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The selection of a variance estimator for 
large complex sample surveys is not straight- 
forward. Most of the methods of variance esti- 
mstion for such surveys are b~sed upon some form 
of repeated subsampling. The random group, 
jackknife and balanced repeated replication 
methods differ primarily in the procedures for 
forming the subsamples. Previous comparative 
studies have been primarily empirical. One of 
our goals is to compare analytically the ac- 
curacy of these different subsample variance es- 
timators. 

A first order Taylor series approximation is 
widely used in computing variances for complex 
surveys; however, the analytical properties of 
the random group, jackknife and hslanced repeat- 
ed replication variance estimators are 
indistinguishable in their first order term. 
Koop (1968) hypothesized the underestimate of 
variance h~ found w~% due to neglecting terms of 
order i/n and i/n~. Sukhatme and Sukhatme 
(1970) suggested the use of a second order ap- 
proximation. Our method of comparing these 
variance estimators is to include all the terms 

of order n -2 in the Taylor series expansion. A 
more complete description of these procedures, 
which are summarized in section II below, can be 
found in Dippo (1981). Concurrent with our 
work, ~o and Wu (1983) have made an asymptotic 
second order comparison of the linearization, 
jackknife and balanced repeated replication 
methods. 

The second order Taylor series analytical ex- 
pressions obtained for the bias of the variance 
estimators are ~plex and require the popul- 
ation moments and derivatives for evaluation. 
Since a second goal of this research is to 
investigate the properties of the variance esti- 
mstors when the sample size is small and the un- 
derlying population is extremely skewed, the 
1980-81 Consumer Expenditure Diary Survey (CES) 
is used to evaluate the second order Taylor ser- 
ies expressions in section III. The CES, which 
is a complex multistage sample of only 5000 
housing units per year with a design similar to 
the Current Population Survey, produces national 
estimates of mean expenditures, which have a 
distribution that is closer to log-norn~l than 
normal. 

Previous empirical studies such as Frankel 
(1971) and Bean (1975) have concentrated on the 
effects of the complex multistage cluster de- 
signs as represented by the Current Population 
Survey and the Health Interview Survey instead 
of the effects of the shape of the underlying 
finite population. Furthermore, although func- 
tionally equivalent, the ratio estimator of n~an 
expenditures is conceptually different from the 
ratio estimator of a proportion investigated in 
Frankel and Bean. In section IV, the results of 
a Monte Carlo investigation of the confidence 
interval properties of the random group and bal- 
anced repeated replication variance estimators 
for the skewed CES data are presented. 

II. TAYLOR SF2/ES APPROXIMATION 

The method used to compare the different var- 
iance estimators is to approximate each esti- 
mator using a Tayl~r series expansion, including 
terms of order i/n . 

Consider a finite population of N units 
divided into L strata. A simple random sample 
of n. units are selected from the N h units 
in t~e h-th stratum with sampling independent 
between strata. Let x be the observed value 
of the r-th variable ~o i the i-th unit from the 
h-th stratum. Define the stratum mean for the 
r-th variable in the h-th stratum as 

Xrh = % =iXrhi and its corresponding sample 

mean as Xrh = =iXrh i" 

The class of parameters to be considered is 
that which can be e_xpressed as a function of 

stratum means, @ = F(XII... ,Xrh,...,XRL) = F(X) 
where r = I, ..., R and h = i, ..., L. The 
estimator of @ to be considered is the 

same function of the sample means, 0 = F(~). 

Let us assume F(.) is a real-valued function 
on RL-dimens iona i Euclidian space with 
continuous partial derivatives of order five at 

X and define 

F(1) (Xrh) = 
aF(x) 

ax I~ 
r h  ~ 

( 4 ) (~rh~sh~th~m h ) : 

aF(x) 

aXrh aXsh aXth axmh X , 

which are the first four partial derivatives of 

evaluated at the point where each ~rhis equal 

to its expected values Xrh. Furthermore, let 

Urh = Xrh-E(Xrh) = Xrh - Xrh. Then, 

o= o + ~. { u ~ F ( 1 ) ( ~ )  r 
1 7. ,- - F (2) (~rh~s h ) + 2 r,s h,~ UrhUsh' 

1 . . . . . .  

