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I. INTRDD[K~FION 

This paper examines combinations of model 
based and design hssed strategies for estimating 
population totals where a model holds for an un- 
known subset of the population and the model 
properties for the remainder of the population 
are unknown to the statist ician. The estimator 
cons idered is a composite of the best linear un- 
biased estimator and the expansion estimator. 
The sample design is a mixture of a purposive 
sampling distribution (optimal if the model 
holds for the entire population) and the simple 
random sampling distribution. The results of 
this paper suggest strategies which may be use- 
ful in certain cases of model failure and pro- 
vide information on robustness of certain model 
based strategies. This work compares model 
based strategies with design based strategies 
within a more general framework which contains 
both sets of strategies as special cases. The 
purpose of this generalization or mixing of 
strategies is to see when a mixture of both may 
be a feasible alternative to either alone. 

The motivation for this paper is the desire 
to formulate a sampling problem and mixed stra- 
tegy which may hel~ answer sc~e of the curren~ 
questions ~rndal ~ , Lindley ~ , Hansen, Madow 
and Tepping ~ ~) about model based versus design 
based procedures. These questions mainly con- 
cern the robustness of model based procedures. 
Although empirical evidence suggested that the 
terminology "Robust Procedures" is an ap- 
propriate synonym for model based procedures, 
logically rigorous demonstrations of this are 
meager. 

A strategy is a pair consisting of a sampling 
scheme and an est ima tot (or predictor ). 
Sarndal I mentions a homogeneous model where the 
best strategy is the sample mean from any 
sample. The method of sample selection is not 
important. Thus, for this csse, it won't hurt 
to use simple random sampling and the Horvitz- 
Thompson estimator, a pure design based 
strategy. The results presented here allow one 
to make the stronger statement that given the 
right circumstances, then this design based 
strategy is best. Not only will it not hurt to 
use simple random sampling, but simple random 
sampling minimizes expected mean square error; 
this is squared deviation averaged over both the 
model and sampling scheme. The terms model 
based and design based follow the usage of 
Cassel, ,qarndal and Wretman in their book and 
papers. The term "design based" refers to that 
set of sampling and estimation procedures pre- 
sented in "Sampling Theory," by Des Raj-; 
i1 • • I ,  • • 5 Sampllng Technzques, by Wzlllam Cochran ; and 
"Sa~le Survey Methods and Theory," by Hansen, 
Hurwitz and Madow 7, for example. The term 
"model based" refers to the superpopulation pro- 
cedures ~d~o~ted by R. Royall, K. Brewer, 
Scott, HoV _ _v, etcetera. 

The problem is to+estimate a population total 
from a sample. Let y = (yl,y 2, ... yN) denote 
the vector of population values who's sum is to 

be estimated. The model based approach to samp- 
ling and estimation assumes this vector is a re- 
alization of a vector valued random variable 
Y = (Y~' Y2' "'" YN )" The distribution of Y is 
denote~ as ~ A ~nodel is a set of conditions 
on ~. A given model often implies a single best 
sample and best estimator (or predictor) among a 
particular class of estimators. 

In des ign base~ procedures, ~, specifies a 
single point in R with probability one. The 
stochastic nature of the problem is derived 
solely through a sampling distribution, P, which 
is placed on the power set of {YI' Y2' "'" YN }" 
The term "design" refers to the characterist sic 
of P. 

The criterion by which strategies are judged 
is expected ~ean square error denoted 
eE(T(S) - Y) . 
e denotes expectation with respect to ~, E 
denotes expectation with respect to P. 
T(S) is the real valued predictor of Y which is 
distributed according to both ~ and P. 

N 

s denotes the sample outcome of P and Y = ~ Y 
i=i i 

~hen no super~opulation is assumed (~ is a 
single point in R ~" with probability one) or no 
model for ~ can be assumed, then for any 
sampling design, P, such that ~.> 0 for all i = 
i, 2, ... N (~i = probability o~ inclusion in 

the sample for the i TH universe member) the 
Horvitz-Thompson estimator is admissible in the 
set of all P-unbiased estimators for 

N 

Y =i~l Yi and it is the unique hyperadmissible 
II 

estimator in this class (Hanurav ) . ~nen no 
information is available about the universe, 
then simple random sampling seems justifiable. 
Indeed, if noth ing is known about $, then 
inferences about the universe, based on a 
sample, can only be legitimately made via the 
sampling distribution. 

