A FRESH LDOK AT BIAS-ROBUST ESTIMATION IN A FINITE POPULATION
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Royall and Herson (1973) demonstrate that a
non-random, balanced sample coupled with an
expansion estimator forms a bias-robust strategy
for estimating a finite population.total under a
polynomial regression model; that is to say, the
strategy is unbiased no matter what values the

parameters of the model take. Scott, Brewer, and
Ho (1978) point out that there are many
bias-robust strategies under such a model. They

advise concentrating on the best linear unbiased
(BLU) estimator given a sample with particular
properties.

Cumberland and Royall (1981) observe that a
fr-balanced mean-of-ratios (mor) strategy is
robust under a second order polynomial model
(from here on the prefix "bias" will be
eliminated from the term "bias-robust"). They
note that under a particular error structure this
strategy is better than the alternative offerad
by SBH. MWe will see that under the same error
structure the W-balanced mor strategy is in fact
optimal (has the minimum variance) among equally
robust, linear estimation strategies. 1In
addition, an intuitive justification of
tr-balancing conditions is advanced.

Section 1 provides a motivating example.
Section 2 develops the basic model and theortical
results. Section 3 extends the model to allow
additional auxiliary varibles, while section 4
introduces a more general error structure.
Section 5 discusses the asymptotic properties of
a systematic Tps sample drawn from a size ordered
list.

1. A MOTIVATING EXAMPLE

Robust mor strategies are developed here with
a different type of application in mind from that
usually found in the literature. To demonstrate
this difference, we contrast the example given in
the introduction of Royall and Herson with one of
our own. In R-H, a sample of hospitals is chosen
to estimate the number of patient-days provided
by a population of hospitals. The number a beds
in each hospital is known. The authors propose a
robust superpopulation model where the number of
patient-days in each hospital is a function of
the number of beds in that hospital plus a random
error term. Eventially the specification of the
error terms is assumed to be arbitrary; but in
the initial, motivating formulation the errors
have variances proportional to the respective
number of hospital beds. This is not an
unreasonable assumption when the number of
patient-days in a particular hospital is a sum of
independent random variables -- the number of
patient-days in each of the hospital's beds. Our
motivating example concerns a quantity-weighted

average pric7 for a designated commodity sold by
a population’of retailers. Each retailer sells
every unit of the commodity at the same price,
although prices may differ among retailers. If
an average commodity price is estimated based on
a sample of retailers, a robust model might
assume each retailer's price is a function of her
(his} quantity plus a random error term. It is
not unreasonable to suppose in this case that the
error terms are independent and indentically
distributed. In the hospital example, an
aggregate total, patient-days, is to be estimated
not a weighted average. This difference betuween
the two examples is more apparent than real,
however. The estimated number of patient-days
divided by the known total number of hospital
beds results in an estimate of the weighted
average of patient-days per bed. The weights in
this case are the percentage number of beds in
each hospital. These weights are (in principle)
multiplied by the (average) numbers of
patient-days per bed in the respective hospitals
and then summed. The real difference between the
two examples is that in the hospital example, the
number of patient-days per bed may vary among the
beds in the same hospital, but in the price
example, each retailer's price applies to her
entire quantity sold. As a result, it is
reasonable to assume that the variance of the
number of patient-days per hospital is directly
proportional to the number of beds in that
hospital. On the other hand, it is reasonable to
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assume that the variance of a retailer's revenue
(her price times her quantity) is proportional to
the square of her quantity.

2. THE BASIC MODELS
2.1 Preliminaries

Let P be a finite population of N units,
where each unit i has attached to it a value q;,
unknown before sampling, and a known weight w;,
w;=1. The problem is to estimate the weighted
average, A=L"wjq;, with a sample, S5, of n units
and a linear estimator, A=Z$a;q;. -The a: may be
functions of S.

