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Given a two-way contingency table of non- 

negative reals in which the internal entries do not sum 

to the correspondin~ mar~inals, there is often the need 

to adjust internal entries to achieve additivitv. In 

general, the objective is to have the revised table, in 

some sense, close to the original table and to have 

zero entries remain zero and Dositive entries remain 

positive. ~tot all two-way contingency tables can be 

adjusted to achieve additivity subject to the 

constraints above and in this paper we present a 

procedure that will determine whether a given table 

can be so adjusted. 

I. INTRODUCTION 

Given a two-way contingency table of non- 

negative reals in which the internal entries do not sum 

to the corresDonding marginals, there is often the need 

to adjust internal entries to achieve additivitv. In 

~eneral, the objective is to have the revised table, in 

some sense, close to the original table and to have 

zero entries remain zero and Dositive entries remain 

positive. ~Iot all two-way contin~.encv tables can be 

adjusted to achieve additivity subject to the 

constraints above and in this Dal~er we present a 

procedure that will determine whether a given table 

can be so adjusted, and such adjustable tables will be 

called feasible. 

mhe most frequently used procedure for adjustin~ 

tables that are not additive is iterative proportional 

fitting, often called raking. The raking algorithm 

alternately scales rows and columns to achieve 

respective additivity, and if a table is feasible the 

algorithm coverers. This algorithm is freouentlv used 

to reconcile tabular da ta  when the mar~inals and 

internal entries arise from different sources, for 

example see [ 7 ] .  

r~aking has been extensively used for over forty 

years, and its statistical proDerties have been well- 

studied, see [ 1 ]. However, there has never been a 

satisfactory answer to the followin~ question: ~iven an 

arbitararv non-additive table, is it feasible? mhat is, 

there :gas no known Drocedure to rigorously determine 

whether rakin~ or any other table adjustment 

methodolo~¢ that Dreserves zeros and leaves t)ositive 

entries positive will converge for an arbitrary non- 

additive table. In this paDer we 19resent such a 

procedure. 

In Section II we introduce terminolo~¢ and Drovide 

an analytical formulation of the problem. In the next 

section we attack the problem using the classical 

transportation problem of operations research. We 

describe a finite iterative procedure which can be 

applied to an arbitrary non-additive table, and bv 

examining the outcome of the final iteration, one can 

determine if the ori~nal table is feasible, mhe final 

section briefly discusses alternative methods for table 

adjustment. 

II. FEASIBLE TABLES 

By a contingency table we mean a triple 

A={(a i ~ ) , r , e }  of arrays of 

where (aii) is an RxC matrix, r = 

e = ( C l , . . . , c  C) ,and 

R C 
y r .  = y c.  . 

i,Jl= 1 j " l  J 

non-negative reals 

(r 1 , . . . , r  R) , 

We say that A is additive if 

C 
a . .  = r .  

j ~ l  1j 1 
i = 1 , . . . , R  

>i a . . =  e .  
i = l  1j ] 

j = 1 , . . . , ~  . 

The table A is said to be feasible if there exists an 

RxC matrix (b ) such that b . .  = 0 if and only 
i j  1j 

i f a i j  = 0 and such t h a t r l  = { ( b i j  ) ' r ' e } i s  

additive. ~hat is, A is feasible if and only if there 

exists an RxC matrix (xii) such that 

B = { (b i j ) ,  r ,  e} is additive, where (bij) = (xij aij) , 

and x . .  > 0 whenever a . .  > 0. In particular, & is 1j 1j 
feasible if there exist xij satisfyin~ the followin~ 

system: 

C 
( I )  >i a . .  x . .  = r .  i = 1 , . . . , r  

j = l  1j 1j ] 
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R 
(z) >: a x = c 

i=1 I] I] ] 

(3) xij >0 i fa i j  >0 

j = I , . . . , C  

i 

i=l,...,R and j=I,...,C . 

By way of examples, Table I is clearly feasible and 

Tables 2 or 3 are clearly not. 

0 1 5  0 1 5  1 0 1 4  
1 1 4  1 1 4  1 0 1 1  
3 6  6 3  0 1 1 4  

0 1 1 4 
5 4 4  

T a b l e  I T a b l e  2 T a b l e  3 

Note that Table 2 fails conditions (I) and (2) 

above, while Table 3 does satisfy these conditions 

letting: Xll = 4, x21 = 1, x33 = x34 = x43 = x44 = 2, 

and x13 = x23 = 0; yet fails the joint conditions (I), (2) 

and (3). 