Although a model will often imply a specific 
estimator and sampling scheme, what kind of a 
strategy is best when the model holds for only 
some unknown subset conta ining a proport ion, Q, 
of the universe and for the rest of the uni- 
verse, no information is available? This paper 
applies mixed strategies to this problem. The 
estimators that are considered are of the form. 

T = (l-e)H + ~M (i.i) 
where: H denotes the Horvit z-Thompson estimator 

M denotes the model based estimator and 
is a real number such the 0 < ~ < 1 

~he sampling scheme approximates a mixture of 
sampling distributions. It is a function of a 
real valued parameter I which varies between 
zero and one. ~hen I=0, the optimal model based 
sampling scheme is used and when I=i simple ran- 
dc~ sampling is used. For I strictly between 
zero and one a mixed sampling scheme is used. 
The sampling scheme is roughly a continuous 
function of I. For example, this means that as 
I+i, the sampling distribution approaches the 
simple random sampling distribution. 
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The set of strategies considered can be 
characterized by the set of ordered pa irs (a, I) 
in the unit square. For example, if (s,l) = 
(0,i) then a pure design based strategy is 
implied. The problem is to find the ordered 
pairs (a,k) that minimizes expected mean square 
error in a given situation. 

The term "chaos" will be used to denote the 
unknown subset of the universe for which no in- 
formation is available. ~hen this chaotic por- 
tion of the universe is either small or well be- 
haved, then pure model based procedures (MBP's) 
do quite well. It is shown that, for the type 
of model failure which chaos inflicts upon this 
estimation problem, model hosed procedures can 
be very robust. 

Another interesting conclusion is that in 
many cases these strategies should not be 
mixed. That is, the optimum strategy is either 
pure MBP or pure design based procedures (DBP) 
depending on Q. Thus, the optimum strategy may 
be nearly a step function of ~. 

Analytically, this means that there exists 
some number a, 0 < a < 1 such that for (I > a, 

(~01n) " (I,0) and for Q < a,(e010) "(0,i) where 
(e0,~0) denotes the pair ~,I) f47zch minimize 
expec£ed mean squa re error of T. 

This implies that balanced sampling (which 
approximates simple random sampling) and the 
BLUE (best linear ~-unbiased estimator), may 
often not be a good strategy. 

II. ~PTION OF THE. MDDE~ ~ ~ MIXED 

~ I S S  

The set {YI'~ Y2 "'" YN} are assumed to be 
uncorrelated ranoom variabIes such that for each 
i: 

P (Yi = ui ) = 1- Q and 

P (Yi ~ D(Bx i, ~x i))= Q 

where {~i' ~2' "'" UN} ndx{sX "'" }o 
constants. The se£ o~ i' 12'knownX~ are ' a the 
statistician and the set of u's are unknown. 
D( Bx., ~x. ) denotes the distribution of a 

1 1 . 
random varzable wzth mean, 8xi, and standard 

error, ax. where 8 and a are unknown constants. 
i. 

Thus, elther y: = ui or Yi = Bx + e where 
e is the outcomelof a random varialble lwith mean 
1 

zero and variance o2x 2. . This implies that for 
1 

each i: 

e(Yi) = (l-Q) ui + Q Bx 
1 

Y(Yi ) = Q a2x2"1 + Q(l-Q)(ui-Bxi )2 

e(Yi2) = (l-Q)~i2 + Q(a2x'2 +i 82x'2)z 

where e and Y denote expectation and variance 
respectively with respect to ~, the distribution 
of the vector (YI"" YN ) described above. 

N 

The problem is to estimate y , given 
{x~, x .... x~.} and a sample of =i~l Yi ± L x~ slze n from 
{Y]' Y2' "''' YN }" The form of the estimator 
and the sampling scheme are to be choosen from 
the set of mixed strategies so that expected 
mean square error is minimized. 

