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I. INTRODUCTION

The selection of a variance estimator for
large complex sample surveys is not straight-
forward. Most of the methods of variance esti-
mation for such surveys are based upon some form
of repeated subsampling. The random group,
jackknife and balanced vrepeated replication
methods differ primarily in the procedures for
forming the subsamples. Previous comparative
studies have been primarily empirical. One of
our goals is to compare analytically the ac-
curacy of these different subsample variance es-
timators.

A first order Taylor series approximation is
widely used in computing variances for ocomplex
surveys; however, the analytical properties of
the random group, jackknife and balanced repeat-
ed replication variance estimators are
indistinguishable in their first order term.
Koop (1968) hypothesized the underestimate of
variance hg found was due to neglecting terms of
order 1/mn° and 1Mm°. Sukhatme and Sukhatme
(1970) suggested the use of a second order ap-
proximation. Our method of comparing these
variance estimators is to include all the terms

of order n~? in the Taylor series expansion. A
more complete description of these procedures,
which are summarized in section II below, can be
found in Dippo (1981). Concurrent with our
work, Rao and Wu (1983) have made an asymptotic
second order comparison of the linearization,
jackknife and balanced repeated replication
methods.

The second order Taylor series analytical ex-
pressions obtained for the bias of the variance
estimators are complex and require the popul-
ation moments and derivatives for evaluation.
Since a second goal of this research is to
investigate the properties of the variance esti-
mators vwhen the sample size is small and the un-
derlying population 1is extremely skewed, the
198081 Consumer FExpenditure Diary Survey (CES)
is used to evaluate the second order Taylor ser-—
ies expressions in section III. The CES, which
is a complex multistage sample of only 5000
housing units per year with a design similar to
the Current Population Survey, produces natienal
estimates of mean expenditures, which have a
distribution that is closer to log-normal than
normal.

Previous empirical studies such as Frankel
(1971) and Bean (1975) have concentrated on the
effects of the complex multistage cluster de-
signs as represented by the Current Population
Survey and the Health Interview Survey instead
of the effects of the shape of the underlying
finite population. Furthermore, although func-
tionally equivalent, the ratio estimator of mean
expenditures is conceptually different fram the
ratio estimator of a proportion investigated in
Frankel and Bean. 1In section IV, the results of
a Monte Carlo investigation of the confidence
interval properties of the random group and bal-
anced repeated replication variance estimators
for the skewed CES data are presented.
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II. TAYLOR SERIES APPROXTMATTON

The method used to compare the different var-
iance estimators is to approximate each esti-
mator using a Taylgr series expansion, including
terms of order 1/n°,

Consider a finite population of N units
divided into L strata. A simple random sample
of n_ units are selected from the units
in t-l}le h-th stratum with sampling independent
between strata. Let x_. . be the observed value
of the r-th variable t%“r1 the i-th unit from the
h-th stratum. Define the stratum mean for the
r-th variable in the h-th stratum as

X —llgnx

XLh = I\k1=1 hi and its corresponding sample

mean as x_, = l?‘ X
rh nh1=l rhi®

The class of parameters to be considered is
that which can be expressed as a function of
stratum means, 6 = F<X11""th""'XRL) = E‘()S)
where r = 1, ..., Rand h = 1, ..., L. The
estimtor of 6 to be considered is the

same function of the sample means, § = F().

Let us assume F(°+) is a real-valued function
on RL-dimensional Fuclidian space with
continuous partial derivatives of order five at

)j( and define
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where Q is the usual notation for "bounded in

probabi‘iity" and where Ny and n, R ® in such a

o
way that n, /Nh *> Kh The expectation operator
is defmg with respect to the probability
distribution generated by repeated sampling
using the stratified design described above.

To meke expressions such as (1) and (2)
rigorous, we must work in terms of a conceptual
sequence of finite populations of increasing
size. Krewski and Rao (1981) and Isaki and
Fuller (1982) give altemative formulations of
the conceptual sequence. In this paper, the
assumed sequence is such that L is fixed and the
strata sample sizes n,_ increase without bound.
To simplify the presentation, the formal
definition of the sequence is amitted.

Each of the estimators considered is based
upon dividing the sample of size n = I n_ into
different subgroups. For the random group (RG)
method, the n{g sample units in each stratum are
divided into K equal groups of size m . The
random group estimator of 8 is
~ kK .
eRG = }% aiﬁl 6 , where 9(!
same functional form as 9 based upon the o-th
random group. The randam group estimator of the

variance of 6 to be considered here is

is the estimator of the

~ A 1 k ~
T ce— L I ]
Vre!® = ety a1 )
where 8' = F(Y1- and X
is the o‘sample m;ta]n ]gl:lsed )‘Lk}pm @ a-th radlegom
group.