If some rq for q=l,...R (or Cp for p=l,...,C) equals 

zero, then for a contingency table to be additive or 

feasible it is necessary that aqj = 0 for all j = 1,...,C 

(aip = 0 for all i = 1,...,R). That is, the entire row (or 

column) must be zero, and hence can be removed from 

the table. Thus, we can assume without loss of 

generality that both r and e are positive. 

The objective of this paper is as follows. Given an 

arbitrary (non-additive) table A = { (a i j ) ' r ,  e } find 

a finite iterative procedure that will determine if A is 

feasible. That is, determine if there exists an RxC 

matrix (xij) such that (I)-(3) are satisfied. In the next 

section we apply the classical transportation problem 

to obtain a finite step-by-step procedure that will 

solve the problem stated above. 

III. A PROCEDURE TO DETERMINE FEASIBLILITY 

A. The Transportation Problem 

A well studied and frequently used construct in the 

realm of operations research is the transportation 

problem. The objective (in its purest form) is to 

miminize the cost of shipping a commodity from a 

number of origins to various destinations. We assume 

• > 0 that there are R origins and C destinations, r I 

units are to be shipped from the i th origin for i=l,...,R 

and c.  > 0 units are to be received at the jth 
J 

destination for j=I,...,C, and the cost of shipping a unit 

from origin i to destination j is cij. One usually 

defines C = - J-(ci~) to be the cost matrix. In the classical 

transportation problem one further assumes that 

R C 
r .  = >~ c 

i=1 I j= l  J '  

and seeks to minimize the function 

R C 
(4) >: ~ c x 

i=l  j= l  1] I] 

subject to the constraints: 

C 
(5) ~ x . .  = r .  i = l , . . . , R  

j = l  I]  1 

R 
(6) >' x . .  = c .  j = I , . . . , C  

i=1 1] ] 

(7) x . .  > 0 
Ij -- 

i = l , . . . , R  and j = I , . . . , C  

where xij is the number of units shipped from origini 

to destination j_ 

Given the transportation problem (4)-(7), if r i for 

i=l, . . . ,R and cj for j=I,...,C are integers, there exists 

an RC-dimensional vector, (Zij), such that (Zij) 

minimizes (4) subject to (5)-(7) and (Zij) has i n t e ~  

components, see [ 4 ] for a discussion. Given a 

tableA = { ( a i j  ) ' r ' e }  , we can scale r and c by 

the same factor and assume henceforth that r and c 

are integer vectors. 

B. The General Case 

If we have a tableA = { ( a i j  ) ' r ' e } '  we can 

form the tableM = {(m i j ) , r , e }  where 

. . = 0 0 i f  a l l  
• . - - - :  

mlJ  1 i f  a i j  # O. 

It is clear that A is feasible if and only if M is 

feasible. Looking back to (I), (2) ,  and (3), 

M = { (m i j ) ,  r ,  e } is feasible if there exists xij such 

that 

C 
(8) ~ m . . x . .  = r.  i = l , . . . , R  

j= l  i] i] 1 

R 
(9) ~ m . . x . .  = c .  j = I , . . . , C  

i=1 1j 1j j 

• . >0 if > ..,Randj=l .,C (I0) Xl ] mij 0 i=l,. ,.. . 

Given the table M, consider the following sequence of 
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transportation problems indexed by postive integers, q: 

R C 
Minimize (U) >~ >~ cq. x . .  

i : l  j = l  11 l ]  

subject to 

C 
(12) ~ x i  : r .  i : l , . . . , R  

j= l  j 1 

R 
(13) ~ x . .  : c .  j : I , . . . , C  

i=l  ' J  J 

(14 )  x . .  > 0 ,  
1]  - 

E 

where c 1.. = ~ T i f m.l.]. - -  0 

1J [ 0 o t h e r w i s e  

R C 
T : > r i  : > c 

i : l  j=l  j 

and forq> 1, 

cq+l= I l l "  " 

1 if c q : 1 or x ?= 0 and m i i ¢  0 , j  i J J 

T if  m.. = 0 
I] 