If 0=I the linear model holds and the best 
linear unbiased estimator (BLUE) is: 

8( Z x i ) + (i{S Yi ) (2.1) 
i~S c 

where B : (i/n) • roY'/x. 
i~s z z 

where S denotes the sample of size n and S c is 

its ~liment in {Y]' Y2= ... YN}th This 
is BLUE in depen den% u. how e sample is 
selected but the sample of size n, which cor- 
responds to the n largest x's, minimizes expect- 
ed mean square error (Brewer, Royall). There- 
fore, this model implies both a unique best lin- 
ear estimator and unique best sample. 

If Q=0 then the auxilary variables {X 1 X 2 
... Y~.} provide no information about the 
{Y],~ ... Ym}. This situation is referred to 
as-complete d~aos, y. = ~i for all i and 
nothing is known abou~ the set {u], ug,..., ~}. 
It was stated in the introductioh that in this 
case there is strong motivation for using the 
Horvitz-Thompson estimator and simple random 
sampling. 

For simple random sampling, the 
Horvitz-Thompson estimator is N~n where 
- 1 
Yn : ~ ~esYi" 

~hen Q is strictly between zero and one then 
an estimator of the form (i.i) will be used. 
The sampling scheme will be a compromise between 
a simple random sample of size n and that sample 
wh ioh corresponds to the n la rgest x-va lues. 

This sampling scheme, which is a function of 
a parameter I such that o < I < 1 is achieved 

n 

by using a stratified sampling scheme where the 
sample allocation and strata boundaries are 
functions of I. Without loss of generality, it 
is assumed that the x's are increasing functions 
of their subscripts. 

Xz_< x2_< x 3 _< ... _< x N 

The sampling scheme will consist of 2 
strata. [In] will be sampled using simple ran- 
dom sampling without replacement from the units 
with the smallest N-(n-[In]) x-values. In the 
strata consisting of the rest of the units 
everything is sampled. The function [-] is de- 
fined as : 
[a] = largest integer less than or equal to a. 
Within each of the two strata, the sample is 

a simple random sample of the allocated size. 
~hen l< i/n, then the sample consists of the n 
units with the largest X values, 

~a~mp_~+nl XNs~nr~+{j&. ~e}n This is the optimum 
the linear model holds 

for the entire set, {YI,_Y2 ~_ }. Hen 1=i, 
then the sampling s~1,~ reduc~ to a simple 
random sample of size n from {Yl "'" YN }" 

The estimator (predictor) (i.i) is 
T(S) = aM + (l-a)H 

where H = (N-(n-n(s)))(i/n(s))Y~ + Y£ 

and M = 8 ( Z x ) + ( Z y ) 
i~gc i isS i 

where n(~) = sample size in the strata of units 
with small x-values. 

Y~ ~i~]~ YA ' ~ = sample of units from the 
stratum with sms ii x-va lues 

yo =. r o y~ , £ = set of n-n(~) units with 
ia rges[ x-values 

Now recall that it is_ desired to choose 
(~,I) such that ¢E(T(S)-Y)~ , the expected mean 
square error is minimized. The solution , 
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(a0,210), is a function of the u's, the x's, 

8, ~ and Q. The rest of this paper is 
devoted to the properties of this function. 

The particular linear model, D( 8x. , ox i), 
was chosen so that the double expectation could 
be evaluated without the need of linearizing 
approximations. For example, if V(Y. )~ x. 

1 1 
instead of V(Y.)~ x. 2 then a Taylor series type 

• . 1 
approximation woul~ be necessarY2 in order to 
evalute the expectation eE(T(S)-Y) , with res 
pect to P, the sampling distribution. %here- 
fore, except for rounding error, the calcul- 
ations presented here are exact. 

An exact algebraic solution expressing 
(a0'10) as a function of 

{Ul' ~2 "'" UN' Xl' x2 "'" XN' 8, 2, Q} is 

extremely tedious to write out and probably 
quite uninformative. This obstacle was sgr- 
mounted via computer by evaluating eE(T(S)-Y)- 
at a sufficiently dense set of points containing 
the unit square {(~,I): a = -.2 + (.05)i, I = 
k/8 for i=0, I, 2, ... , 28, k=l, 2, ...8}. 
This solution allows one not only to find 
(~o, Io) ~ut it also shows the behavior of 
eE(T(S)-Y) near (~o, Io). 

