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I. I ~ O N  

The linear least squares prediction approach 
to finite population sampling theory has been 
developed as an alternative to the traditional 
design-based approach. In prediction theory the 
actual values for each unit in the finite popu- 
lation are treated as realizations of random 
variables. The joint probability law of these 
random variables is given by a superpopulati0n 
model which links sample and nonsample units and 
forms the basis for inference. Previous work in 
prediction theory for finite populations has ex- 
amined models in which the expected value of 
each random variable is a linear combination of 
a set of unknown parameters. In many applica- 
tions a linear model is too restrictive and a 
nonlinear model of some type will provide a bet- 
ter approximation to reality. 

Virtually all of the work in prediction the- 
ory has involved the estimation of totals or 
means of quantitative variables. A natural sit- 
uation in which a nonlinear model may be appro- 
priate is that of estimating the proportion of 
units or total number of units in a population 
which have a particular characteristic. Often 
some relevant auxiliary information for each u- 
nit is available which can be t~ed in model 
construct ion. 

Section 2 presents an estimator of the total 
under a nonlinear Bernoulli model~in which the 
random variables are independent. Conditions 
are given under which the estimator of the total 
is asymptotically normal and oonsistent. Esti- 
mation of the variance of the estimated total 
under the Bernoulli model is discussed and fur- 
ther conditions are given for the consistency of 
the variance estimator. An approximate jack- 
knife variance estimator is also presented as an 
alternative. Section 3 describes the results of 
an empirical study. A finite population of hos- 
pitals in the United States is used and the to- 
tal numbers of hospitals offering certain types 
of services are estimated. ~hether a hospital 
offers a service is modelled as the realization 
of a Bernoulli random variable whose expected 
value depends on the size of the hospital. The 
results confirm that nonlinear models can be 
usefully employed in finite population infer- 
ences and that the asymptotic properties of the 
estimated total do describe the moderate sample 
size situation with useful accuracy. 

2. BASIC RESULTS UNDER A NDNLINF/tR BERNOULLI 

MODEL 

A finite population of N units will be 
considered with the units labeled i, 2, ..., N. 
Associated with unit i are a random variable Yi 
and a vector of known auxiliary variables x. = 

~i 

(Xil, xi2 , ..., Xiq)'. The random variables 

variables Yi' i = i, 2, ..., N are assumed to be 

independent. ~he populat ion vector of random 
variables and matrix of auxiliaries will be 

written as y = (YI' "''' YN )' and X = (x I, ..., 

x N)'. ~hen a sample of n units is selected from 

the population of N, [ and X can be reordered 

and partitioned into sections referring to the 
samp le un its, denoted by s, 
and the nonsample units, denoted by r: y = 

! ! ! 

([s,~{r) and X =(X' ' ' ~ .s,Xr) ~here Y-s is nxl, ~r is 

(N-n) x I, X is nxq, and X is (N-n) x q. 
~s ~r 

Denote the nxn diagonal covariance matrix 
associated with the sample units by V and the 

~ss 
corresponding diagonal (N-n) x (N-n) matrix 
for the nonsample units by Vrr. The model to be 

considered asserts that 

E(y i) = f(xi;@) and Var(y i) = f(xi; 8) [l-f(xi; 8) ] 

where 8 is a pxl vector of unknown constants 
~ 

and f ( .; • ) has at least three partial 
derivative with respect to 8 for all 8 in the 

~ ~ 

parameter space and for all N of the x.. The 
-i 

function f( "; °) is in general a nonlinear 
function of the elements 8. The vector of 

~ 

expected values of [ will be denoted by 

f(8)=(f(xl;8),...,f(xN;8))' and its sample and 

nonsample components by fs (8~) and f~r( 8~ ). The 

full specification of the model is then 

E([) : f(e) : [fs(8)', fr(8)' ]' 

[:S V a r ( g )  = V - s (1) 

~ 

In a d d i t i o n ,  we w i l l  need  t h e  v e c t o r s  and 
m a t r i c e s  of  p a r t i a l  d e r i v a t i v e s  d e f i n e d  by z i ( ~ )  

- [~f (x i ;e ) /~ez , . . . ,~f (x i ;~) /~ep] '  for i-1, 2, 

. . . , N  and F(e) = [Zl(e),...,ZN(8)]' : [Fs(@)', 

Fr(@)'~ ]' where F~s(8)~ is the nxp matrix of ~ 

partial derivatives for the sample units and 
Fr(8) is the (N-n) x p matrix of partials for 

the nonsample units. In much of the following, 
the argument e will be suppressed in 