+ ~ r,s~,t h,~',h''UrhUsh'Uth"F(3)(XrhXsh'Xth '') 

1 7 ~, , , , , ,,Uzh + ~ r,s,t,z h,h',h ,h UrhUsh Uth ''' 
-5/2 

F ( 4 ) (~rh~s h 'Xth' 'Xmh ' ' ' ) + Op (max n~ ), 
h (I) 

and 4 
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= Z l~ E(- - ) F(1) (Xrh)F(1) (Xsh) r,s UrhUsh 

~ E(- - - )F (1)(Xrh)F r,s,t UrhUshUth 

+ 31 r,s,t,zE ~ E(UrhUshUthUmh )F(1) (Xrh) 

F ( 3 ) (~sh~th~ m ) 

E (UrhUs h )E(Uth r,s,t,z h~' E ,Uzh,)F (1)(Xrh) 

F(3 ) (XshXth 'X~h' ) 

i ~ ~ [E(umu~SmSm) 
+ 4 r,s,t,z 

-E(UrhUsh ) E(UthUmh) IF (2) (XrhXsh)F (2) (XthXmh) 

1 r (u~uth)E - urn,) +2 r,s,t,z h~' E (Ush , 

F (2) (XrhXsh , )F (2) (XthXmh , )+0 (max nh3), 

(2) 

where O is the usual notation for "bounded in 

probability" and where N h and n h ~ ~ in such a 

way that n. /hl + ~. The expectation operator 
is define~" nwith respect to the probability 
distribution generated by repeated sampling 
using the stratified design described above. 

To make expressions such as (i) and (2) 
rigorous, we must work in terms of a conceptual 
sequence of finite populations of increasing 
size. Krewski and Rao (1981) and Isaki and 
Fuller (1982) give alternative formulations of 
the conceptual sequence. In this paper, the 
assumed sequence is such that L is fixed and the 
strata sample sizes n. increasewithout bound. 
To simplify the presentat zon, the formal 
definition of the sequence is omitted. 

Each of the estimators considered is based 
upon dividing the sample of size n = hZ n h into 
different subgroups. For the random'~gr~up (RG) 
method, the n~ sample units in each stratum are 
divided into~ equal groups of size m h. The 
random group estimator of 8 is 

=i k ^ 
0RG ~ a__Zl Oct, where 0~ is the estimator of the 

same functional form as 0 based upon the ~-th 
random group. The random group estimator of the 

variance of 0 to be considered here is 

^ i k 01 ^, 2 
VRG (~) -k(k-l) ~=l (~- ORG) ' 

where 0" = F(/I-I~ ~rh~), ~ = nh/Nh, and Xrh 
is the ~sample mean 159sed upon [he ~-th ran~om 
group. 

The jackknife (JKK) estimator to be considered 
is one proposed by Jones (1974) 

8JKK= (i + ~ %)0 - ~ i ~ ah0(hi) 

where ~ = (N h- n h)(n h- l)/Nh, a h = %/nh, and 
. is the estimator of the same functional 

flhr~1) as 8 but which omits the hi-th unit. 
Therefore, the jackknife estimator is based upon 
n groups of s ize n-l. Jones ' jackkn ife 
estimator of the variance of 0 is 

VjKK(O)--~I ~ ah(O(hi)- O(h)), where O(h)=~h (hi)" 

%he balanced repeated replication (BRR) 
estimator to be considered is similar to the 
random group estimators in that the n h units in 
each stratum are first divided intb (k=) two 
random groups of size mh=nh/2. However, instead 
of forming only two groups across strata as in 
the random group estimator, orthogonally balanc- 
ed combinations of one random group from each 
stratum are created. In studying this 
estimator, we use k' balanced half samples, 
where k' is the smallest integral multiple of 
four greater than or equal to the number of 
strata L. The BRR estimator of 8 is 

^ =i k' 0 , where 0 is the estimator 8BRR i ~ (X k 
of the same functional form as 8 based upon the 
e-th replicate. ~he BRR estimator of the 

variance of 0 is 

A i k ' 2 
._VRRR(0)=~'~ (0'-~ 0'BRR ) ' where 0~=F(/l-~rh ~) 

