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ABSTRACT 

Standardized errors (T-T)/v ~2 were calcu- 
lated for both ratio and regression estimators 
in each of 10,000 simple random samples of 
n = 32 from each of six populations, using four 
different variance estimators. ^Graphs sh 
how the percentage of intervals T ± 1.96 v 
which fail to contain T changes as a function 
of the average value of the auxiliary variable 

in the sample. They reveal that (i) Intervals 
using the variance estimators from standard 
linear regression theory were hopelessly unre- 
liable (ii) Intervals using the conventional 
finite population variance estimators showed a 
striking excess of failures in badly balanced 
samples, and (iii) None of the four variance 
estimators produced satisfactory confidence 
intervals in populations arising from badly 
skewed prediction models. 

i. INTRODUCTION 

Previous empirical studies (Royall and 

Cumberland 1981a, b) confirmed prediction 
theory's warnings about bias in ratio and 
regression estimators of population totals when 
the sample is badly balanced, about failure of 
conventional variance statistics to estimate 
properly conditioned variances, and about non- 

robustness of linear regression theory's 
variance estimators. Those studies showed the 
importance of good balance for robust estima- 
tion and the value of variance estimators which 
prediction theory had identified as bias- 
robust. 

In discussing the ratio estimation paper, 
T.M.F. Smith(1981) commented that "My only 
criticism ... is that we will have to wait to 
discover what are the coverage properties of 
the intervals based on the various variance 
estimators." Here we report results of a large 
scale empirical study of coverage properties of 
confidence intervals about ratio and regression 
estimators, using the standard normal approxi- 
mation with various estimates of standard 
error, in samples drawn at random from the same 
study populations used in the previous papers. 

The results will be stated in terms of the 

standardized error (SZE), (T-T)/v ~2, where T is 
^ 

either the ratio (TI) or regression (T 2) 

estimator of the population total (T), and v is 
a variance estimator. The variance estimators 

for I which were denoted in the previous study 

(1981a) by Vc, VD, vj, and v L appear here as 

vlC , VlD , etc., and the corresponding estima- 

tors for the variance of T2 (1981b) appear as 

V2c , V2D , etc. Whenever ISZEI > k the 

corresponding confidence interval T ± k v ~2 
fails to include the true total T. 

The previous work (Royall and Cumberland 
1981a, b) led to conjectures about the behavior 
of the SZE's in the six study populations. For 
example, in those populations where an estima- 
tor T shows a bias, we expect that when the 
bias is positive the frequency of SZE > k will 
exceed that of SZE < -k, with the opposite 

occurring when T has a negative bias. The 

discrepancy will be greatest when the bias is 
strongest. 

Other conjectures concern the effects of 
biases in the variance estimators. In those 

populations with no clear bias in T, we expect 
that 

(i) With the conventional variance estima- 
tors the absolute standardized errors 

ITI_TI/v ~2 and I I/vi/22 C will exceed a posl- IC T2-T 
tive constant k more frequently than predicted 
by the (normal or Student's t) reference 

m 

distribution in the samples where x s < x, and 

the frequency will decrease as x s increases, 

becoming less than the reference frequency 

m m 

when x s is much greater than x. 

(ii) For T2 and V2L performance should be 

qualitatively similar to that for V2c in (i), 

but with somewhat lower frequencies when l~s-~l 
is large 

^ 

(lii) For T| and V|L the frequency should 
exceed that of-the reference distribution unl- 

forming in x 
S "  

(iv) Replacing Vjc and VjL (j = 1 or 2) by 

VjD or vjj should improve the approximation to 

the reference distribution. 
These conjectures come directly from the 

theoretical and empirical results on expected 
values of the various statistics. Consider for 

example, the variance estimators vlC and VlL. 

