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Given a two-way contingency table of non-
negative reals in which the internal entries do not sum
to the corresponding marginals, there is often the need
to adjust internal entries to achieve additivity. In
general, the objective is to have the revised table, in
some sense, close to the original table and to have
zero entries remain zero and positive entries remain
positive. Not all two-way contingency tables can be
additivity the

constraints above and in this paper we present a

adjusted to achieve subject to
procedure that will determine whether a given table

can be so adjusted.

I. INTRODUCTION

Given a two-wav contingency table of non-
negative reals in which the internal entries do not sum
to the corresponding marginals, there is often the need
to adjust internal entries to achieve additivitv. In
general, the objective is to have the revised table, in
some sense, close to the original table and to have
zero entries remain zero and positive entries remain
positive. Mot all two-wav contingencv tables can he
the
constraints ghove and in this paper we present a

adjusted to achieve additivity subject to
procedure that will determine whether a given tahle
can be so adjusted, and such adjustable tables will be

called feasible.

The most frequently used procedure for adjusting
tables that are not additive is iterative proportional
fitting, often called raking., The raking algorithm

alternately scales rows and columns to achieve
respective additivity, and if a table is feasible the
algorithm coverges. This algorithm is frequently used
to reconcile tabular data when the marginals and
internal entries arise from different sources, for

example see [ 7 1.

Raking has been extensively used for over forty
vears, and its statistical properties have been well-
studied, see [ 1 1.

satisfactory answer to the followine question: aiven an

However, there has never been a

arbitararv non-additive table, is it feasible? That is,

there was no known procedure to rigorously determine
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whether raking or any other table adjustment
methodology that preserves zeros and leaves positive
entries positive will converge for an arbitrary non-
additive table.

procedure,

In this paper we present such a

In Section II we introduce terminologv and provide
an analytical formulation of the problem. In the next
section we attack the problem using the classical
transportation problem of operations research. We
describe a finite iterative procedure which can bhe
applied to an arbitrary non-additive table, and by
examining the outcome of the final iteration, one can
The final

section briefly discusses alternative methods for tahle

determine if the original table is feasible.
adjustment.
II. FEASIBLE TABLES

Ry a contingency table we mean a triple

A={(a; i ),r,e} of arrays of non-negative reals

where (aii) is an RxC matrix, r = (rl,...,rR) y
e = (cl,...,cc),and
R c
by T T jll ‘3
We say that A is additive if
o'
jzl aij =ry i=1,...,R
® .
izl aij = cj j=1,...,C

The table A is said to be feasible if there exists an
RxC matrix (bi ].) such that bij =
ifai].= 0 that B =
That is, A is feasible if and only if there
RxC that
{(b, i ),r, e} is additive, where (bij) = (Xij aij),

> 0.

0 if and only

and such {(hi].),r,c}is
additive.
exists an matrix such
B =

and Xy > 0 whenever ai].

In particular, A is

feasible if there exist x:: satisfying the following

1
system:
C
1) jll aij ij =r, i=1,...,R



(2

i

) aij xij = cj j=1,...,C

I~

(3) Xjj > 0 if a;j > 0 i=1,...,R and j=1,...,C .

By way of examples, Table 1is clearly feasible and
Tables 2 or 3 are clearly not.

015 015 101 4
114 11 4 1011
3 6 6 3 011 4
011 4
54 4
Table 1 Table 2 Table 3

Note that Table 2 fails conditions (1) and (2)
above, while Table 3 does satisfy these conditions
letting: xq1 =4, X91 = 1, X33 = X34 = X43 = Xg44 = 2,
and X3 = X3 = 0; yet fails the joint conditions (1), (2)
and (3).

If some rq for q=1,...R (or ey for p=1,...,C) equals
zero, then for a contingency table to be additive or
feasible it is necessary that aqj = 0 for all j = 1,...,C
(aip =0 for all i =1,...,,R). That is, the entire row (or
column) must be zero, and henee can be removed from
the table. Thus, we can assume without loss of

generality that both r and e are positive.

The objective of this paper is as follows. Given an
arbitrary (non-additive) table A = {(ai i ),r,e} find
a finite iterative procedure that will determine if Ais
feasible. That is, determine if there exists an RxC
matrix (xij) such that (1)~(3) are satisfied. In the next
section we apply the classical transportation problem
to obtain a finite step-by-step procedure that will

solve the problem stated above.