~ 

zi(e), Fs(8), and Fr(e), for compactness of 

nora t ion. 
For a given sample the population total T = 

N + T where T is Zly i can be written as T = T s r s 

the total for units in the sample and T r is the 

total for the nonsample units. After the vector 
~{s is observed, the problem of est imat ing T is 

equivalent to the problem of predicting the sum 
T for the unobserved random variables, l~hen 
t~e parameter @ is known the best linear 

~ 

unbiased (BLU) predictor of T is obtained by 
adding to the observed T s the BLU predictor of 
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T r. This result is stated explicitly in the 

following theorem which is a simple consequence 
of a standard result in linear prediction theory 
(Bibby and Toutenburg 1979, Ch. 5). The type of 
linear estimator considered by the theorem has 

the form T* = -~{~s + e0 where ~i is an n x 1 

vector of constants and e0 is a scalar. 

~eorem 1: 

Under model (i) with 8 known, among linear 

estimators T* satisfying E(T*-T) = 0, the 

error-variance E(T*-T) 2 is minimized by 

To = Ts + l'~r f~r(8)~ where l~r is an (N-n)- vector 
of l's. 

~hen 8 is unknown an estimator must be used. 

The standard estimator of 8 in a nonlinear 

regression problem is obtained by generalized 
least squares (GLS). The GLS estimator (GLSE) 

is the value of 8 which minimizes 
~ 

,V-I (Is- fs(8)) ~ss (Is- f(8))" Under model (i) 
the GLSE is equivalent to the maximum likelihood 
estimator (MLE) in the sense that both can be 
obtained by solving the same set of equations 
using the method of iterative reweighted least 
squares (Nelder and Wedderburn 1972). Bradley 
and Gart (1962) have given conditions under 
which the MLE under model (i) will be consistent 
and asymptotically normal. 

Motivated by Theorem 1 the estimator of the 
total we consider here is 

T = T s+ l'rfr(e)~ where 8~ is the MLE. This 

estimator is directly analogous to the BLU 
predictor of T under a linear model with E(y) = 

X8 where 8 is a q-vector of regression 
~ ~  ~ 

coefficients and with V a known diagonal 
~ 

covariance matrix. [hder that linear model the 

+ 1 X 8 with 8: BLU predictor is TL= T s ~r~r~ ~ 

-Ix'. -I (X'V-Ix) (Royall 1976). In the 
~s-ss ~s -sYss~s 

special case of f(8) = X8 and V known the 

estimator T equa is TL" 

A delta method approximation to the 
^ 

prediction variance of T is 

V^ = I'F (F'V-IF)-IF'I + I'V 1 (2) 
T ~r~r ~s _ss ~s ~r ~r ~r ~rr ~r 

where each element in the matrices in (2) is 
evaluated at 8 (Valliant 1984)• The factor 

~ 

(F'V-IF)-i is the inverse of the information 
~S ~SS ~S 

matrix which is the usual estimator of the 

covariance matrix of the MLE 8. Under some 

reasonable conditions the second term on the 
righthand side of (2), which is the variance of 
the sum of the nonsample units, will be 
negligible compared to the first in large 
samples. %]~e natural estimator of the 

prediction variance of T is obtained by 

evaluating (2) at ~ and will be denoted by v^. 
T 

Under the regularity conditions of Theorems 2 
^ 

and 3 below, T properly standardized is 

asymptotically normal and both T/N and v^ are 
T 

consistent. Proofs are given in Valliant 
(1984). Below ~e denote the normal prohsbility 

law with mean u and variance a 2 by 

N( ~, a2). 

~eorem 2: 

Suppose the model given by (i) holds. If, as N 
and n+~, f = n/N+0 and the following conditions 
hold: 

(i) F(8) exists and is nonzero at 8 = 8, 

( i i ) Ir Fr/( N-n ) +I~, a non zero vector of 

constants, 

(iii) FsV-sslFs/n+Ao , a positive definite matrix, 

m 

(iv) irVrrl/(N-n)+Vr, a positive constant, 

(v) for every 8" in a neighborhood of 8 there 

exist real valued functions h(x i) such that 

11182f(xi;8)/88j88k I - < h(xi) and r7 h (xi)/(N-n) 

converges to a positive constant for j,k = 
1,2,...,p, and 

(vi) 8 is an estimator of 8 such that ~n(~-e) 

^ d 
then  (T-T)/V¢~.÷ N(O,1) where "~" means 

T 
"converges  in d i s t r i b u t i o n • "  

The weak cons istency of the est ima ted 

proportion T/N follows directly from Theorem 2. 