The fact that in samples where x s < x the 
average value of vlC was smaller than the 

average of (TI-T) 2 leads us to expect an 

of extreme values of ITI-TI/v~ excess in 

such samples. The fact that the average value 

of VlL was smaller average (TI-T) over the 
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entire range of values of ~ leads us to ex- 
S 

pect an excess of extreme values of 

A major source of uncertainty in these conjec- 

tures is the effect of non-normality. The Y- 
variables studied in finite populations are 
often non-negative and sharply skewed, so that 

- T does not have an approximate normal dis- 

tribution until n becomes very large. The 
skewness can also distort the distribution of v 
and produce a correlation between T and v, 
sharply altering the distribution of SZE. 

2. EMPIRICAL STUDY 

the behavior of SZE's using TI, We examined 

T2, and various variance estimators in the same 

six "populations used in the previous studies. 
Descriptive statistics as well as scatter 
diagrams for all populations appear in Royall 
and Cumberland (1981a). From each population 
we drew ten thousand simple random samples of 
n = 32, and for each sample we calculated the 

SZE, (T-T)/~ ~2, for T = TI with v = VlL, vlC , 
^ ^ 

VlD , and Vlj, and for T = T 2 with v = V2L, V2c, 

V2D , and v2j. To see how performance varied 

with x s we ordered the ten thousand samples 

according to their values of Xs, and divided 

them into twenty groups of five hundred sam- 
pies, the first group containing the five hun- 

m 

dred samples whose x are smallest, etc. For 
S 

each group and for each combination (T, v) 

studied we calculated the percentage of the 
five hundred SZE's exceeding 1.96 and the per- 

centage falling below -1.96. Figures la and Ib 
show these percentages for the ratio estimator 

TI for each of the six populations. Figures 

2a and 2b show the corresponding percentages 

for the regression estimator T2" 

3. RESULTS 

If the standard normal approximation to the 

distribution of a SZE is to provide useful con- 
fidence intervals then on the corresponding 

graph each of the twenty bars should be about 
five percentage units long, and each should be 

centered near zero. A slightly more conser- 
vative approximation replaces the normal by the 
Student's t distribution with 31 d.f. for the 
ratio and 30 d.f. for the regression estimator. 
With these t distributions the bars should be 
about six percentage units long. However, the 
graphs show that it is unrealistic to fret 
about a couple of percentage points or degrees 
of freedom in the situations represented here. 
The problems are much more serious. 

The results show that the prediction theore- 

^ 

tic results concerning bias in T1 and T2, ex- 

pected values of the variance estimators, and 
the importance of balanced samples in robust 
inference are directly relevant to confidence 
intervals. In Figure la the Cancer population 
provides a comparison of the variance 
estimators' performance in the absence of 

serious bias in TI" The negative bias in 

VlL in this population translates directly into 

an excess of extreme SZE's throughout the range 

of ~s, with over ten percent of ISZEI's 

exceeding 1.96 in every group. The conven- 
tional variance estimator's increasing bias, 

from negative when x s is small to positive 

when x s is large, produced the funnel shaped 

m 

graph showing that as x s increased the percen- 

of extreme values of ITI_TI/v Y2 tage IC decreased 

steadily from 27 to 3. The bias-robust sta- 
tistics VlD and Vlj , although producing a 

slight excess of extreme values in every group, 
showed much better performance than either 

VlL or vlC. The Sales population produced 

similar results. 
In Counties 60 (Figure la) and Hospitals 

(Figure Ib) the effects of failure of the 
simple proportional regression model appear. 
The previous study (Royall and Cumberland 
1981a, Figures 9 and II) showed that in both of 
these populations the average value of 