The jackknife (JKK) estimator to be considered
is one proposed by Jones (1974)
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where § = (N-n )y - 1)/N,a = W /0, » and
hi) is the estimator of the same functional

£BY) as 6 but which omits the hi-th unit.

Therefore, the jackknife estimator is based upon

n groups of size n-1, Jones' jackknife
estimator of the variance of 6 is
A " " 2 5 1
v 8)=I¢ 6, ..— 0 =—
ok D7RE 20 Oy~ Ony)r vhere 8, n Pihi)-
The balanced repeated replication (BRR)

estimator to be considered is similar to the
random group estimators in that the units in
each stratum are first divided into (k=) two
random groups of size =nh/2. However, instead
of forming only two groups across strata as in
the random group estimator, orthogonally balanc-
ed combinations of one random group from each

stratum are created. In studying this
estimator, we use k' balanced half samples,
where k' is the smallest integral multiple of

four greater than or equal to the number of

strata L. The BRR estimator of 6 is
5 k' A ”

l . .
BRR i g ea’ where ea is the estimator

of the same functional form as © based upon the
a-th replicate. The BRR estimator of the

variance of 8 is
~ 5 1 k e' 30 2
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where 6‘=F(v/1—->h?rha).

, etc, in a Taylor
approxm&tlons for the bias

series,

i 0
and variance of eRG’ eJKK' BRR' v (e)
VJKK(G), and VBRR(G) can be obtained. Table 1

presents the ooefficients of the derivatives
(colums) in terms of expected values needed to
express the bias of the variance estimators in a
Taylor series. To construct the exact expres—
sion for the bias of one of the estimators, sub-
stitute the coefficient in the table for the one
corresponding to the same derivative in (2).
For example,

3,2
Rias V' (8) = i B { k1) / [E(umaushautha)
- B(U, 0 huth)] E(umushuth)}
F(l)(X (2)(Xshxth) o .

These expressions are ccmplex and their inter-
pretation requires knowledge of the population
moments and derivatives.

The bias of the random group estimator with
two random groups per stratum differs from that
of the BRR estimator in the cross-stratum

(2) 7 3 (2)

F (thxsh' )F (Xthxzh'
1), This larger between stratum component of
the BRR estimator makes the BRR estimator more
biased than the random group estimator with two
random groups. However, when the number of

) term only (see table

random groups 1is increased, the random group
estimator becomes more biased than the BRR
estimator. This reflects the fact that as more
random groups are formed, the sample size per
random group used in computing each 9

decreases. Again, the two parameters where the



nurerator is a subset of the denominator are ex-
ceptions. The reader will recall the variance of
the variance estimator is generally a decreasing
function of the number of randam groups, k.,
whereas here we find the bias of variance esti-
mator is an increasing function of k.

For sample sizes of n = 6 and 12, the jack-
knife is the least biaseéd with the exception of
the parameter average weekly cost of gasoline
per vehicle. However, vwhen the sample size is

=24, the bias of the jackknife variance esti-
mator is similar to that of the randam group
variance estimator with two random groups.

ITI. COMPARISON OF VARIANCE ESTIMATORS

A. STUDY FOPULATION

In order to obtain some insight into the pro-
perties of the variance estimators, data from
the 1980-81 Consumer Expenditure Diary Survey
has been treated as a finite population. The
14,360 consumer units (CU's) classified as com-
plete income reporters have been divided into 20
approximately equal sized strata based upon reg-
ion and city size. A consumer unit is a single
financially independent consumer or a family of
two or more persons living together, pooling
incomes and drawing from a common fund for major
expenditures. The following thirteen parameters
have been considered:

=
It

average cost per reporting CU
for flour (FLOUR)

R2 = average cost per reporting CU
for ground beef (GRBEEF)

R3 = average cost per reporting CU
for eggs (EGGS)

R4 = average cost per reporting CU
for candy and chewing gum
(CANDY)

R = average cost per reporting CU
for food away from home
( FOODAWAY )

R6 = average cost per reporting CU
for food at home (FOODHOME)

R7 = average cost per reporting CU
for casoline (GASCOST)

Ry = average number of wvehicles per
CU owning at least one
vehicle (VEHQ FAM)

Ry = average annual CU income before
taxes (FINCBEFX)

R, = average per capita wage and
salary income (WAGE CAP)

R, .= average weekly casoline cost per
vehicle (GAS VEHO)

R, .,= proportion wage and salary
income of total CU income
before taxes (WAGE INC)

R,,= proportion of civilian labor
force that was unemployed
during last 12 months
(UNEM_CLF).
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The variable names in the parenthesis above such
as FLOUR and GRBEEF are used in the accompanying
tables.