It is clear at this point that the motivation 
for solving this problem may be purely theore- 
tical since (~o, Io) will seldom be available to 
the survey sampler. It may still be of practi- 
cal interest to know how MBP's o0mpare to DBP's 
when they are considered in this fashion. The 
characterigtics of the surface generated by 
eE(T(S)-Y) as a function of (a,l) may also 
prove enlightening to practitioners. 

The concept of model failure as formulated in 
this paper was designed as a means of construct- 
ing a more general set of strategies whicin con- 
tains both MBP's and DBP's as special cases. 
Perhaps there is some middle ground between the 
two extremes which employes the best features of 
both sets of procedures• 

The problem of robustness in case of model 
failure is addressed by Royall and Herson. They 
introduced the concept of balanced sampling as a 
means to correct for model misspecification. 
Balancing reduces the bias portion of expected 
mean square error when the true underlying 
super]population follows a polynomial model the 
degree of which is greater than the model on 
which the BLUE is based. This deals with an all 
or nothing situation in the universe to be sam- 
pled. That is, what happens if an alternate mo- 
del holds for all members of the population. 

This paper explores a more generalized form 
of model failure. %his degree of generality 
makes analysis difficult. The explicit expres- 
sions for the expected mean square errors are to 
long to be enlightening, and they have been 
omitted. Instead, the algebraic formula are 
left in the computer and only the actual popu- 

lation parameters and expected mean square er- 
rors are tabulated and graphed under a variety 
of conditions. %hese explicit expressions for 
mean square error are available from the author. 

III. SOME TAB[KATION OF EXPECTED MEAN SQUARE 

The tables in this section show the expected 
mean square errors for three estimators: the 
BLUE, the Horv it z-Thompson and the best 
composite of these two. These mean square 
errors are rounded to the nearest hundred and 
tabulated in hundreds. 

The universe size is 25 and the sample size 
is 8. This sample of 8 units is allocated among 
2 strata. The large stratum (corresponding to 
large x-valued units) is the certainty stratum. 
The sample size in this stratum varies from zero 
to seven as I varies from 1 to 1/8. ~hen l=l 
(sample size in large stratum is zero) then a 
simple random sample of size 8 is chosen from 
among the 25 units. When I=3/8, then the large 
stratum consists of the 5 largest units, which 
are sampled with certainty, and the small 
stratum consists of the 20 smallest units from 
which a simple random sample of size 3 is 
chosen. 

Note that the case I=0 is not considered. 
This is because the Horvitz-Thompson estimator 
is not defined in this case. Thus, the best 
sample for the BLUE when the model obtains is 
not considered. Nevertheless, when I=1/8, then 
the sample is very nearly optimal for the RLUE 
given that the model holds for all 25 units 
(Q:I). 

The values of the model parameters are as 
follows : 

8 = 1 a 2 = .i 

x.= (1/625) • i 3 + .4999 for i = 1,2,...,25 i 

Tables 1 through 8 differ only in the way their 
u-vectors were generated (chaos). The column 
labeled "optimal alpha" shows the best value for 
alpha for the given sampling scheme and Q. The 
next three numbers in the row are expected mean 
square errors in hundreds. "Min MSE" is the 
expected mean square error of the composite 
estimator T = (l-a)H + ~M where a is the 
"Optimal Alpha" given in that row. "MSE H" and 
"MSE M" are the expected mean square errors of 
the Horvitz-Thompson and Model based estimators 
respect ive ly. 

Let the set of random variables {Z.. : i = 1,2 13 
and j=i,2,3 ... 25} be i.i.d, uniform [0,i]. In 
table i, each u i, i=i,2, ... 25 was generated 
as follows : 

u i = Ii(Zli) . 30 . Z2i + I2(Zli) • 14 

+ 13(Zli) . (5x i + /~x i(Z2i - .5)) 

where I. is the indicator function on the 
interva~ [ (k-l)/3, k/3). %he expected mean 
square error of T, H and M and the optimal alpha 
are oonditional on the set of {ui } so generated. 