Before proceding the reader should be aware
that the formulation above differs markedly from
the standard one in the literature. The usual
problem is to estimate a population total,
t=L"y:, when each unit i has attached to it two
values y; and x.,, and only the latter is known
for all units. To translate from that notation
to ours, one can let q:=y;/x:, w;>x; 7L "x;:, and
Azt/TNx:. The advantage of the notation’ used
here will be made clear in time.

In classical sampling theory, the units in
the sample are randomly selected via a sampling
design, D. A sampilng design consists of a set of
possible samples, Sp, and the probabilities (all
positive) of randomly selecting each element of

that set. In a nonrandom sampling design, D7,
$*is the sole elgment of R .

A couplae, (A={35; T 35 defines a linear
estimation strategy. aé say this strategy is
unbiased if E(Lsa;q;-A15]=0 for all An

unbiased estimation strategy, (A, D), is better
than an alternative unbiased strategy, ;A' pY),
when the conditional variance, EL (R-A) Is]}, for
all S, 1s no greater than EL (A'-A) IS For any
SEL o A strategy is optimal among a class of

strategies if it is better than all other
strategies in the class. Note that "unbiased"
and "variance” are defined with respect to the
random q; values and not thae sampling
probabilities.

In this paper, we speak of the optimal
estimation strategy unbiased under a particular
model rather than the best linear unbiased (BLU)
estimator. The former is a much stronger
concept; an optimal strategy is better than all
other couples of an estimator and a sample
design, while a BLU estimator need only be
“"optimal" given a particular sample.

2.2 Royall's Strategy

Royall (1978) shows that if the q; are
independent and identically distributed (iid),
then an optimal, linear unbiased strategy,

(A%, D%), obtains by relabeling the units so that
Wy2Wa2. 0 letting g% contain the single
sample, $¥=§1,2,...,n3, and
A*=Towiq:+I3W;Lsdih.

Notice that the BLU estimator given any
sample takes on the same form as above. In an
optimal strategy, however, Af;i ay,_ contain only
samples in which mingdwig> maxg w;}.

The problem with Royall's strategy is that
it is not very robust. If the q ;were not
identically distributed, for example if gach q,
were correlated with its respective w;, *
would not be unbiased given the sample in x&g&
2.3 A More Robust Model
Let us expand Rovall's specification of the q;

slightly:

q; = botbyW i+ E;,
where the €; are independent and identically
distributed random variables. Note that nothing
is lost by assuming E(£;)=0.

The expansion of the basic model to (2.1) is
more intuitive than the usual expansion in the
standard notation. When the initial model is
expressed as y,;~bx; +N;, the obvious mathematical
extension is to add a constant term, a:
viZatbx, +n;. Unfortunately, there is no
convenient story attached to a non-zero intercept
in many cases. For example, suppose vy, is the
revenue collected by retailer i from sales of a
designated commodity, while x; is the quantity of

(2.1)



the commodity sold by i. A non-zero intercept
literally madns that on average either a retailer
with no quantity will collect a positive revenua
or a threshold quantity is needed before a
ratailer can collect a single dollar from sales.
Using the same example, by<(>)0 in (2.1)
simply states that as the relative quantity sold
by a retailer, w;, increases, her price, on
averaga, decreases (increases). In equation
(2.1), the original model of a constant price
among retailers (give or take a random error),
has been extended to allow for economies or
diseconomies of scale.
2.4 The Mean-of-Ratios Strategy
For a linear estimation strategy to be
bias-robust under the extended model (2.1) - that
is, unbiased for every set of b, values - these

two conditions must be satisfied for all $ ;

Al. Tgai=1;
A2. %sai“i= W; .
ptimality is attained among the class of

strategies oesying both Al and A2 when 9
Vare (R \S€4)=E ((Taiq; -T™iq: | ) ]

B [(Ig0if; -Thwig; | ]
sl = 0g (Tsai*-Thw?) 2.2
is minimized (the last step depends on A2). Let
us call the expression in the last line of (2.2)
nyn,

Consider the strateg¥ 0 =zsq‘/n. D) where
for all S€&,, Lsu;/n=t%; *, e strategy
satisfies bo%h coqptraints and results in a V
value of 6™1/n -fw;*). This value is equal to
the minimum value V attains under the single
constraint Al; therefore, it also must be the
minimum under the dual constraints Al and A2.