By expanding 0 , 0', 0 , etc, in a Taylor 
series, as in (i~, e (hi) appro~1~t ions for the bias 

and variance of 0RG, 8JKK' 8BRR' VRG ( ~ )' 
^ ^ 

VjK K(0), and VBRR(0) can be obtained. Table 1 

presents the coefficients of the derivatives 
(columns) in terms of expected values needed to 
express the bias of the variance estimators in a 
Taylor series. To construct the exact expres- 
sion for the bias of one of the estimators, sub- 
stitute the coefficient in the table for the one 
corresponding to the same derivative in (2). 
For example, 

^, (~) : sZ,t ~ {~]-l~3/2[E(Hrh - Bias V 1 r, (k-i) ~U-sh ~Uth ) 

- ~(UmUshU ~) ] - ~(U~UshUth) } 

F(1) (Xrh)F(2) (XshXth) + .... 

These expressions are complex and their inter- 
pretation requires knowledge of the population 
moments and derivatives. 

The bias of the random group estimator with 
two random groups per stratum differs from that 
of the BRR estimator in the cross-stratum 

F (2) (XrhXsh,)F (2) (XthXzh , ) term only (see table 

i). This larger between stratum component of 
the BRR estimator makes the BRR estimator more 
biased than the random group estimator with two 
random groups. However, when the number of 

random groups is increased, the random group 
estimator becomes more biased than the BRR 
estimator. This reflects the fact that as more 
random groups are formed, the sample size per 

group used in computing each 0~ random 
decreases. Again, the two parameters where the 
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numerator is a subset of the denominator are ex- 
ceptions. The reader will recall the variance of 
the variance estimator is generally a decreasing 
function of the number of random groups, k, 
whereas here we find the bias of variance esti- 
mator is an increasing function of k. 

For sample sizes of n~: 6 and 12, the jack- 
knife is the least bias~ with the exception of 
the parameter average weekly cost of gasoline 
per vehicle. However, when the sample size is 
nh=24, the bias of the jackknife variance esti- 
mator is similar to that of the randcm group 
variance estimator with two random groups. 

III. ~ARISON OF VARIANCE ESTIMATORS 

A. STUDY POPULATION 

In order to obtain some insight into the pro- 
perties of the variance estimators, data from 
the 1980-81 Consumer Expenditure Diary Survey 
has been treated as a finite population. The 
14,360 consumer units (CU's) classified as com- 
plete income reporters have been divided into 20 
approximately equal sized strata based upon reg- 
ion and city size. A consumer unit is a single 
financially independent consumer or a family of 
two or more persons living together, pooling 
incomes and drawing from a common fund for major 
expenditures. The following thirteen parameters 
ha ve been cons idered: 

R I = average cost per reporting CU 
for flour (FLOUR) 

R 2 = average cost per reporting CU 
for ground beef (GRBEEF) 

R 3 = average cost per reporting CU 
for eggs (EGGS) 

R 4 = average cost per reporting CU 
for candy and chewing gum 
( CANDY ) 

R 5 = average cost per reporting CU 
for food away from home 
( FOODAWAY ) 

R 6 = average cost per reporting CU 
for food at home (FOODHOME) 

R 7 = average cost per reporting CU 
for qasoline (GASCOST) 

R 8 = average number of vehicles per 
CU owning at least one 
vehicle (VEHO FAM) 

R 9 = average annual CU income before 
taxes (FINCBEFX) 

RI0 = average per capita wage and 
salary income (WAGE CAP) 

RII = average weekly gasoline cost per 
vehicle (GA~ VEHO) 

RI2 = proportion wage and salary 
income of tota i CU income 
before taxes (WAGE INC) 

RI3 = proportion of civilian labor 
force that was unemployed 
during last 12 months 
(UNEM CLF). 

The variable names in the parenthesis above such 
as FIf3{/R and GRBEEF are used in the ac~nying 
tables. 

For R 1 to RI3 , the general form of the 

estimator is _ . For e~ample, in R 1 , 
%xm 

Xlhi = the cost reported by the h i-th CU for 
flour in one week 

and 

Ii if the h i-th CU purchased flour 
X2hi= ~during the week 

|0 if the h i-th CU did not purchase 
flour during the week. 

In RI0, Xlh i is the total annual wage and salary 
income repo~ted by the h i-th CU and X2h i is the 
number of persons in the h i-th CU who reported 
wage and salary income. Rq is a linear esti- 
mator since x_ .= 1 for all units. R~^ and R~ 
• i • iZ IJ 

differ from t~ne others nq that the numerator 
is a subset of the denominator, e.g., wage and 
salary income is a subset of total income. 