Table 1 shows the optimal strategy (~0 ' I0 ) 
for a given Q is as follows: 

Q= (~0 ' ~0 ) : 
• 67 (.95, 1/8) 
.33 (.02, 7/8) 
.0 (.01, 7/8) 

When Q = .67, a fair degree of model failure, 

the MBP is robust (i.e., MIN MSE M~qE M). ~hen 
Q < .33, then DBP's should be used. Note that 
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TABLE 1 TABLE 3 

STRATUM SIZE 
LARGE SMALL 

7 1 

6 2 

5 3 

4 4 

3 5 

2 6 

I 7 

0 8 

Q OPTIMAL MIH MSE H MSE M 
ALPHA MSE 

0 . 6 7  0 . 9 5  33 167 33 
0 . 3 3  0 . 7 9  70 229 80 
0 . 0 0  0 . 6 1  91 217 143 

0.67 0.81 37 89 40 
0 . 3 3  0.69 56 117 68 
0.00 0.56 51 110 86 

0 . 6 7  0 . 5 0  44 62 63 
0 . 3 3  0.42 57 79 100 
0.00 0.38 47 73 115 

0.67 0 . 2 2  44 49 111 
0 . 5 3  0 . 1 5  55 60 2 1 3  
0.00 0.14 48 55 3 0 8  

0.67 0.11 41 43 192 
0 . 3 3  0 . 0 6  48 49 430 
0.00 0 . 0 5  42  44 717 

0 . 6 7  0 . 0 7  41 42 307  
0 . 3 3  0.04 46 47 747 
0.00 0.04 40 42 1323 

0.67 0 . 0 4  40 41 501 
0 . 3 3  0 . 0 2  42 43 1340 
0.00 0.01 38 39 2 5 2 0  

0 . 6 7  O. 15 128 143 616 
0 • 33 0 . 11 214 236 1535 
0 . 0 0  O. 10 284 317 2759 

~t 10) is either close to (I,0)or (0,I) 
is, the best strategy is nearly H and 

simple random sampling or M and a sample of the 
largest x-va lued un its. 

For table 2 through 7, the set of {ui } are 
given as follows: 

Table Pl (i = 1,2, ... 25) 

2 30 • Zli 

3 5xi+ x i(Zli- .5) 

4 xi+ xi(Zli- .5) + 4 

5 x 3/2 - 5) 
i + xi(Zli " 

1.7 
• + x i (z I .5) 6 Xl i- 

7 5+ Zli 
TABLE 2 

STRATUM SIZE Q OPTIMAL MIN MSE H MSE M 
LARGE SMALL ALPHA MSE 

7 1 

6 2 

5 3 

4 4 

3 5 

2 6 

1 7 

0 8 

0 . 6 7  0 . 9 7  30 133 30 
0 . 3 3  0 . 7 8  69 182 78 
0 . 0 0  0 . 5 7  94 180 144 

0.67 0.84 35 72 36 
0.33 0.66 56 95 67 
0.00 0.50 60 92 93 

0 . 6 7  0 . 4 7  40 52 55 
0 . 3 3  0 . 3 5  55 65 90 
0 . 0 0  0 . 3 1  51 62 106 

0.67 0.18 39 42 94 
0.33 0.09 48 50 177 
0.00 0.07 45 46 250 

0 . 6 7  0 . 0 8  36 37 161 
0 . 3 3  0 . 0 2  41 42 348 
0 . 0 0  0 . 0 2  37 37 562 

0 . 6 7  0 . 0 6  37 38 256 
0 . 3 3  0 . 0 2  41 41 600 
0 . 0 0  0 . 0 2  37 37 1036 

0 . 6 7  0 . 0 4  37 37 419 
0 . 33 0 . 0 1 38 38 1086 
0 . 0 0  0 . 0 0  34 34 2005 

0 . 6 7  0 . 0 3  39 39 622 
0 . 33 0 . 01 38 38 1687 
0 . 0 0  0 . 0 1  33 33 3199 