Let us explore why the optimal, linear,
robust strategy described ﬁbo&g is restricted to
samples satisfyingisw;/n=z Ww; <. The minimization
of the last line of (2.2) constrained by Al alone
results in the estimator A =Esq;/n coupled with
any sample design., The adgitional constraint A2
does not affect the estimator only.the allowable
samples. Recall that we are estimating a
neighted average, A=L'w,q,, vet the estimator,
AM’ is a straight arithmetic average. When each
q; is correlated with the auxiliary variable, w/’,
it is evident that the average of the sampled w;
should equal the weighted average of the N
population w;. In other words,st;/n=E"w; .

This insight does not come easily using the
standard notation. For example, Cumberland and
Royall impose the following odd looking 2
ggs;riction on the sample: igx;/n —N“z“x; =0 (p.
7).

We call any strategy containing the
estimator =¥sq,/n a mean-qf- i strategy.
The name derives from the fact that in the
standard notation, q;%v,/x:. One familiar mor

strategy is the Horvitz-Thompson (1952), in which
sampled unitd are chosen randomly, without
replacement, with probabilities proportionate to
the w'; i.e., pr(i€s$)=N,=nw;. Note that Tps
samples will gn satisfy Igu;/n=5% ;2 (the
selection probablity weighted average of T (w;/n)
over al% the possible samples,I"(w,/n)pr(ies),
equals w;‘). That is why samples satisfying
this condition are called N-balanced on the w;.

3. EXTENSIONS
It is a simple matter to extend the analysis
of the previous section to allow for additional
explanatory variables. To simplify matters, let
us say that z| is a lone additional auxiliary;
i.e., = . . .
Qi Tbetbywi b,z ke, (5
where E(E£;)=0, and the £} are iid. Then (A4, D)
is optimal among linear robust estimation
strategies when o is nqt;eﬂptx‘an% 554» only if
fswu “-Z W
Ts2i/n TV Wiz, (3.2)
As before the minmimum variance a lipear,
robust strategy can attain is G?Tl/n TP ).
Clearly (Am, D) is robust and has a variance
equgl to the minimum possible variance. A sample
h\j is said to be MM-balanced with respect to
the w; and the z;. It should now be obvious that
no maéter how many auxiliaries are added to the
wi» there is an optimal, linear, robust strategy
when a sample W-balanced with respect to every
auxiliary exists. It is (A, D), where contains
only samplesfW-~balanced witn respect to all the
auxiliaries (including the w;).

and
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Note that ffps sampling with the w; as the
measure of size will on average (the selection
probability weighted average) produce a
W-balanced sample with respect to every possible
auxiliary variable. As a result, the
Horvitz-Thompson strategy is on average the
optimal, linear robust estimation strategy given
any specification of the non-random part of the q;
providing that the random parts are identically
distributed. Compare this with Godambe (1955)
where it is shown that the Horvitz-Thompson
strategy has the least variance on average among
linear, design-unbiased estimators (estimators
that on average equal the value they estimate)
when the q, are iid. X

Finally, observe that if the z,=l/u, in
(3.1), the model can be expressed in the standard

notation as NiTadbX +Cxit+ M »

where E(AD=0, E(AM=6>. This is the form
analyzed in Cumberland and Royall. They required
samples be T-balanced on the X (N;) and the 1/x
(1/w;).