0 o t h e r w i s e ,  

where (x q ) minimizes (II) subject to (12)-(14). , j  

Denote the region determined by constraints (8)- 

(10) by 9TI and note that 92V I is not empty if and only if 

M is feasible. Define 92V I = {(Yij ): ( y i j  ) ~ ~2" .M 
and if mij=0then Y ij  = 0}. Clearly, ~ c ~ a n d  

if ~ # ~ , then ~ ¢ ~ ,so Mis feasible if and only 

if 92V I ¢ ~. Denoting the region determined by the 

constraints (12)-(14) by ~T' we observe  that 

~VI c ~T " 

N o t a t i o n :  Denote by RxC the set 

{ ( i , j ) :  i = l , . . . , R ,  j = I , . . . , C } ,  and by C q 

the minimal value of (11) subject to (12)-(14). 

Lemma 1: There exists a positive integer k such 

that C k > T . 

Proof: If ck < T, there exists (t,s) e RxC such 

that c k 0 and x k = > 0. For if not, whenever ts  ts  
k k 

x . .  > 0, then c . .  > 1, so II II -- 

R C R C 
c k  k k k : x > > x : w .  

i = l  j = l  l ]  1l - i = l  j = l  1l 

Accordingly, if C k < T there exists (t,s)e RxC such 
k k+l 

that C st  = 0 and C st  - 1. Hence,  since the 

set RxC is finite, for some positive integer, 

k, C k >__ T. 

Notation: LetN = min { k e Z + :C k > T } . 

Lemma 2: IfC 1# 0, thenCl_ > Tand M is not 

feasible• 

Proof: If C 1 # 0 there exists an integer array 

(wi j )  c ~TSUChthat 

R C 
C 1 - ~ >~ c . l . w . . .  

i = l  j = l  1j 1j 

For some (t,s) ~ RxC, c I = T and 
ts 1 

> I ,  (otherwise C 1 = 0). Thus, if C # 0,  Wts - 
1 

then C > T. 

If M is feasible, let (Yij) e ~M and observe that 

R C 

i = l  j = l  i J Y i J  
= 0. 

That is, if C 1 ¢ 0 then M is not feasible. 

Lemma 3: IfC 1= 0, then C N = T, and C k is a non- 

decreasing function of k for k=l,...,N. 

Proof: N o t e  that C 1 = 0 if and only if there 

exists (x 1 i jl ) e ~2T such that for all (i,j) ~ RxC if mij 

= 0, then x . .  = 0.  Thus, ifx 1 k x] i j  ¢ 0 then mij = i, 

so c . .  < I ,  for allk=l,...,N and so 
i j  --  

R C R C 
c k  < >~ ~ ck  x 1 < >: >: x 1 : T 

. . . . . .  • 

i = l  j = l  1]  1]  - i = l  j = l  1 ]  

Hence, if C 1 = 0, then C k < T for all k-1,...,N. It 
I 

is clear that C k is a non-decreasing function of k. 

Theorem 1: Suppose C 1 = 0 and N is as above• Then M 

is feasible if and only if c N+I > 0 for all (i,j) ~ RxC. 
i] 

Proof: (only if) Suppose M is feasible and there exists 

(t,s) e RxC such  that c~+: 1"'- = 0, and note that 
N+ 

c t  s = 0 impl ies  t h a t c  s = 0 C h o o s e ( Y i  j ) e a M 

and note  

R C R C 

-- i :1 j : l  i j Y ij  i :1  j : l  i j  
= T. 

"KT 

The strict inequality holds because: (1) if YI" 

then c N < 1 by the definition of ~ and xj - M' 

j ¢  0 
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(2) YtsN > 0, yet Cts-N 0. But this contradicts the 

fact that C N = T. 

(if) For each (t,s)e RxC such that mts = 1, there 

exists a q such that (x qij ) e ~2T and x qs > 0 

because c N+ 1 > 0 for all (i,j) ~ RxC. l] 

Let N 

( z i j )  : ~ (x k 
k=l i j ) / N "  

Since ( x k i j ) e fiT' for all k=l,...,N, then 

(zij) e fiT because ~2 T is a convex set. Also, 
, 

> 0 so (z ) ~ ~M" • . -~ 1, then z i j  _ , ifml ] ik 

Thus M is feasible. 