The asymptotic variance of (T-T)/N is 

'F I  Vos sl-1  1  ~r ~r ~ ~ " 
converges to zero as n, N +~ by conditions (ii) 
and (iii) of Theorem 2. The result follows from 
Chebyshev' s inequality. 

Before stating the conditions for consistency 
of v^, ~e define the (N-n) x p matrix for the 

T 
nonsample units Grin = [~2f(x.;8)/88.~8 ], 

~i ~ 3 m 
ier and j=l, 2,...,p, the corresponding n x p 
matrix G for the sample units, then n x n 

~sm 

8Vss/88 for the sample units, and 
"I 

matrix D 
~sm ~ m 

the (N-n) x (N-n) matrix E~rm = ~Vr/~8 m ~  for the 

nonsample units. Each of the matrices is 
defined for m = 1,2,...,p and is associated with 
~v^/~8 . 

T m 

~heorem 3: 

Suppose model (1) holds If as n, N+~ f+0 • f f 

conditions (i)-(iv) of ~qeorem 2 and conditions 
(i) and (ii) below hold, then 

v^/V^~ 1 where "~" means "converges in 
T T 

probability." 
^ 

(i) e~e 

(ii) For every 8* in a neighborhood of 8 each 

element of the following quantities is 
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bounded in absolute value when evaluated 
at 8*: 

~ 

IrFr/(N_n) irGrm/(N_n ) n(F,V-IF )-i 
' ' S SS S ' 

G' V-IF /In F sDsm Fs/n and ~sm~ss~s '~ ~ - ' 

An important consequence of Theorems 2 and 

3 is that the standardized form of T is still 
asymptotically normal when the approximate 

variance of T is replaced by its sample 
estimator, i.e., under the conditions of 

Theorems 2 and 3 (T T)/Fv^ d - ÷ N(0,1) as n ÷ ~. 
T 

The following simple example illustrates 
the use of the two theorems. The example invol- 
ves a single auxiliary variable x which is a 
conTnon situation in finite population esti- 
mation. If x is bounded, the sufficient condi- 
tions of Bradley and (]art (1962) for the asymp- 

totic normality and consistency of the MLE 8 can 
~ 

be verif led though the steps are somewhat 
lengthy and are not given here. In the 

w 

following define Xr = 7rXi/(N-n ) ' 

Xr2 = 7.rX~/(N-n), Xs3 = %x~/n, and f(xi;8)= Pi" 

Example: Two parameter logistic model. 
Let yl,Y2,...,y n be independent Bernoulli 

random variables with p i = [i + exp(-8 o- 81x i) ]-i 

and suppose x i> 1 for all i = i, 2, . , N. 
The quantities-covered by conditions ii)-(iv) of 
Theorem 2 which must converge are IrFr/(N-n) = 

[7.rPiqi, 7.rPiqixi ]/(N-n), 

~'V-IF /n = i I s ss s n Piqi s ~ Piqi x ' 

7~ piqixd 
S 

and irVrrl/(N-n ) = 7.rPiqi/(N-n ). 

The second partial derivatives of Pi are 
22 82 
Pi/~ o = Pi qi(l-2pi )' 2%i/~812 = piqixi(l_2Pi ) 2  

and 82pi/~8o~81 = piqixi(l-2Pi), all of which 

2 
are bounded in absolute value by x.. Condition 

1 

(v) of ~heorem 2 will be satisfied if Xr2 

converges. Turning to ~heorem 3, the elements 

irF~/(N-n) are bounded by x . The elements of 
~ r 

! -i 

n(F*~s V*-iF*)~ss ~s are bounded if Xr2 converges and 
the determinant of 

F*'V* F* ( ~ , , 2 ~s ~ss~s ~sPiqixi)( 7. D'a*) - (7~ D*-*" )2 is ' s-i-i s--i~i~i ' 

nonzero where the * superscript indicates the 
elements are evaluated at 8*. The determinant 

~ 

is zero in the trivial case in which x is 
constant or p is always zero or one but in 
genera i is nonzero. Lett ing 