III. A PROCEDURE TO DETERMINE FEASIBLILITY
A. The Transportation Problem

A well studied and frequently used construet in the
realm of operations research is the transportation
problem. The objective (in its purest form) is to
miminize the cost of shipping a commodity from a
number of origins to various destinations. We assume
that there are R origins and C destinations, S 0

h

units are to be shipped from the it origin for i=1,...,R

and c]. > 0 units are to be received at the jth
destination for j=1,...,C, and the cost of shipping a unit

from origin i to destination j is ¢ One usually

ij
defines C = (cij) to be the cost matrix. In the classical

transportation problem one further assumes that
R c
ilzl ry = jzél CJ- ’
and seeks to minimize the function
R C
@ iz=1 j)=1 Cii Xij

subject to the constraints:

( (2:

5) X., =r i=1,...,R
j21 1 i

6 If

6 .= e j=1,...,C
iz1 1) !

M x;; 2 0 i=1,...,R and j=1,...,C

where Xjj is the number of units shipped from origin i

to destination j.

Given the transportation problem (4)«7), if r; for
i=1,...,R and ¢ for j=1,...,C are integers, there exists
an RC-dimensional vector, (Zij), such that (Zij)
minimizes (4) subjeet to (57) and (Zij) has integer
components, see [ 4 ] for a discussion. Given a
table A = {(ai].),r,c} , we can scale r and e by

the same factor and assume henceforth that r and ¢

are integer vectors.

B. The General Case
If we have a table A = {(ai.),r,c}, we can

form the table M = {(mi]. ),r,e} where

ij .
1 if aij # 0.

It is clear that A is feasible if and only if M is

feasible. Looking back to (1), (2), and (3),

M= {(mi]. ),r, e} is feasible if there exists x;; such

}
that
c
® _2 mij i =T, i=1, ,R
j=1
R
9 ) - = c j=1, ,C
(& i j
(10) x;; >0 if my; >0 i=1,...,R and j=1,...,C .

Given the table M, consider the following sequence of
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transportation problems indexed by postive integers, q:

R C
Minimize (11) ) ) c?. L
i=1 j=1 ' 1
subject to
( i
12) X.. = r i=1 »R
j=1 ij i ’
( R
13) ) Xx.. =¢ j=t,...,C
iz1 !
(14) Xjj 2 0,
1 T ifm,, =0
where ey = 1
J 0 otherwise ,
R C
T = z r, o= Z_ c. ,

and for q > 1,

; q _ q._
1 if cij“ 1 or Xij_ 0 and mij;'E 0
T if m.. =0
1]

0 otherwise,

cdtl-
i

where (x?j ) minimizes (11) subject to (12)-(14).

Denote the region determined by constraints (8)-

* *
(10) by QM and note that QM is not empty if and only if
. s I — - *
M is feasible. Define 0 = {(yij ) '(yij) £ ilM
andif mj; = 0 then Vij = 0}. Clearly, Q < %, and
if Y # 0, then oy # @, so M is feasible if and only

ifﬂM¢ g.

Denoting the region determined by the

constraints  (12)-(14) by Qp» we  observe  that
Iy < Sy
Notation: Denote by RxC the set

{¢i,j): i=1,...,R, j=1,...,C}, and by C9
the minimal value of (11) subject to (12)-(14).

Lemma 1:
that Ck >T
Proof:  1f CX < T, there exists (t,s) € RXxC such

k _ k
that ¢ =

K ts ts
xij>0,thencij > 1, so

There exists a positive integer k such

0 and x > 0. For if not, whenever

R C R C
Ck = ) cl.(. NLIN ) Y ox,. = T.
i=1 j=1 Y17
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Accordingly, if Ck < T there exists (t,s) € RxC such
k+1
= 1.

0 and Cot Hence, since the
some positive

k _
that Cgy =
set RxC 1is (finite,
Kk, cK > T.

Notation: Let N =

for integer,

k

min{ksz+:C _>_T}.

Lemma 2: If Cl¢ 0, then Clz Tand M is not
feasible.
Proof: IfC

(wij) € QT such that

1

# 0 there exists an integer array

R C
C1 = ) Z c%.w...
i=1 j=1 ' N

For some

> 1, (otherwise C! = 0).

ts 1
thenC™ > T.

(t,s) € RxC, c%s = T and

w Thus, it C1 # 0,

and observe that

If M is feasible, let (yij) € QM

R C
Cl= 2 Z c%.
i=1 j=1 M

yij = 0.
That is, if C1 # 0 then M is not feasible.
Lemma 3: IfCl'= 0, then CN = T, and K is a non-

decreasing function of k for k=1,...,N.