STRATUM 51ZE Q OPTIMAL MIH 
LARGE SMALL ALPHA MSE 

MSE H MSE M 

7 1 0 . 6 7  1 .00  23 330 
0 . 3 3  1 .00  23 533 
0 . 0 0  1 .00  0 639 

6 2 0 . 6 7  0 . 9 9  31 241 
0 . 3 3  1 .00  31 391 
0.00 1.00 0 476 

5 3 0 . 6 7  0 . 9 9  40 226 
0 . 3 3  1 .00  40 368 
0.00 1.00 0 451 

4 4 0 . 6 7  0 . 9 9  52 230 
0 . 3 3  0 . 9 9  52 376 
0 . 0 0  1 . 0 0  1 461 

3 5 0.67 0.99 67 254 
0 . 3 3  1 .00  67 417 
0.00 1 . 0 1  1 514 

2 6 0 . 6 7  1 .01  87 300 
0 . 3 3  1 .01  87 497 
0.00 1.02 I 619 

I 7 0,67 0.99 108 325 
0 . 3 3  1 .00  108 537 
0.00 1.01 2 666 

0 8 0,67 1,01 138 390 
0 . 3 3  1 .02  137 648 
0 . 0 0  1 . 0 3  3 811 

For table 8: 

Pi = Ii(Zli)'(3xi + ~i(Z2i - .5)) + 

I2(Zli)o(xi + 4 + ~xi(Z2i- .5)) + 

I3(Zli) O(15Z2i + 17) 

23 
23 
0 

31 
31 
0 

41 
40 
0 

52 
52 
I 

67 
67 
I 

87 
87 
2 

108 
108 

2 

138 
138 

3 

Table 2 shows how T, with the opt ins I a ipha, 
stabilizes expected mean square error (MIN MSE) 
in spite of • the degree of model failure. Note 
also how MSE H decreases as MSE M increases 
(i.e., sampling scheme approaches simple random 
sampling). I~hen Q = 0, a simple random sample 
would almost certainly lead one to reject the 
model and use H. If, as in the other extreme, 
the 7 largest units are sampled with certainty, 

TABLE 4 

STRATUM SIZE Q OPTIMAL MIH MSE H MSE M 
LARGE SMALL ALPHA MSE 

7 1 

6 2 

5 3 

4 4 

3 5 

2 6 

1 7 

0 . 6 7  0 . 9 3  4 39 4 
0 . 3 3  0 . 8 0  6 37 8 
0 . 0 0  0 . 6 1  5 24 13 

0 . 6 7  0 . 8 2  6 27 7 
0 . 3 3  0 . 7 0  6 26 10 
0 . 0 0  0 . 6 0  2 20 10 

0 . 6 7  0 . 6 7  8 24 12 
0 . 3 3  0 . 5 4  8 23 19 
0 . 0 0  0 . 4 7  3 18 23 

0 . 6 7  0 . 5 2  11 24 22 
0 . 3 3  0 . 3 7  11 22 43 
0 . 0 0  0 . 3 0  6 17 65 

0 . 6 7  0 . 4 1  14 26 37 
0 . 3 3  0 . 2 7  14 24 83 
0 . 0 0  0 . 2 2  10 20 140 

0 . 6 7  0 . 3 7  18 32 57 
0 . 3 3  0 . 2 5  21 33 135 
0 . 0 0  0 . 2 0  18 32 235 

0 . 6 7  0 . 2 8  22 33 94 
0 . 3 3  0 . 1 7  23 31 244 
0 . 0 0  0 . 1 2  20 28 454 

0.67 0.26 28 40 134 
0.33 O. 16 31 42 358 
0.00 O. 12 30 41 676 

0 8 
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TABLE 5 TABLE 7 

STRATUM SIZE 
LARGE SMALL 

7 I 

6 2 

5 3 

4 4 

3 5 

2 6 

I 7 

0 8 

Q OPTIMAL MIN MSE H MSE M 
ALPHA MSE 

0 . 6 7  0 . 8 8  17 110 18 
0 . 3 3  0 . 8 2  37 180 44 
0 . 0 0  0 . 7 6  60 241 77 

0 , 6 7  0 , 8 9  18 94 19 
0 . 3 3  0 . 8 5  33 157 37 
0 . 0 0  0 . 8 2  47 212 55 

0 . 6 7  0 , 9 3  20 101 21 
0 . 3 3  0 . 9 3  31 170 31 
0 . 0 0  0 . 9 5  32 230 32 

0 . 6 7  0 . 9 7  24 115 24 
0 . 3 3  1 . 0 3  29 196 29 
0 . 0 0  1 .10  13 265 15 