7. * * - * : Z-*-*x (l-2p~)/(N-n) rPiqi (I 2Pi)/(N-n) glr' r~iqi i 
= Z , , i l-2p[)/(N-n) = g , pqx ( 2r r i i i g3r gls gzs and 

g3s be the analogous sample averages, and 
, , 3 , 

7.s p i q i x i ( l-2Pi )/n = g4s ' the other quant it ies in 

condition (ii) of Theorem 3 are 

i'G* /(N-n) = _ _ [ g l r , g 2 r  ] ' * ' irG-rl/(N-n) : [g2r g3r ] ~r -ro 

= g2s ' ~s 4o ~s Is 

g2s g3 

jo  Jo: 7 
-s-sl 

E3s g4d 
= I'E* i/(N-n) = g . irErol/(N-n ) glr' ~r-~rl - 2r 

m 

The terms glr' g2r' and g3r are bounded if Xr2 

converges while_ the terms gls through g4s are 

bounded if x converges. Thus, reasonable 
s3 

behavior of moments involving the auxiliary 
variable x are sufficient to assure asymptotic 

normality of T and consistency of v^. 
T 

In this as in other prediction theory invest- 
igations, a key issue is how well the estimators 
of the total and variance perform when the model 
fails. In linear model analyses variance esti- 
mators dictated by the model may be extremely 
nonrobust when the model is wrong (Royall and 
~rland 1978, 198la, 1981b). The same kind 
of problem can be expected under nonlinear mod- 
els. An alternative variance estimator ~ will 
mention briefly is an approximate jackknife hss- 
ed on a covarianee matrix estimator suggested by 
Fox, Hinkley, and Iarntz (1980). ~hen applied 
to the problem of estimating the prediction 

^ 

variance of T, the approximate jackknife is 

vj = i rFr% F r i r 

where 

vj:A -i{F'v-iD 2 v-i~ - !~'v-iD i i'D v-i~ }A -i 
~S ~SS ~SS ~SS ~S n -s ~s~~ss ~s ~s ~ss ~ss ~s ~ ' 

A = F'V-IF and 
~ ~S ~SS ~S r 

%~ = d~ g {~i/( ~-k i ) }, i ~. 

The remaining terms are the sample residual r. = 

Yi- Pi' ki= zi~ ~ i i' where Pi = f(xi;8)'~ 

and i which is an n-vector of l's. All terms 
~S 

are evaluated at 8.~ The matrix Vj is a linear 

approximation to the jackknife estimator of the 

covariance of 8. Computat iona lly, th is 
~ 

estimator is much less demanding then the full 
jackknife. The estimator vj requires only one 

nonlinear fit while the full jackknife requires 
n + 1 fits --one for the full sample and one 
each for n subsamples. 

3. ~PIRICAL RESULTS 

The finite population used for the e~pirical 
study is a subset of the hospitals in the United 
States in 1980. The hospitals were taken from 
those covered in the 1980 Annual Survey of Hos- 
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pitals conducted by the American Hospital As- 
sociation. The subset used consisted of 5050 
general medical and surgical hospitals which 
provided complete responses to questions on the 
types of services each offered and on the number 
of inpatient beds each had. Results for three 
services are reported here:(1) psychiatric acute 
care, (2) pediatric intensive care, and (3) neo- 
natal intensive care. The percentages of hos- 
pitals offering services i, 2, and 3 are 33.2, 
26.7, and 16.2 as shown in Table i. The per- 
centage offering each service also depends on 
the hospital bed size (x) as illustrated by 
Figures 1-3 which are plots of the percentages 
within bed size classes versus the midpoints of 
the size classes. 

Bernoulli models were identified which fit 
the scatter plots in Figures 1-3 reasonably well 
based on analyses of residuals and on formal 
tests of significance using the error sum of 
squares from each fitted model and which pro- 
duced acceptable estimates of the total for each 
service when the estimated expected values were 
summed over the entire population. Tne partici- 
cular forms adopted for the function f( "; ") were 

l-exp(-0x) for service 1 and [l+exp(-0o-0 Ifx) $I 
for services 2 and 3. The fitted curves based 
on the entire population of hospitals are shown 
as solid lines in Figures 1-3. 

To test the theory for T and v^, i000 
T 

simple random samples of size 32 were selected. 
The validity of the theory in section 2 does not 
require that simple random sampling or any other 
probability sampling plan be used. Simple 
random sampling ~s used because it provides a 
wide variety of samples to test the theory. The 
size of 32 ~s chosen as being large enough to 
test asymptotic propert ies but sma ii enough to 
expose anomalies that might not appear in very 
large samples. For each sample, 0 was 

estimated in each model by iterative reweighted 
least squares. The convergence criterion used 

was that the maximum relative change in 

between successive iterations be .01 or less 
with a maximum of 5 iterations allowed per 
sample to limit computation time. Samples for 
which ~sy = 0 or n were eliminated since 

computations could not be carried through in 
those instances. 

For each of the samples which were retained 

the estimated total T, the estimation error 

- T, the squared error (T- T) 2, the estimated 
variances v^ and ~, and the standardized error 

T 
(T - T)/~ with v = v^ and vj were computed. 