For R1 to R13 , the general form of the
I N X
estimtor is hl\h—_lh . For example, in Rl,
£ NXon
i = the cost reported by the hi-th CU for
i .
flour in one week
and
X i 1 if the hi-th (U purchased flour
during the week
0 if the hi-th CU did not purchase
flour during the week.
In R,., X1hi is the total annual wage and salary

income reported by the hi-th CU and x., . is the
number of persons in the hi-th CU who reported
wage and salary income. is a linear esti-
mator since x, .= 1 for all units. R., and R13
differ from thzélothers in that the numérator

is a subset of the denominator, e.g., wage and
salary income is a subset of total income.

Table 2 displays some bhasic distribution
statistics for the expenditure and income vari-
ables. Figures 1 and 2 present the frequency
distributions of weekly expenditures for ground
beef and food away fram home. All of the ex~
penditure and income variables exhibit similarly
skewed distributions. Since the second order
term in the Taylor series is a function of the
third order moments, one might expect the first
order Taylor series approximations to the bias

and variance of 8§ to be biased when the finite
population is highly skewed. Indeed, later
results confirm this hypothesis.

B. TAYIDRSERIESAPPK)XIMATI(N’IOVARG

Table 3 indicates the general magnitude and
sign of the population moments by presenting the
average stratum population moments and deriva-
tives, which are similar in magnitude. Wwhen the
corresponding individual stratum moments and
derivatives are substituted in the expression

(2) for var 8, the second order Taylor series
approximation to the variance is obtained.

Table 4 presents the second order Taylor
series approximation to the wvariance along with
the proportion of the variance associated with
the first and second order terms for three
sample sizes. For the ten nonlinear parameters
where the numerator is not a subset of the
denaminator, the first order term accounts for
about 98.9% of the variance and the second order
terms 1.1% when the stratum sample size is n_=6.
When the sample size is doubled to n_=12, the
relationship is 99.4% to .6%. en doubled
again to n,_=24, the relationship is 99.7% to
.3%. On the other hand, when the numerator is a
subset of the denominator (UNEM _CLF and WAGE
INC), the first order term accounts for 100.8%
of the variance when the stratum sample size is
6, 100.4% when n,E is 12, and 100.2% when is
24. That 1is, the total of the second order



terms is negative and the first order approxi-
mation provides an overestimate of the
variance. Overall, for the three sample sizes
and the twelve nonlinear parameters examined,
the percent of the Taylor series approximation
to the variance associated with the second order
terms is at most 5%.

In table 5, the percent of the Taylor series
approximation to the variance associated with
the second order terms when the sample size is
six per stratum is given in rank order along
with the derivatives which are not a function of
the numerator. All the derivatives which are a
function of X, or the numerator do not show a
relationship with the relative importance of the
second order portion of the variance and, there-
fore, are not shown. An examination of table 5,
ignoring the four parameters with non-indicator
function denominators, indicates the second
order variance becomes more important as the
proportlon of the population purchasing an item
in a given week decresses.

C. QOOMPARISON OF THE EXPECTATION OF THE
VARIANCE ESTIMATORS

The first order Taylor series approximations
to the expectations of the random group, jack-
knife and BRR variance estimators are
identical. Therefore, although the contribution
to the expectation of the variance estimators
from the second order terms may be small, an
analysis of the second order terms should give
some indication of the relative werits of the
different estimators.

The expectations of the random group,
jackknife and BRR variance estimators obtained
by substituting the population moments and
derivatives in the Taylor series approximation

to E[{Né)] are compared to the Taylor series

approximation to the variance of 9, var 6, in
table 6. These expectations are computed by
substituting the population moments and
derivatives in the formulas given in table 1.
The appropriate finite population sampling
coefficients of the population moments are also
needed. For example, (N -n Y/ [n -1)] is the
coefficient of the fuﬂ sample second order
stratum population moment when sampling is with-
out replacement. All of the variance estimators
are positively biased for each sample size for
all the ratio estimation parameters where the
numerator is not a subset of the denominator.
When the numerator is a subset of the denomina-
tor, the random group estimator is negatively
biased for all three sample sizes and each
choice of the number of random groups. The BRR
estimator is negatively biased for the larger
proportion. The Jjackknife estimator is nega-
tively biased for only one of the proportions
and for only the smallest sample size.