0 . 6 7  1 . 0 4  31 146 31 
0 . 3 3  1 . 1 2  32 250 35 
0 . 0 0  1 . 2 3  1 338  13 

0 . 6 7  1 ,10  46 198 47 
0 . 3 3  1 . 1 4  64 345 68 
0.00 1 .17  57 469 66 

0 . 6 7  1 .11  66 236 68 
0 . 3 3  1 . 0 6  122 410 123 
0 . 0 0  1 .00  167 555 167 

0 . 6 7  1 . 0 8  115 321 116 
0 . 3 3  0 . 8 8  263 564 268 
0 . 0 0  0 . 7 3  409 765 459 

it may not be so clear that the model fails but 
in this case MSE M is not vastly greater than 
MIN MSE. Thus, a little post sampling data 
juggling would lead one to an estimator similar 
to the opt ima i T. 

Table 3 shows that a combined strategy in the 
case of model failure of this type is of little 
help. Regardless of the degree of model 
failure, a pure model based strategy is best. A 
less dramatic, but similar result, is seen in 
table 4 (model failure in the form of a small 
y-intercept term). 

Tables 5 and 6 show what happens in the case 
when model failure is an upward opening curve. 
In both cases, balancing improves the model 

TABLE 6 

STRATUM SIZE Q OPTIMAL MIN MSE H MSE M 
LARGE SMALL ALPHA MSE 

7 1 0 . 6 7  0 . 7 8  63 249 77 
0 . 3 3  0 . 7 0  142 438 198 
0 . 0 0  0 . 6 3  229 600 362 

0 . 6 7  0 . 7 8  68 225 81 
0 . 3 3  0 . 7 2  135 400 174 
0 . 0 0  0 . 6 7  197 549 281 

0 . 6 7  0 . 8 3  79 257 86 
0 . 3 3  0 . 8 3  131 459 146 
0 . 0 0  0.82 159 629 181 

0 . 6 7  0 . 9 1  94 316 97 
0 . 3 3  0 . 9 7  1 2 4  567 125 
0 . 0 0  1 .04  85 775 86 

0 . 6 7  1 .01  120 421 120 
0 . 3 3  1 .11  128 757 134 
0 . 0 0  1 .25  2 1055 44 

0 . 6 7  1 .09  173 589 176 
0 . 5 3  1. 15 227 1064 241 
0 . 0 0  1 .23  156 1455 200 

0 . 6 7  1 .10  266 761 270 
0 . 3 3  1 .03  486 1373 487 
0 . 0 0  0 . 9 7  654 1867 655 

0 . 6 7  1 .05  468 1067 469 
0 . 3 3  0 . 8 1  1045 1930 109 i  
0 • O0 0 • 66 1589 2626 187 1 

STRATUM SIZE 
LARGE SMALL 

7 I 

6 2 

5 3 

4 4 

3 5 

2 6 

I 7 

0 8 

Q OPTIMAL MIN MSE H MSE M 
ALPHA MSE 

0 . 6 7  0 . 8 4  6 25 7 
0 . 3 3  0 . 4 6  9 14 16 
0 . 0 0  0 . 0 2  0 0 29 

0 . 6 7  0 . 6 6  7 16 10 
0 . 3 3  0 . 3 4  6 9 15 
0 . 0 0  0 . 0 3  0 0 19 

0 . 6 7  0 . 4 6  9 15 17 
0 . 3 3  0 . 1 9  6 8 30 
0 . 0 0  0 . 0 2  0 0 39 

0 . 6 7  0 . 3 2  11 15 32 
0 . 3 3  O. 10 7 8 66 
0 . 0 0  0 . 0 1  0 0 104 

0 . 6 7  0 . 2 5  13 16 56 
0 . 3 3  0 . 0 6  8 8 133 
0 . 0 0  0 . 0 0  0 0 233 

0 . 6 7  0 . 1 7  15 19 93 
0 . 3 3  0 . 0 5  9 9 241 
0 . 0 0  0 . 0 0  0 0 448 

0 . 6 7  0 . 1 4  18 21 147 
0 . 3 3  0 . 0 4  10 11 407 
0 . 0 0  0 . 0 0  0 0 783 