Table 2 displays some basic distribution 
statistics for the expenditure and income vari- 
ables. Figures I and 2 present the frequency 
distributions of weekly expenditures for ground 
beef and food away from home. All of the ex- 
penditure and income variables exhibit similarly 
skewed distributions. Since the second order 
term in the Taylor series is a function of the 
third order moments, one might expect the f irst 
order Taylor series approximations to the bias 

and variance of § to be biased when the finite 
population is highly skewed. Indeed, later 
results confirm this hypothesis. 

A 

B. TAYLOR SERIES APPROXIMATION YO VAR 0 

Table 3 indicates the general magnitude and 
s ign of the popular ion moments by present ing the 
average stratum population moments and deriva- 
tives, which are similar in magnitude. ~hen the 
corresponding individual stratum moments and 
derivatives are substituted in the expression 

(2) for vat 8, the second order Taylor series 
approximation to the variance is obtained. 

Table 4 presents the second order Taylor 
series approximation to the variance along with 
the proportion of the variance associated with 
the first and second order terms for three 
sample sizes. For the ten nonlinear parameters 
where the numerator is not a subset of the 
denominator, the first order term accounts for 
about 98.9% of the variance and the second order 
terms 1.1% when the stratum sample size is nh=6. 
~hen the sample size is doubled to nh=12, the 
relationship is 99.4% to .6%. ~en doubled 
again to nh=24, the relationship is 99.7% to 
.3%. On t~e other hand, when the numerator is a 
subset of the denominator (UNEM CLF and WAGE 
INC), the first order term accounts for 100.8% 
of the variance when the stratum sample size is 
6, 100.4% when n is 12, and 100.2% when n h is 
24. That is, ~he total of the second order 
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terms is negative and the first order approxi- 
mat ion provides an overestimate of the 
variance. Overall, for the three sample sizes 
and the twelve nonlinear parameters examined, 
the percent of the Taylor series approximation 
to the variance associated with the second order 
terms is at most 5%. 

In table 5, the percent of the Taylor series 
approximation to the variance associated with 
the second order terms when the sample size is 
six per stratum is given in rank order along 
with the derivatives which are not a function of 
the numerator. All the derivatives which are a 
function of Xlh or the numerator do not show a 
relationship wlth the relative importance of the 
second order portion of the variance and, there- 
fore, are not shown. An examination of table 5, 
ignoring the four parameters with non-indicator 
funct ion denominators, indicates the second 
order variance becomes more important as the 
proport ion of the populat ion purchasing an item 
in a given week decreases. 

C. (I]MPARISON OF ~ EXPECTATION OF THE 

VARIANCE ESTIMATORS 

The first order Taylor series approximations 
to the expectations of the random group, jack- 
knife and BRR variance estimators are 
identical. Therefore, although the contribution 
to the expectation of the variance estimators 
from the second order terms may be small, an 
analysis of the second order terms should give 
some indication of the relative merits of the 
different estimators. 

The expectations of the random group, 
jackknife and BRR variance estimators obtained 
by substituting the population moments and 
derivatives in the Taylor series approximation 

to E[V(8)] are compared to the Taylor series 

approximation to the variance of e, vat 8, in 
table 6. These expectations are computed by 
substituting the population moments and 
derivatives in the formulas given in table I. 
The appropriate finite population sampling 
coefficients of the population mcxnents are also 
needed. For example, (N h-n h)/[n h (Nh-l) ] is the 
coefficient of the full sample second order 
stratum population moment when sampling is with- 
out replacement. All of the variance estimators 
are positively biased for each sample size for 
all the ratio estimation parameters where the 
numerator is not a subset of the denominator. 
~hen the numerator is a subset of the denomina- 
tor, the random group estimator is negatively 
biased for all three sample sizes and each 
choice of the number of random groups. The BRR 
estimator is negatively biased for the larger 
proportion. The jackknife estimator is nega- 
tively biased for only one of the proportions 
and for only the smallest sample size. 