Iterative Procedure to Determine Feasibility: Given a 

contingency table A= { ( a i j  ) ' r ' e } '  to determine 

whether or not it is feasible proceed as follows. Scale 

r and e so that they are integer and form 

M = { (m i j ) ,  r ,  e } as above. Solve the first 

transportation problem above, obtaining C 1 . 

If C 1 ~ 0, then A is not feasible. 

If C 1 0, form C 2 C 3 C N = , , etc., until = T, and 

N+I N+I = 0 for examine the cost matrix ( c i j  ) .  If c s t  

any (s,t) e R x C, then A is not feasible, otherwise A is 

feasible. 

C. Non-degenera te  Solution 

Recal l  tha t  when given an R by C t r anspor ta t ion  

problem, we say tha t  an opt imal  solution is non- 

degene ra t e  if there  are exac t ly  R+C-I  non-zero  

var iables  in the solution. In this case,  by reorder ing  

the rows and columns of the underlying matr ix ,  we can 

s ta r t  at  the upper le f t  corner  and t r ave r se  (more or 

less) s t a i r case  fashion to the bo t tom right  corner  

stopping only at posit ive cells,  s e e [  4 ] .  The 

following resul t  enables one to possibly shor ten the 

Iterative Procedure outlined above.  That  is, if any of 

the t ranspor ta t ion  problems above has a non- 

degene ra t e  solution with opt imum less than or equal to 

T then A is feasible .  Thus, if C k< T one needs only 

count the non-zero  var iables  in the solution vec tor .  If 

tha t  count is equal to R+C-I  then A is feasible,  

o therwise  proceed to the next  i t e ra t ion  and cont inue 

as indicated in the I t e r a t i ve  Procedure  with this 

addendum at each juncture .  

Theorem 2: IfA = { (a i j ) , r , c  } is a contingency 

table, then A is feasible if the following transportation 

problem has a non-degenerate optimal solution of 

value less than or equal to T. 

(15) Minimize C q ~ c q = ij  Yij 

subject to 

C 
(16) ~ Yi = r .  for i = l , . . . , R  

j= l  j I 

R 
(17) > Yi = c. for j = I , . . . , C  

i=1 j ] 

(18) Yij -> 0 for i = l , . . , R  and j = l , . . . , C  

where c q . is defined as earlier. i j  
Proof: Since A is feasible if and only if M (as above) is 

feasible we can focus our attention on M. Assume (zij) 

is a non-degenerate optimal solution to (15)-(18) such 

thatC q < T, and suppose a k~ # 0 and z k~ = 0 

for some (k, ~) e RxC. Form a closed path starting 

and ending at a k ~, transversing o n l y  positive 

elements zij such that no three consecutive path 

elements are in the same row or column. That is, form 

the (+,-) path used in updating feasible non-degenerate 

solutions of the transportation problem (usually used in 

conjunction wi th  the so-called Northwest corner 

solution). Let z be the minimal positive value for the 

cells in the path, and starting with the (k,  ~ ) -  

position alternately add and subtract z/2 from each zij 

in the path updating the values of the zij. Repeat this 

procedure for all (i,j) positions such that a . .  ~t 0 
l J  

and z . .  = 0. When there are no such cells l] 
remaining, then conditions (8)-  (10) are satisfied by 

letting (xij) = (zij) and hence M is a feasible table. 

IV. STATISTICAL CONSIDERATIONS 

If A = {(a i j  

can let 

),  r ,  e } is a contingency table, we 

I T . .  
i ]  

a . . 

R C 

i : 1  j : l  
ao . 

ij 
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1 * 

r o 
1 

R 
> r .  

1 
i = l  

. j  

C • 

C 
>'. c .  

j = l  J 

Observe that A is a feasible table if and only 

if H = {(~ij  ) '  (~i • ) '  ( ~ . j )  }is a feasible table. 

Note further that 

C R R C 
Y = = >: = 1 ,  

j =1 i =1 1 j i =1 1 " j =1 "] 

so we enter the realm of probability theory. 

Notation: Let 

V = { ( i , j ) : ( i , j )  e RxC and ~ i j#  0}, 

V(i )  = {j : ( i , j )  e V}, and 

Y( j )  = {i : ( i , j )  e V}. 