Proof: Note that C1 = 0if and only if there
exists (x}j) € QT such that for all (i,j) € RxC if mj;
= 0, then x%j = 0. Thus, if x}j # 0 then mjj = 1,
so cli(]. < 1, for all k=1,...,N and so
« R C R €
c" < ) ) eyXy: < ) lxi.=T.
i1 j=1 MM Ty=p ga Y

Hence, if C1 = 0, then Ck < Tfor all k=1,...,,N. It
is clear that CK is a non-decreasing function of k.

Theorem 1: Suppose cl = 0 and N is as above. Then M

is feasible if and only if c?;l > 0 for all (i,j) € RxC.

Proof: (only if) Suppose M is feasible and there exists

(t,s) € RXC such that L - 0, and note that
N+1_ 0 imolies thate™ = 0. Ch WYy eq
¢y = 0implies thatey ;= 0. Choose(y "
and note
R C R C
I T o T I D A
i=1 j=1 i=1 j=1

The strict inequality holds because: (1) if yI;Ij #0

N

then i < 1 by the definition of QM’ and



(2) yl,js >0, yet clgs= 0. But this contradicts the
fact that CN = T.
(if) For each (t,s) € RXC such that m, = 1, there

: q q
exists a q such that (Xij) € QT and x> 0

because cI;Hj‘l > 0 for all (i,j) € RxC.
Let N ,
(z..) = L (x%.)/N.
ij ko1 ij

Since (xli(j) € Qp, for all  k=l,..,N, then
(z;;) € 9, because ,,is a convex set. Also,

ij T T *
lfmij = 1, then 2y 2 0,s0(z;,) € QM'

Thus M is feasible.

Iterative Procedure to Determine Feasibility: Given a
contingeney table A =1{(a i ),r,e}, to determine
whether or not it is feasible proceed as follows. Scale

r and e so that they are integer and form
M= (mij ),r,e} as  above. Solve the filrst
transportation problem above, obtaining C™ .

1tcl# o,then A  is  not feasible.

IfCl= 0, form CZ, C3, ete., until CN = T,

N+1) N+1

and
i] IfcSt = 0 for

any (s,t) € R x C, then A is not feasible, otherwise A is

examine the cost matrix (e

feasible.

C. Non-degenerate Solution

Recall that when given an R by C transportation
problem, we say that an optimal solution is non-
if there

variables in the solution.

degenerate are exactly R+C-1 non-zero
In this case, by reordering
the rows and columns of the underlying matrix, we can
start at the upper left corner and traverse (more or
less) staircase fashion to the bottom right corner
seel 41. The
following result enables one to possibly shorten the
Iterative Procedure outlined above. That is, if any of
the
degenerate solution with optimum less than or equal to
T then A is feasible.
count the non-zero variables in the solution vector. If

stopping only at positive cells,

transportation problems above has a non-

Thus, if Cki T one needs only

that count is equal to R+C-1 then A is feasible,
otherwise proceed to the next iteration and continue
as indicated in the Iterative Procedure with this

addendum at each juncture.

Theorem 2: If A = { (ai].) ,r,¢ | is a contingency
table, then A is feasible if the following transportation

198

problem has a non-degenerate optimal solution of
value less than or equal to T.

(15) Minimize ¢9%= ) c?j Vij

subject to

for

|
"3

C
(16) >‘ yij i=1,...,R
121

R
an igl Vi

= cj for j=1,...,C
(18) Vij 2 0 for i=1,..,R and j=1,...,C
where c? . is defined as earlier.

Proof: Since A is feasible if and only if M (as above) is
feasible we can focus our attention on M. Assume (zij)
is a non-degenerate optimal solution to (15)-(18) such
that 9 < T, and suppose 8 g # 0 and Z g = 0
for some (k, %) € RxC. Form a closed path starting
and ending at 8 g2 transversing only positive
elements Zj such that no three consecutive path
elements are in the same row or column. That is, form
the (+,-) path used in updating feasible non-degenerate
solutions of the transportation problem (usually used in
conjunetion with the so-called Northwest corner
solution). Let z be the minimal positive value for the
cells in the path, and starting with the (k, %) -
position alternately add and subtract z/2 from each Zj;
in the path updating the values of the Zjj- Repeat this
procedure for all (i,j) positions such that aij #0
and z ij = 0. When there are no such cells
remaining, then conditions (8) - (10) are satisfied by

letting (xij) = (zij) and hence M is a feasible table.
IV. STATISTICAL CONSIDERATIONS