T1 - T is large (relative to the variability ) 

and positive when x s is small, drops to zero 

when x s is near x, and becomes large and nega- 

tive when x s is large. The apparent cause in 

both populations is a regression function, 
E(Y), which increases with x, but with a 
steadily decreasing slope. In the Counties 60 
population this produced striking results 
(Figure la). Most remarkable is the disastrous 
performance of the conventional variance esti- 
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mator in the group of five hundred samples 

whose x values are smallest, where fully 
s 

65% of the standardized errors exceeded 1.96. 
(In this group nearly 23% of the SZE's exceeded 
4.0) The standard regression variance estima- 

tor, VlL , produced an excess of extreme SZE's 

in every group, with a gross excess at both 

extremes of the x distribution. The estimators 
s 

rid and v IJ also performed badly at the 

extremes, but unlike VlL both they and Vic gave 

acceptable, though conservative, results in 
well-balanced samples. The Hospitals popula- 
tion (Figure Ib) produced similar graphs, 
though less dramatic than Counties 60. We 
interpret these results as showing that balance 
is a prerequisite for robust inference using 
the ratio estimator and any of these or similar 
variance estimators. In the 10-20 percent of 
randomly selected samples showing the worst 
balance, nominal 95% confidence intervals can 
have coverage probabilities much lower than 

0.95. 
The last two populations, Counties 70 and 

Cities (Figure Ib), are the most alarming. In 
Counties 70 many relationships remained the same 

as in the other populations: VIL gave too many 

extreme SZE's in every group, Vic gave the fun- 

nel shape expected, and VlD and Vlj provided 

more stable and consistent performance, over 
the twenty groups, than the others did. But 
these two bias-robust statistics also produced 
a striking excess of large SZE's in every 

group, even those where x s was near x. This 

is curious, because the earlier study showed 
that for this population the average error, 

1 T, is nearly zero in well-balanced 

samples and is positive when x s is greater 

than x (Royall and Cumberland 1981a, Figure 10). 

Thus the analysis in terms of biases in T1 

(caused by failure of the proportional 
regression model), which seemed to explain the 
excess of extreme SZE's in the badly balanced 

groups of samples from Counties 60 and 
Hospitals, does not apply here. One possible 
explanation for the Counties 70 results is to 
be found in the positive covariance between 

~2 which produced a correlation co- -I and v , 

efficient between 0.76 and 0.82 within every 

one of the twenty sets of samples for both 

Thus when T is small, giving a VlD and Vlj. 1 

negative error, T1 - T, the variance estimators 

also tend to be small, producing large negative 
standardized errors. On the other hand, when 

when 1 - T is positive the variance estimators 

tend to be large, preventing a large positive 
standardized error. The source of these corre- 

lations is uncertain, but they are probably 
caused by skewness in the Y-distribution. The 

same phenomenon appears to have occurred in the 
Cities population (correlation coefficients 
between 0.70 and 0.76), although it is not 
nearly so severe in that case. 

Figures 2a and 2b show that for the 
regression estimator also the earlier results 

on how the average values of T2, (T2-T) 2, and 

the various variance estimators relate to x 
S 

(Royall and Cumberland 1981b) predicted the 
performance of the SZE's very well in these 
populations, again with the exception of 
Counties 70 and possibly Cities. Again the 

tendency of V2c to increase sharply with in- 

creasing x s produced funnel shaped graphs in- 

dicating a gross excess of extreme SZE's when 

x s is small. Again V2D performed much better, 

better, as did v2j. And as before, even the 

best variance estimators produced grossly 
unsatisfactory results in the Counties 70 popu- 
lation where again a large positive correlation 
between the numerator and denominator of SZE 
was observed. We note that in these popula- 

tions the jackknife statistic v2j performed 

noticeably better than V2D , although the dif- 

ferences were not nearly as great as those 
between these two statistics and the other two, 

V2L and V2c. 

The qualitative results are insensitive to 
the value 1.96 chosen as the reference point in 

the figures. For example, in the first group 

(smallest Xs) of samples from the Counties 70 

population with TI and v C the percentage of 

SZE's < -1.96 is 45, much greater than the 
nominal value 2.5. If k = -1.96 is replaced by 
k = -1.64, -2.58, and -4 respectively, the 
corresponding percentages are 49, 38, and 21. 
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4. CONCLUSIONS 

The variance estimators from standard re- 
gression theory, VlL and V2L , are so non-robust 

to changes in the form of var(Y) (as a function 
of x) that they are useless in practice. This 
suggests the possibility that outside of finite 
populations, the standard formulas for esti- 
mating the variance of a regression coefficient 
should be replaced in routine practice by more 
bias-robust alternatives. 