Given a feasible table of 

probabilities, u = {(~i j  ) '  ( ~ i -  ) '  ( ~ . j  ) } we seek 

an additive table P = {(Pij  ) '  ( ~ i .  ) '  ( ~-j ) } such 

that Pij = xij ~i j  and xij > 0 for all (i,j) eV. We say 

that P is derived from U, write (1) - (3) as 

(19) > x.. ~.. = Tr. i=l,...,R 
jeV(i) 11 l] I • 

(20) y. x . .  ~ . .  = ~ j = l  C 
i eV( j )  ' ]  ' ]  "J ' ' ' ' '  

(21) x.. > 0 (i,j) e V, lj 

and note that P is also a table of probabilities. 

For some tables, there is a unique derived table (the 

deterministic case), for example: 

.13 .10 0 .35 
0 .38 .07 .60 
0 0 .32 .05 

.10 .40 .50 

Table 4 

If there is more than one derived table, there are 

infinitely many since any convex combination of 

derived tables is also a derived table. 

In general, given the feasible table If, we seek a 

derived table P such that P is close to II . Of course, 

the notion of "close" is not unique, and for every 

criterion of closeness a different objective function 

must be optimized subject to (19)- (21). Listed below 

are three objective functions which are candidates for 

a criterion of closeness. Each objective function is 

convex up as is easily seen by examining the Hessians, 

see [ 5 ]. Thus, if the original table II is feasible it is 

not too hard to see each has a ~ minimum subject 

to (19)-(21). There has been interesting work to 

discover iterative procedures which will allow a user 

to start with a feasible table ]I and proceed to an 

additive table P optimizing the objective functions 

below. 

(i) !terative - proportional Fitting: 

P i j  
Minimize ~ P i j ~n . . . .  over (Pij), 

( i , j ) ¢ V  ~'',] 

which is equivalent to, 

Minimize > ~ x ~n x over (xij). 
( i , j ) ¢ V  ij ij  i j  

(ii) Maximum Likelihood: 

Minimize > ~ . . ~ n  --I-]-- over (Pij), 
( i , j ) ~ V  11 Pi j  

which is equivalent to, 

Minimize - >' ~ . .  ~ n  x . .  

( i , j ) ¢ V  x] 1j 
over  (xij). 

(iii) Minimum Chi-Square :  

Minimize  >.' (P i j - ~" " ) 2 / P  over  (Pij), 
( i , j ) ¢ V  1] i j  

which is equivalent to, 

Minimize ~ ~ i j / x i j over  (xij). 
( i , ] ) ~ V  

It is proved in both [ 3 ] and [ 7 ] t ha t  given a 

feas ib le  tab le ,  the  "raking a lgor i thm"  ( a l t e r n a t e l y  

scal ing rows and columns to ach ieve  r e s p e c t i v e  

addi t iv i ty)  converges  to a tab le  minimizing the  

ob jec t ive  funct ion for i t e r a t i v e  p ropor t iona l  f i t t ing .  

This a lgor i thm has been put to many uses and the  

r eade r  is r e f e r r e d  to [ 6 ] for fu r the r  discussion and 
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extensive bibliography. It has been known for quite a 

while that raking converges when all entries in the 

contingency table are positive. If there are zeros in a 

table, and raking appears not to converge, adjustments 

are made to internal entries so that raking will 

converge for the revised table. 

When raking does converge for some table, it does 

so rapidly, and less than ten iterations usually suffice 

so that successive internal values are within a 

reasonable tolerance. Accordingly, the practice has 

been to presume that raking will not converge for a 

table if it fails to converge within a prescribed number 

of iterations, and at that time, zero cells are promoted 

to non-zero status or cells are collapsed. We have 

presented here a procedure that can be used to test for 

feasibility if raking seems not to converge. That is, if 

there is no convergence after a fixed number of 

iterations one can now draw upon the procedures 

described above to determine if raking does fail to 

converge, or if it just needs more time. 

For maximum likelihood and minimum chi-square, 

algorithms have been proposed for positive tables, see 

[ 2 ] for more details. It would be interesting to see 

proofs that these algorithms (iterative procedures) do, 

in fact, coverge to additive tables; although it is easy 

to see that when they do converge to additive tables, 

they converge to tables optimizing the respective 

objective functions. It would be even more interesting 

to learn something about the existance and 

convergence of algorithms for tables containing zeros. 
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