T 
Table 1 gives the average error of T, defined as 

AE(T) = ~ (T - T)/S, and the average relative 

error AE(T)/T where S is the number of samples 
retained for a model. The table also gives the 

square roots of the averages of (T- T)2,v^, and 
T 

^ 

Vo along with the ratios {Tv/7(T- T)2} I/2. 

where v =v^ or vj. The relative error of 
T 

ranges from-.030 to .008 in accordance with 

the theoretical asymptotic unbiasedness of T. 
Results for v^ are somewhat less sat isfact- 

T 
ory. The variance estimator underestimates the 
empirical mean square error in each case with 
the ratio of the root of the average v^ to the 

T 
root MSE ranging from .93 to .94. The 
approximate jackknife vj is more conservative 

than v^, producing ratios of .96, 1.03, and 
T 

1.06. 
Table 1 also gives empirical coverage prop- 

erties of 95 percent confidence intervals for 
the total T. If the empirical distribution of 
the standardized error (SZE) is approximately 
standard normal, then about 95 percent of the 
SZE's would be less than 1.96 in absolute 
value. Ken v^ is used to standardize, the 

T 
empirical coverage percentages are 92.5, 91.1, 
and 88.3 for the three services. The observed 
undercoverage is due in part to v^'s being on 

T 
the average an underestimate of the MSE. ~nen 
vj is used to standardize, coverage percentages 
improve to 92.9, 92.6, and 91.8. 

4. OONCLUSION 
The empirical results illustrate that a non- 

linear Bernoulli model can usefully describe the 
dependence of a zero-one variable on an auxil- 
iary variable in a finite population. The non- 
linear models adopted here do produce approx- 
imately unbiased estimators of totals. However, 
the variance estimator v^ underestimates the 

T 
mean square error of T in this study. The 
underestimation may be due to the relatively 
small sample size used in the study and to 
departures from the adopted models. The 
approximate jackknife variance estimator appears 
to be a reasonable alternative to v^ which 

T 
produces more conservative variance estimators 
and confidence intervals that have actual cov- 
erage probabilities closer to the nominal prob- 
abilities. 

~he models which were appropriate for the 
population examined here were monotone in the 
auxiliary variable x, but other nonmonotone re- 
lationships are certainly conceivable. In such 
cases acceptable models may be difficult to for- 
mulate. An alternative prediction apprcach to 
fitting a single model is to approximate the 
nonlinear relationship by a series of piecewise 
linear functions. Separate ratio or linear reg- 
ression estimation might then be used as sug- 
gested in Roya Ii and Herson ( 1973 ). 
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Table I. Empirical results for the bias of T, estimators of the standard 

error of T, and 95 percent confidence intervals for T. 

Summary Item 
Psychiatric Pediatric Neonatal 

Acute Intensive Intensive 
Care Care Care 

i. Percent offering service 33.2 26.7 16.2 

2. No. of samples i000 i000 993 

3. T 1675 1346 816 

4. Avg.(T - T) 14 -41 -I 

5. MSEI/2 378 386 296 

1/2 
6. [Avg v$] 355 364 276 

1/2 
7. [ Aug v j] 362 396 313 

^ 

8. Relative error of T .008 -.030 -.002 

9. [Avg v ̂  /MSE]I/2 .94 .94 .93 
T 

i0. [Avg vj/MSE]I/2 

Percentage SZE <1.96 

.96 1.03 1.06 

ii. using v ̂ 92.5 91.I 88.3 
T 

12. using vj 92.9 92.6 91.8 

^ 

NOTE: Avg. (T- T) = E(T- T)/S, MSE - E(T- T)2/S, 

Avg. v = Ev/S for v = v^ and vj, (relative error ) = E(T- T)/(ST), 
T 

where S = no. of samples and summations are over the samples used 

for each service. 
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%o 

Figure i. Proportion of hospitals providing 
psychiatric acute care by bed size. 

tOIM 

gO.4 

eo.-I 

_.1 
<( 7o.4 
I.-. 
CL.. 
,(/3 sol 
0 
:"r" 

soq 
,I.~ 
0 

4o-i 
;(.-~ 

~p- 30--I 
' Z  
i '" 

! 0 .  IIM 

i 
,/ 

o ,oo =& ~ ,& ,~o m 7& ,& ,& ,o;o ,,& ,,oo 

HOSPITAL BED SIZE 

Figure 2. Proportion of hospitals providing 
pediatric intensive care by bed s!ze .... 
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Figure 3. Proportion of hospitals providing neonatal 

intensive ~are_bv bed size . . . . . . . .  ....... 
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