The flaws which prediction models revealed 
in the current favorites, Vic and V2c , are 

fatal. These statistics should be replaced by 
more bias-robust alternatives such as VlD and 

V2D or Vlj and v2j. 

Balance on x is a necessary condition for 
robust inference using the ratio estimator, as 
the results for Counties 60 and Hospitals show. 
But the Counties 70 graphs warn that balance is 
not sufficient for robust interval estimation 
using the standard normal approximation, even 
with the best of the four variance estimators 
studied here. We are studying other interval 
estimation procedures in hopes of finding, for 
populations like Counties 70, confidence inter- 
vals which will live up to their name. 

A popular belief among sampling statisti- 
cians is that inferences based only on the ran- 
dom sampling distribution are robust. These 
results show that their faith is misplaced. 
Clearly, the sampler who sets confidence inter- 
vals using either the ratio or regression esti- 
mator with its conventional variance estimator 
and who feels that his inferences are robust 

because the sample was chosen at random, is 
wrong. Inferences must he made conditionally 
on observable characteristics of the sample 
drawn, and they require assumptions regarding 
the population structure which are most 
naturally expressed through prediction models. 
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Figure la. Standardized Error of Ratio Estimator with VlL, vlC, VlD, vIj: 

Percentage of Extreme Values in Cancer, Sales, and Counties 60 Populations a. 

a 
i0,000 Simple Random Samples of n = 32 on x and divided into 20 groups 
of 500 samples. Reference lines are shown ~t 2.5 percent. 

126 



PERCINTAGI[ - i.IHI H O S P I T A L S  PL'RCENTAG( - Llll l 
3 0  RATIO ESTIMATOR 3 0  

20 20 

I0 I0 

0 O 

I0 I0 

2 0  2 0  
PERCENTAGI[ • - L i i l  • C O J PERCENTAGE • -L9t l  

m C E N T ~  - U ~  COUNTIES 7 0  PEMC[,T,= ..I.N 
201- RATIO ESTIMATOR -120 

O k  _ .  _ n i l l l m l i  ~,10 

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  

I01- I l l l l l l l l l l l l l l l l l l l  I I l I l I I l I l I U I I I P -  I l l l l l l l l l l l l l l l l l r  I l l l l l l l l l l l l l l l l l [  -I~ 

201- I l l l l l l l l l l l l  p I I I I I l l l l l i l l  l l l l l l l l l l a l l  i l l l l l l l i r " l  -i2o 

301- I I  r l  I l l l l l l  - - -I:~:) 

"°I- I -I 
50  - Jso 

IqENCINTA~E: • - U N I  L C O g PERCENTAeE • - L i e  

m C [ N T , t ~  ,, L i l  CITIES ~RCZNTAr,[. Ls, 
2 0  RATIO [ST~ATO~ 2 0  

tO IO 

0 0 

I0 I0 

2O 2O 
PERC[NTAG[ c ~ • C O g PERCENTAGE "~ -LIHi 

EACH BAR REPRESENTS ONE GROUP OF 500 SAMPLES 
GROUPS ARE" ORDERED ON X s. 

Figure lb. Standardized Error of Ratio Estimator with VlL , vlC , riD , Vlj: 

Percentage of Extreme Values in Hospitals, Counties 70, and Cities Populations. 
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Figure 2a. Standardized Error of Regression Estimator with V2L , V2c , V2D, v2j: 

Percentage of Extreme Values in Cancer, Sales, and Counties 60 Populations. 
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Figure 2b. Standardized Error of Regression Estimator with V2L, V2c, V2D, v2j: 

Percentage of Extreme Values in Hospitals, Counties 70, and Cities Populations. 
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