IV. M[]WI~ CAR[f) INVESTI~ON 

For compa rison purposes, i000 without 
replacement samples of size 6, 12, and 24 units 
per stratum have been selected, resulting in 
samples with total size 120, 240 and 480. Two 
additional parameters have been considered for 
the Monte Carlo portion of this study: 

RI4 = correlation between total food at home 
and family income (R FH INC) 

RI5 = correlation between food away from 
home and family income (R FA INC). 

Table 7 presents the population parameters 
and the average relbiases of the sample 
estimates of 8. As in other similar empirical 
studies, e.g. Frankel (1971), the relbias is 
relatively small for the ratio estimates but not 
for the correlation coefficients. On average 
over the 12 nonlinear ratio type estimates, the 
relbias consistently decreases as the sample 
size increases. 

Tne variation among the i000 sample estimates 
i000 ^ ^ 

of @, i__Zl(@i- ~) 2/999' provides an empirical 

estimate of the var e. ~hen the Monte Carlo 
sampling variances are c~red to the second 
order Taylor series variances discussed in sec- 
tion III, the two estimates are within 10% of 
each other in 8 of the 13 cases for the smallest 
sample size. For the largest sample size, the 
two estimates are within 10% of each other in 
all but one case. 

For each of the i000 samples, three sample 
sizes, and 15 parameters, random group and BRR 
variance estimates have been computed. Due to 
budget restrictions, jackknife variance esti- 
mates have been delayed until next fiscal year. 
Although a comparison of the variance estimators 
using these empirical estimates of variance does 
not show the same clear relationships as table 6 
due to the noise in the data, they are useful in 
investigating the performance of the variance 
estimators with respect to oonfidence intervals 
for @. 

If e is a normally distributed random 

variable and V(e) is a consistent estimator of 

var e, then (e - @)/Iv(e) ]1/2 has a standard 
normal distribution. Figures 3, 4 and 5 present 
the cumulative distribut ion funct ions of the t 

values computed as (e- 8)/Iv(e)]1/2 for 
different choices of a variance estimator for 
each of the i000 samples. The five lines on 
each graph correspond to the normal distribution 
and the empirical t-distributions for the 
smallest and largest sample size where the 
estimate of variance is either the BRR estimator 
or the random group estimator with the maximum 
number of random groups considered (k = 2 if n = 
120, k = 8 if n = 480). 

Figure 3 for ground beef is representative of 
the ratio estimation parameters when the numer- 
ator is a function of a variable from a skewed 
population and the denominator is a function of 
a Bernoulli variable. None of the sample 
t-distributions crosses the normal distribution 
for this type parameter. Theoretically, five 
percent of the observed values should be less 
than -1.645 and five percent should be greater 
than 1.645. For ground beef, an average of 35 
percent of the i000 values are less than -1.645 
and less than 2 percent are greater than 1.645. 
~hile one-half of the observed values should be 
on either size of zero, the median is almost one 
standard error less than zero. The 
t-distribution of the random group estimator, 
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when the sample size is small and the number of 
groups is therefore limited, has an especially 
long negative tail indicating the BRR variance 
estimator would be a better choice. ~hen the 

sample size is 24 per stratum for a total of 
480, there does not appear to be any significant 
differences between the BRR and random group 
estimator with a fairly large number of groups. 

One hypotheses for explaining the greater 
than expected number of t values at the lower 
end of the distribution is that it is due to the 

high correlation between 8 and V(8). In the 
following table, the seven mean expenditure per 
CU variables are listed by increasing skewness 
of the expenditure variable along with the 

^ 

correlat ion between 8 for nh= 6 and VBR R( 8). 

Parameter Skewness Corre lat ion 
of Numerator Between 

Population 8 and V(8) 

FOODAWAY 4.0 .53 
GASCOST 5.0 .59 
FOODHOME 5.7 .53 
FLCI~ 6.7 .67 
CANDY 8.6 .66 
GRBEEF 22.6 . 86 
EGGS 40.2 .84 

~hen the numerator population is very skewed, 
is negatively biased if an extreme value (see 
figure i) is not included in the sample. At the 
same time, the estimate of variance is a signi- 
ficant underestimate. Ground beef, which has 
the highest correlation, has the poorest cover- 
age ratio. For the ratio parameters of this 

type, the correlation between 8 and V(8) appears 
to be related to the skewness of the 
population. 