4. A MORE GENERAL ERROR STRUCTURE
In this pdper the standard problem

estimating a population (P) total, t=X"y;, based
on a sampla (S) of units, where auxiliary
quantities, x;, are knoun for all units has been
transmutad into estimating a weighted average,
AzIwiq ;, where wi=x;/I¥x;, and q:7vi/x;. The
results can be easily translated into standard
form as follows. Supposa the v;are specified by

TTAYSX YOS e (4.1)
where tha %, are random variables with mean zero.
The mean-of-ratios (mor) estimator,
%, =[”xﬁ%(y;/x;)/n, is an unbiased estimator of t

when . .
M Es M TE "k 35570, 2. (4.2)

If the 9 are independent, and the variance
of each error term satifies Var(®;)=kx;5 then the
mor estimator coupled with a nonrandom sample
obeying (4.2) forms a strategy optimal among all
linear estimation strategies that are unbiased no
matter what the parameter values. Moreover, if
the are indendent, and 4

Var(M)=kyx;tkyxy 5 ki, ka0

then this mor strategy is better than the
expansion estimator coupled with a balanced
sample of any postive order (a sample, S, is
balanced of order J if Z¢x:a/n=E%;3/N for
3=1, ... ).

(4.3)

The error structure in (4.3} serves a broad
range of applications. It has a general
explanation, which we will demonstrate using the
hospital example in Royall and Herson.

The number of patient-days, y,, in hospital
i is the sum of the number of patient-days in
each bed in the hospital,. v ws where Fmiiyim=v:.
Each of the vy;,, is itself the sum of a determined
term and two independent random error terms with
means of zero. The first error term, £iv, varies
independently over the beds_in hospital i and has
variance k1. The second,£;,;, is the same for
every bed in i and has variance kao. The variance
in the number of patient days in hospital i is
then % XN L EN 2

Varly ;)=Var(T Vi +Var (T "Emtx; 30 =k, +hox =
This is the variance of 7, expressed in (4233,

This paper offers no empirical verification

of its assertion that robust mor strategies are
better than Royall-Herson strategies for a broad
range of applications. For that, the reader is
directed to two articles by Royall and Cumbaerland
(R and C, 1981, and C and R, 1981). The results
there, when analyzed, strongly suggest that
robust mor is the superior strategy for
estimating totals in the six populations
investigated. (Royall and Cumberland compute
ratio estimators based on unrestricted simple
random samples and nearly bzlanced samples for
the six populations, while Cumberland and Royall
compute mean-of-ratio estimators based on

unrestricted PPS and nearly T-balanced samples).



5. SYSTEMATIC TIPS SAMPLING

Onae convenient way to draw a sample without
raeplacemant but with probabilities proportionate
to tha W, is by systematic ps sampling (Madow,
1949). In this section, we will confine our
attention to systematic ps samples drawn from a
population ordered by ascending x values.
Considaer the possible D=Z¢x,/n values for the
sample design under consideration. Relabel the
units so that x3<...<xy,, and let x_ " and xu* be
respectively the x values of the kth systematic
draws of the samples with minimum and maximum D
values (D. and Dy). Observe that
Bl. x ?=xq,
B2. x,"=xy, and
B3. x,*Sx ¥*1 for k=1l,...,n-1.

Therefora

Dy-Dy < (xu-%1)/n . (5.1)
As the sample size becomes arbitrarily large, the
maximum diffarence between possible D values
tends towards zero.

In order to analyze the asymptotic
proparties of our sampling design, it is
necessary to let both the sample (n) and the
population (N) become arbitrarily large. Since
the w depend on the sample size, we must
ra-express (2.1) as »
qThoth  Xi T E
wherae the €; are iid (for simplicity's sake
only).