If A= {(ai]. ),r,elis a contingency table, we
can let

SRS ¥ P
ij R C

Lol ey

i=1 j=1 M



ie Ii
r.
i=1 !
C.
= mmedeeoo
T['j &
) e,
ji=1 J

Observe that A is a feasible table if and only
if T = {(1rij),(1ri .),(n‘j)}is a feasible table.
Note further that

R R
22 .= ) ow.,= ) w,. =1,
i=1 = =

j=1 1 ! j=1 )

so we enter the realm of probability theory.

Notation: Let
v = {(i,j):(i,j) € RxC and nij# 0},
V(i) = {j : (i,j) eV}, and
v(j) = {i : (i,j) e V}.
Given a feasible table of

probabilities, T = {(ni.),(ni_),(n..)}we seek
an additive table P = {(pij)’(“i-)’(“-j)}su"h
that pj; = X;; LIy and x;; > 0 for all (i,j) e V. We say
that P is derived from Il , write (1) - (3) as

(19) je%(i) Xij Ty T M. i=1,...,R
20 ' = n el C
(20 ie%(j) i Tij T j=1, ,

(21) Xj; >0 (1.9) e v,

and note that P is also a table of probabilities.

For some tables, there is a unique derived table (the

deterministic case), for example:

.13 .10 0 .35
0 .38 .07 .60
0 0 .32 .05
.10 .40 .50
Table 4

If there is more than one derived table, there are
infinitely many since any convex combination of

derived tables is also a derived table.

In general, given the feasible table I , we seek a
derived table P such that P is close to I . Of course,
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the notion of "close" is not unique, and for every
criterion of closeness a different objective function
must be optimized subject to (19) - (21). Listed below
are three objective functions which are candidates for
a criterion of closeness. Each objective function is
convex up as is easily seen by examining the Hessians,
see [ 5 1. Thus, if the original table I is feasible it is
not too hard to see each has a unigue minimum subject
to (19)-(21).

discover iterative procedures which will allow a user

There has been interesting work to
to start with a feasible table I and proceed to an
additive table P optimizing the objective functions

below.

(i) Iterative Proportional Fitting:

_ D, .
Minimize ) Py .n —ﬁll- over (pij)’
(i,jrev I i]

which is equivalent to,

Minimize ) T..X..%n X, .

(i, Fyey TN Kig ever bt

(ii) Maximum Likelihood:

L
Minimize ) T..en --11_ over (37,
(i,jdev i]

which is equivalent to,

Minimize - ) T, .80 X, .

(b T Ky el

(iii) Minimum Chi-Square:

Minimize ) (p,. - m..)

G 5y Pis T i) Ry over iy

which is equivalent to,

Minimize " % ) evﬂ i /x4 i over (xij)'

It is proved in both [ 3 1 and [ 7 1 that given a
feasible table, the "raking algorithm" (alternately
scaling rows and columns to achieve respective
additivity) converges to a table minimizing the
objective function for iterative proportional fitting.
This algorithm has been put to many uses and the

reader is referred to [ 6 1 for further discussion and



extensive bibliography. It has been known for quite a
while that raking converges when all entries in the
contingeney table are positive. If there are zeros in a
table, and raking appears not to converge, adjustments
are made to internal entries so that raking will

converge for the revised table.

When raking does converge for some table, it does
so rapidly, and less than ten iterations usually suffice
so that successive internal values are within a
reasonable tolerance. Accordingly, the practice has
been to presume that raking will not converge for a
table if it fails to converge within a preseribed number
of iterations, and at that time, zero cells are promoted
to non-zero status or cells are collapsed. We have
presented here a procedure that can be used to test for
feasibility if raking seems not to converge. That is, if
there is no convergence after a fixed number of
iterations one can now draw upon the procedures
described above to determine if raking does fail to

converge, or if it just needs more time.

For maximum likelihood and minimum chi-square,
algorithms have been proposed for positive tables , see
[ 2 1 for more details. It would be interesting to see
proofs that these algorithms (iterative procedures) do,
in fact, coverge to additive tables; although it is easy
to see that when they do converge to additive tables,
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they converge to tables optimizing the respective
objective funetions. It would be even more interesting
the

convergence of algorithms for tables containing zeros.

to learn something about existance and
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