Figure 4 is for the ratio of wage and 
salary income to total income. The sample 
t-distribution has a median at approximately 
zero. Excluding the random group estimator for 
the smallest sample size, approximately 5% of 
the t-values are less than -1.645 and a~t 10% 
of the t-values are greater than 1.645. 

The t-distribution of the correlation between 
food at home and family income is presented in 
Figure 5. As in a previous study by Mulry and 
Wolter (1981), the lower end of the distribution 
appears close to the normal; but instead of only 
5% of the values being greater than 1.645, more 
than 10% are greater. The median t-value is 
greater than zero. 

WAGE INC and R FH INC, which are examples of 
two different types of estimators, have negative 
correlations. Of the 15 parameters studied, 
only the correlation coefficients and WAGE INC 
have negative correlations and only these three 
parameters with a negative correlation between 

and V(8) have t-distributions with a heavier 
upper ta il than lower tail. 

Figures 6, 7 and 8 show the relationship bet- 
ween the number of random groups and the 
t-distribution for the largest sample size 480. 
RG3 refers to two random groups, each of size 12 

per stratum. RG2 has four random groups of size 
6 per stratum and RGI has eight random groups of 
size 3 per stratum. For ground beef, the number 
of random groups has a significant effect on the 
lower tail and little effect on the median or 
upper tail. For the other variables, the effect 
is more symmetric. As the number of random 
groups increases, the dist ribut ion of the 
t-values approaches normality. Therefore, 
although the bias of the random group variance 
estimator is reduced as the size of the groups 
increases and the number decreases, a larger 
number of random groups is better with respect 
to coverage properties. 

V. ~ S I O N  

The results of this study indicate the bias 
of the variance estimators studied is relatively 
small. If one assumes the variance estimators 
can be accurately approximated with a second or- 
der Taylor series, the random group, jackknife 
and BRR variance estimators are all positively 
biased when the estimator of interest is a ratio 
estimator where the numerator is not a subset of 
the denominator. If the ratio estimator is a 
proportion, the variance estimators could be 
negatively biased. The bias of the random group 
variance estimator decreases as the number of 
the random groups decreases or the size of the 
groups increases. But over all the parameters, 
sample sizes and variance estimators studied, 
the maximum relbias is only 9 percent. The 
Monte Carlo results support the conclusion that 
the relbias is small. 

On the other hand, the variance of the varia- 
nce estimators is not insignificant, and the 
normal-theory confidence intervals do not always 
have the desired coverage probabilities when the 
estimator is of a ratio type or a correlation 
coefficient. For the ratio estimator where the 
numerator is a function of a variable from a 
very skewed population, the sample may not incl- 
ude enough extreme values if the effective 
sample size is small. Consequently, not only 

may 8 be small and negatively biased, but V(8) 
may be significantly smaller yielding large 
negative t-values. These situations are 

indicated by a large correlation between 8 and • 

V(8). ~hen 8 and V(8) are negatively correlated, 
the t-distribution has a heavy upper tail. 
Users should be yarned that the construction of 
confidence intervals and tests of hypothesis as- 
suming normality may not be appropria£e in these 
situations. As shown in the Mulry and Wolter 
paper, confidence interva is based upon transfor- 
mations may be better. 

Hen the effective sample size is small, the 
balanced repeated replication variance estimator 
is a better choice than the random group esti- 
mator with only two random groups. As the sam- 
ple size increases allowing more random groups, 
the difference in these two variance estimators 
appears to be minima i. 
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Table i. TI,e Bias of the Variance Estimators Assuming a Taylor Series Expansion 
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^ , 
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Table J.. 
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TABLE 2 
DISTRIBUTION STATISTICS FOR POPULATION VALUES 

PARAMETER N MEAN STD SKEWNESS 

FLOUR 1990 1.07 1.329q 6.6883 
CANDY 3800 2.10 3.~71~ 8.5827 
GRBEEF 5~15 q.91 1 1 . 6 ~ 1  22.62~1 
EGGS 6668 1.~7 1.7851 ~0.1976 
GASOLINE 10071 25.33 2 1 . ~ 1 6  ~.9581 
FOODAWAY 1093~ 21.36 23.3353 3.9731 
WAGEX 11268 18790.88  1~656.3233 2.0601 
FOODItOME 13113 39.17 38.305~ 5.681~ 
FINCBEFX l q 3 6 0  18503.50 1567~ .23q l  2.6230 

