Sn 2 7n 2 

= N-L{A - J ~ IT ~ + (---l--- L) 
j ~ N. ~o-o N. 

~o 3 J 

i. 

~j~ Pj~ P j%} 

When the sample sizes for each cluster within a 

stratum, n~, are equal, then 
J N. N. 

R = Nj-I[AT _ _fL ~oiTo + 1 (__l i) 
j S. ~ ~ S. S. 

~o j j j 
S. 
J 

s p ] 
~=IPj ~ ~'j~ 

= N - I [ A  _ IT ~ ~.] + 1 1 1 2 
j ~ ~o~o s (s - N.) 

~o j j j ~= 1 
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{(Pj%~ - ~o)(Pj~- ~~o)'}] 

A test statistic for H : ~. = ~ where ~ is an 
o ~j ~o ~o 

unknown vector is 
A A -- A A 

X 2 = (IT- ~ )'~ (~ 
WI2S ~ ~o o ~ -~o ) 

A 

w h e r e  F. i s  a c o n s i s t e n t  e s t i m a t o r  f o r  E . One 
O O 

A 

s u c h  e s t i m a t o r  c a n , , b e  o b t a i n e d  by  u s i n g  pj~, t o  

estimate pj~ and -o ~ to estimate ~~o. For the 

e x a m p l e  c o n s i d e r e d  h e r e  t h e  v e c t o r  o f  p r o p o r t i o n  
A 

= (0.4400,0.4629, .09714)', 
~ O  

and  t h e  e s t i m a t e d  v a r i a n c e - c o v a r i a n c e  m a t r i x  f o r  
A A 

~1 - 7r~o i s  

A A • • • 

C0V(~ 1 - ~o ) = 6 2 . 2 5  6 4 . 4 2  - 2 . 1 7  X 10 . 4  
9.20 - 2.17 11.37 

The e s t i m a t e d  v a r i a n c e  - c o v a r i a n c e  m a t r i x  f o r  
A A 

~ - 17 is ~i ~o [- Cov(~2- ~ ) = 
~ 0  

and 

• . - .65] 0- 4 62 63 -49 97 12 
• . 53 X 49 97 59 50 - 9 1 

12.65 - 9.53 22 18 

A I 56] 31 63 -26 48 -51 
Z = -26.48 29.23 - 2 76 X 10 -4 . 
o -51•56 - 2.76 7 91 

The test statistic __ ~I2S has the value 3.2601 

with an observed significance level of 0.804078. 
This test statistic is less than half the value 

of the usual Pearson statistic of 6.8077• ~I2S 

is less than any of the test statistic values 
A A A 

obtained using C B, Cw or Cwls. 

5. DISCUSSION 
Other data sets were considered by Wilson 

(1984)• The Dirichlet Multinomial provided a 

good description of the data, the C B estimator, 

which requires the estimation of the fewest par- 
ameters, was the most stable• The other esti- 
mators for C had a non-negligible chance of be- 
ing outside the range of 1 to n. when the number 

J 
of clusters sampled was small• The sample sizes 
within the clusters had relatively little effect 
on the estimation of C. For large numbers of 
sampled clusters, the Wald statistic considered 
in Section 4 should be quite similar to the test 
based on the Dirichlet Multinomial model using 
any of the estimators for C, when the later 
model is correct• In this situation, the Dirich- 
let Multinomial model may provide a small in- 
crease in power for detecting many alternatives 
because of the simple form of the covariance 
matrix. For smaller numbers of clusters, the 
Dirichlet Multinomial model will provide a more 
reliable test for the same reason, there ismuch 
less variation in the estimated covariance 
matrix. Of course, the Wald statistic in Sec- 
tion 4 can be applied to a wider class of models. 

Using the Dirichlet Multinomial model requires 
additional work to check if the model assumptions 
are well satisfied. 
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