Under reasgnable bounding conditions
Clx;1<By; nIMw;2<B,<1), the bias of Apis of
order n=1 (|E(A\-A)|S|bY(xy=x4)/n]), while its
standard ggv]ggion is of order n-1/2
(o¢ -nZV%w;2)/n). As n becomes arbitrarily

arge, therefore, the contribution of the bias of
to its mean squared error tends toward zero.
Accordingly, we say that a sample from this

design is asvmptotically TT~-balanced.
It is possible to extgnd the model in (5.2)

to allow more general expressions for the error
structure. That is left_for anothar time.
Instead let us replace b"x, by a finite linear
combination of bounded monotonic transformations
of the x;; i. e., 1;:bo+zigibi\‘.i'\+£3a
where hjii2h;; for i'>i and lhiul<Bz.
becomes  arbitrarily large, the contribution of
the bias of ‘A to its mean squared error again
tends toward zero (|E(TyrA)|5£’|b3(h3~—h;1)/nl.)
Thus a systematic Ttps sample from a x-ordered
list is asymptotically W-balanced on all linear
combinations of bounded monotonic transformations
of the x;,.

The model-based asymptotic properties of the
mor estimator coupled with a systematic mps
sample from a size ordered list do not depend on
the sample having a random start point. Any

start point would do. By choosing a start point
randomly, this estimation strategy becomes design
unbiasad (bias-robust on average giver any’
additional auxiliary variable). 4Unfortunately,
the strataegy is not asymptotically design
consistent (adc) in the Isaki-Fuller (1982)
sense. (The estimation strategy is adc,
trivially, in tha sense of Brewer, 1979,
it is design unbiased.)

(5.2)

(5.3)
As n

because
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For an estimation strategy based an a random
sampling design to be adc, its mean squared error
must tend toward zero (in design probability) as
n grows arbitrarily large no matter how the g,
are specified. To see why the mor strategy under
consideration is not adc, consider the following
spacification of the q:: |

? RS TTIVIC D AR T (5.4)
whera the £, are iid, |c|>0, and x3;=1 - 27'. Let
n grow arbitrarily Sarge holding N/n at an even
Jinteger value. A=Ef¥x; q,72¥x; converges to bytb’.
Aw-A converges either to ¢ or -c depending on the
randomly chosen start point. Consequently the
mean squared error of A, corverges to ¢ rather
than to zero.

REFERENCES

BREWER, K. W. (1979), ™A Class of Robust Sampling
Designs for Large-Scale Surveys," dournal g{s
AIEI m_l‘ l ﬁm’:;im i 14 » = .

CASSEL, C. M., SARNDAL C. E., and WRETMAN, J. H.

(1977), fg.ﬁn.d.ﬂ_q_ﬁ.v ns of Inference ip Survaev
ing, New York: John Wiley and Sons.

Sameling
CUMBERLAND, W. G. and ROYALL, R. M. (1981),
"Pradiction Models and Unequal Probability
Sampiing," Journal of the Roval Statistical

Society B, 43, 353-367.
GODAMBE, V. P. (1955), "A Unified Theory of

Sampling from Finite Populations,;7 yrpal o
the Statistical Socie % B, B - .
HORVITZ, D. G. and THOM , D. J. (1952), "A
Generalization of Sampling Without Replacement

From a Finite Universe," of the American
Statistical Association, 47, 663-685.
ISAKI, C. T. and FULLER, W. A. (1982), "Survey

Design Under the Regression Superpopulation
Model,"™ Jourpal of the American Statistical
Agsociation, 77, 89-96.

MADOW, W. G. (1949), "On the Theory of Systematic

Sampling, II,™ Annals of Mathematical

Statistics, 20, 333-354,

ROYALL, R. M., (1970), "On Finite Population
Sampling Theory Under Certain Linear Regression
Models," Biometrika, 57, 2, 377-87.

and CUMBERLAND, W. G. (1981), "An Empirical

Study of the Ratio Estimator and Estimators of

its Variance (with discussion)," of the
American Statistical Association, 76, 66-88.

_— and HERSON, J. (1973), "Robust Estimation in
Finite Populations I," Journal of the American
Statistical Association, 68, 880-889.

$COTT, A. J., BREWER, K. R., and HO, E. W.
(1978), "Finite Population Sampling and Robust
Estimation,” Journal of the American Statistical

Association, 78, 359-361.