TABLE 3 
AVERAGE STRATUM POPULATION MOMENTS 

KURTOSIS 

97.7728 
121.8822 
680.2998 

2508.2701 
53.5673 
37.1022 
15.2658 
91.8096 
2q.1~62 

:AMEIER M2 (X lX] ) *  M2 (X2X 2) M2 (XIX 2) M3 (XzX]X]) M3 (X]X2X2) M3 (XIXIX2) M3 (X2X2X; 

"DY ~.0402 0.1935 0.q062 109.7989 0.1866 2.6708 0.0899 
~S 1.9692 0.2q7q 0.3618 105.3453 0.0256 0.8196 0.0177 
~CBEFX 2.3781 E08 0.0000 0.0000 9.6022 E12 0.0000 0.0000 0.0000 
:UR 0.3750 0.1162 0.1251 2.9231 0.0879 0.29~0 0.0827 
~DAWAY q86.02~5 0.1791 3.7q75 q2011.7899 -1 .96q2  ~8.7938 -0 .0917  
~DItOHE 1~50.~602 0.0788 3.0627 299670.~069 -2 .~921 17.826~ -0,06~0 
~COST ~50.6975 0.2078 5:2381 39407.0712 -2 .0720  ~0.3502 -0 .0818  

450.6975 1:1q76 9.0153 39~07.0712 5.5500 278.0115 2.2732 _VEtlq 
,EEF 56.1506 0.2332 1.1q55 13673.7~27 0.2810 32.~989 0.0569 
M_CLF 0.02~6 0~9576 0.0225 0.0308 0.0330 0.0276 0.7975 
;Q_FAM 1.1q76 0.1q06 0.2~35 2.2732 -0 .1557  -0 .1531  -0 .089~  
:E_CAP 2.2152 E08 0.8322 86~q . l q66  6.0509 E12 3088.1557 6.3185 E07 0.5935 
;E_IHC 2.2152 E08 2.3782 E08 1.9651 EO8 6.0509 El2 6.28~1 E12 6.0931 E l i  9.6022 El2 

AVERAGE STRATUM DERIVATIVES FOR THE POPULATIOH 

PARAMETER F(1)(XIh) F(1) (X2h)- F(2)(XIhX2h) F(2)(X2hX2h) 
CANDY 0.1889 -0 .3972  -0 .0357  0.1503 
EGGS 0.1077 -0 .1578  -0 .0116  0.03~0 
FINCBEFX 0.0500 -925 .17~7 -0 .0025  9 2 . 6 ~ 9  
FLOUR 0.3652 -0 .3959  -0 .1555  0.2896 
FOODANAY 0.0656 -1 .q026  -0 .00~3  0 . 1 8 ~  
FOODIlOME 0.05~7 -2 .1q~6  -0 .0030  0.2351 
GASCOST 0.0712 -1 .8057  -0 .0050  0.2578 
GAS VEtlQ O.03~q -0 .~206  -0 .0011  0.0289 
GRBEEF 0.1326 -0 .6509  -0 .0176  0.1728 
UHEM_CLF 0.0358 -0 .0005  -0 .0012  0.0000 
VEHq_FAM 0.0603 -0 .1059  -0 .0036  0.0128 
WAGE_CAP 0.0~10 -~97 .662~ -0 .0016  ~0.9q~q 
~AGE_INC o.oooo -o .oooo  -o .oooo  o.oooo 

4 (X]X]) = ~ ~ Xlh )2 M (XIX2X 2) = Z ~lh) ~2h)2 2 n h (Xlhi- ' 3 nh Z CXIhi- (X2hi- , etc. 