0 . 6 7  0 . 1 2  21 25 222 
0 . 3 3  0 . 0 3  12 13 642 
0 . 0 0  0 . 0 0  0 0 1265 

based estimator and the optimal alpha stays 
generally close to 1.0. The combined strategy 
provides a dramatic improvement only in the case 

= 0 and ~ = 1.25 (negative weight on H). 
In table 7 model failure takes the form of a 

constant term plus small shock. Recall that 
these numbers are expected mean square errors in 
100's rounded to the nearest whole number, thus, 
the zeros represent expected mean square errors 
less than 50. Ken Q = .67, the model based 
strategy gives good results, otherwise, the 
Horvitz-Thompson estimator is better. 

Table 8 is similar to table 1 in that for Q = 
.67 the model based strategy is best and for Q = 
.33 or 0, the design based strategy is best. 

TABLE 8 

STRATUM SIZE Q OPTIMAL MIH MSE H MSE M 
LARGE SMALL ALPHA MSE 

7 1 0 . 6 7  1 .04  31 138 31 
0 . 3 3  0 . 9 5  64 202 64 
0 . 0 0  0 . 8 2  93 225 99 

6 2 0 . 6 7  0 . 6 8  51 83 59 
0 . 3 3  0 . 5 5  84 118 107 
0.00 0.45 98 130 146 

5 3 0 . 6 7  0 . 2 9  56 64 101 
0 . 3 3  0 . 2 0  81 88 184 
0 . 0 0  0 . 1 7  88 95 250 

0 . 6 7  O. 1 1 52 54 158 
0 . 3 3  0 . 0 6  70 71 322 
0 . 0 0  0 . 0 5  74 75 463 

0 . 6 7  0 . 0 5  48 48 267 
0 . 3 3  0 . 0 2  60 61 546 
0 . 0 0  0 . 0 2  62 62 838 

0 . 6 7  0 . 0 4  48 48 404 
0 . 3 3  0 . 0 2  59 59 865 
0 . 0 0  0 . 0 2  60 60 1384 

0 . 6 7  0 . 0 2  46 46 606 
0 . 3 3  0 . 0 1  53 53 1373 
0 . 0 0  0 .01  52 52 2306 

0 . 6 7  0 . 0 5  77 79 814 
0 . 33 0 . 04 108 111 18 18 
0 . 0 0  0 . 0 4  127 132 3016 
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IV. ~ I O N S  

Judging by the results of this study, model 
based procedures are quite 
efficient and robust even in many cases of sev- 
ere model failure. Thus, for the cases 
considered here, the inferences based on the 
working model are still good when the data are 
generated via a very different process. The 
Horvitz-Thompson estimator, as it is used in 
conjunction with the BLUE in this paper, does 
add both robustness and stability to the infer- 
ence. It also provides a yardstick by which to 
judge the BLUE and its purposive sampling scheme 
(largest x-valued units). For reasons that are 
both political and operational, a fully purpo- 
sive sampling plan should rarely be used. Some 
degree of randomization is necessary to avoid 
des igner bias, and robustness is often improved 
by randomi zat ion. 

Robustness is the statistical analog to the 
mathematical concept of continuity . ~he struc- 
ture needed to make this statement precise is 
conta ined in "Robust Stat ist ics" by Peter 
Huber. If the working model, which is used to 
design and analyze survey data, is "close" to 
the actual process by which the data was gener- 
ated, then the inference based on the working 
model must be nearly as good as the inference 
based on the actual process that generated the 
data. If this is not the case for a given set 
ofstrategies, then they should be abandoned in 
favor of strategies which satisfy this 
condition. 

+ 

If Y is distributed according to ~ and the 
statistician hypothesizes ~c as the distribution 

+ 

of Y, then let T and T denote the BLUE's under 
~nd ~ respectively, c Let P and P denote the 

optimalCsampling distributions unde c ~ and 
respectively, then a desireable property of ~he9 
strategy (T P ) is that eE (T- Y)-+EE(T- Y)~ 

• C • • • 

~hen ~ + ~U~In dlstrlbutlon~ w~ere E denotes 
c 

expectation with respect to P . Usin~ this as 
c 
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