F(3) - _ _ F(3) - _ _ (XlhX2hX2h) (X2hX2hX2h) 
0 . 0 1 3 5  - 0 . 0 8 5 ~  
0 . 0 0 2 5  - 0 . 0 1 1 0  
0 . 0 0 0 2  - 1 3 . 9 3 ~ 8  
0 . 0 9 7 8  - 0 . 3 1 8 2  
0 . 0 0 0 5  - 0 . 0 3 6 q  
0 . 0 0 0 3  - 0 . 0 3 8 7  
0 . 0 0 0 7  - 0 . 0 5 5 2  
0 . 0 0 0 0  - 0 . 0 0 3 0  
0.0046 -0.0689 
0 . 0 0 0 0  - 0 . 0 0 0 0  
O.O00q -0 .0023  
0.0001 -3 .0598  
0.0000 -0 .0000  

TABLE q 
COMPOHENT PERCEHIAGES FOR VARIANCE OF TIIETA ItAT 

PARAMETER TOTAL 

SIZE6 

PROP'H PROP'H 
FIRST SECOND 
ORDER ORDER 

CANDY 0.38f i395 0.9780fi  0.0220 
EGGS 0.058610 0.9919fi  0.0081 
FIHCBEFX 1965738.083960 1.00000 0.0000 
FLOUR 0.112399 0.95125 0.0~87 
FOODANAY 5.853~07 0.99733 0.0027 
FOODilOME 1 3 . 2 2 3 ~  0.99925 0.0008 
GAS VEHq 1.590538 0.99862 O.O01q 
GASCOST 5.~5~668 0.99660 0.003~ 
GRBEEF 3.034593 0.98736 0.0126 
UHEM_CLF O.O0010fi 1.00152 -0 .0015  
VEIIQ_FAM 0.0087~3 0.9982~ 0.0018 
WAGE_CAP 75~106.5~1680 0.99351 0.0065 
WAGE_IHC 0.001~16 1.01517 -0 .0152  

SIZE12 

CANDY 0 . 1 8 8 5 2 1  0 . 9 8 8 7 1  0 . 0 1 1 3  
EGGS 0.0289~9 0.99586 0.00~1 
FIHCBEFX 97~587.111325 1.00000 0.0000 
FLOUR 0.05~396 0.97~55 0.0255 
FOODAWAY 2.898276 0.9986q 0.001~ 
FOODIIOME 6.553612 0.99962 0.000~ 
GAS VEtlQ 0~788117 0.9992~ 0.0008 
GASCOST 2.700002 0.99827 0.0017 
GRBEEF 1.~95301 0.99352 0.0065 
UHEM_CLF 0.000062 .1.00068 -0 .0007  
VEIIq_FAM 0.00~331 0.99910 0.0009 
WAGE_CAP 37267~.196766 0.99672 0.0033 
NAGE_INC 0.000708 1.00729 -0 .0073  

SIZE2q 

CAHDY 0.0921q5 0.99~20 0.0058 
EGGS 0.01~206 0.99787 0.0021 
FINCBEFX ~79011.625007 1.00000 0.0000 
FLOUR 0.026~05 0.9868~ 0.0132 
FOODAWAY 1.~23615 0.99931 0.0007 
FOODItOHE 3.2205~2 0.99980 0.0002 
GAS VEHq 0.387269 0.99956 0.000~ 
GASCOST 1.32610fi  0.99911 0.0009 
GRBEEF 0.7327~0 0.99668 0.0033 
UHEMCLF 0.000025 1.00027 -0 .0003  
VEIIqFAM 0.002128 0.9995§ 0.0005 
WAGE_CAP 182872.2319~8 0.99835 0.0017 
WAGE IHC 0.0003~9 1.003§2 - O . O 0 3 q .  

WAGE INC 

UNEM CLF 

FOODHOME 

GAS_VEHO 

VEHQ FAM 

FOODAWAY 

GASCOST 

WAGE CAP 

EGGS 

GRBEEF 

CANDY 

FLOUR 

Table 5. Comparison of  the Second Order Component 

o f  the Var 0 w i t h  Some D e r i v a t i v e s  (nh=6) 

Percent  F ( 1 ) ( X I )  F(2)  (~ i~2 )  

Second X2 =N2X;I =.N2X;2 
Order  

F(3)  (XIX~) 

=2N3X; 3 

- I  .52 0 0 

- .15 .04 - .001 

.08 13113 .05 - .003  

.14 .03 - .001 

• 18 .06 - .004  

.27 10934 .07 - .004  

.34 10071 .07 - .005  

.65 .04 - .002  

.81 6668 . I I  - .012  

1.26 5415 .13 - . 018  

2.20 3800 .19 - .  036 

4.87 1990 .37 - .134  

0 

•00009 

•00033 

.00008 

•00044 

.00057 

•00073 

.00014 

.00251 

•00468 

.01356 

.09782 
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