IV. MONTE CARLO INVESTIGATTON

For comparison  purposes, 1000  without
replacement samples of size 6, 12, and 24 wnits
per stratum have been selected, resulting in
samples with total size 120, 240 and 480. Two
additional parameters have been considered for
the Monte Carlo portion of this study:
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R14= correlation between total food at home
and family income (R FH_INC)

R15= correlation between food away from

home and family income (R FA INC).

Table 7 presents the population parameters
and the average relbiases of the sample
estimates of 8. As in other similar empirical
studies, e.g. Frankel (1971), the relbias is
relatively small for the ratio estimates but not
for the correlation coefficients. On average
over the 12 nonlinear ratio type estimates, the
relbias consistently decreases as the sample
size increases.

The varlatlon among the 1000 sample estimates

1000
of 8, E (e -9 /999 provides an empirical

estlnate of the war 8. vhen the Monte Carlo
sampling variances are compared to the second
order Taylor series variances discussed in sec-
tion III, the two estimates are within 10% of
each cther in 8 of the 13 cmses for the smallest
sample size. For the largest sample size, the
two estimates are within 10% of each other in
all but one case.

For each of the 1000 samples, three sample
sizes, and 15 parameters, random group and BRR
variance estimates have been computed. Due to
budget restrictions, jackknife wvariance esti-
mates have been delayed until next fiscal year.
Although a comparison of the variance estimators
using these empirical estimates of wvariance does
not show the same clear relationships as table 6
due to the noise in the data, they are useful in
investigating the performance of the variance
estimators with respect to confidence intervals
for 6.

If 6 is a normally distributed random
variable and V(8) is a consistent estimator of
var é, then (6 - 9)/[\;(6)]1/2 has a standard
normal distribution. Figures 3, 4 and 5 present
the cumulative distribution functions of the t
values computed as (5 - 9)/[\7(§)]l/2 for
different choices of a wvariance estimetor for
each of the 1000 samples. The fiwve lines on
each graph correspond to the normal distribution
and the empirical t-distributions for the
smallest and largest sample size where the
estimate of variance is either the BRR estimator
or the random group estimator with the maximum
number of random groups considered (k = 2 if n =
120, k = 8 if n = 480).

Figure 3 for ground beef is representative of
the mtio estimation parameters when the numer-
ator is a function of a wvariable from a skewed
population and the denominator is a function of
a Bernoulli variable. None of the sample
t-distributions crosses the normal distribution
for this type parameter. Theoretically, five
percent of the observed wvalues should be less
than -1.645 and five percent should be greater
than 1.645. For ground beef, an average of 35
percent of the 1000 values are less than -1.645
and less than 2 percent are greater than 1.645.
While one-half of the observed values should be
on either size of zero, the median is almost one
standard error less than Zero. The
t—-distribution of the random group estimator,



when the sample size is small and the number of
groups is therefore limited, has an especially
long negative tail indicating the BRR variance
estimator would be a better choice. Vhen the

sample size is 24 per stratum for a total of
480, there does not appear to be any significant
differences between the BRR and random group
estimator with a fairly large number of groups.
One hypotheses for explaining the greater
than expected number of t values at the lower
end of the distribution is that it is due to the
high correlation between 6 and V(6)., 1In the
following table, the seven mean expenditure per
CU variables are listed by increasing skewness
of the expenditure variable along with the

correlation between 6 for n = 6 and VBRR(e)'
Parameter Skewness Correlation
of Numerator Between
Population 8 and V(9)
FOODAWAY 4.0 .53
GASCOST 5.0 .59
FOODHOME 5.7 .53
FLOUR 6.7 .67
CANDY 8.6 .66
GRBEEF 22.6 .86
BGGS 40,2 .84

when the numerator population is very skewed, ©
is negatively biased if an extreme value (see
figure 1) is not included in the sample. At the
same time, the estimate of variance is a signi-
ficant underestimate. Ground beef, which has
the highest correlation, has the poorest cover-
age matio. For the ratio parameters of this

type, the correlation between 8 ana U(8) appears

to be related to the skewness of the
population.

Figure 4 is for the ratio of wage and
salary income to total income. The sample

t-distribution has a median at approximately
zero. Excluding the random group estimator for
the smallest sample size, approximately 5% of
the t-values are less than -1.645 and almost 10%
of the t-values are greater than 1.645,

The t-distribution of the correlation between
food at home and family income is presented in
Figure 5. As in a previous study by Mulry and
Wolter (1981), the lower end of the distribution
appears close to the normal; but instead of only
5% of the wvalues being greater than 1.645, more
than 10% are greater. The median t-value is
greater than zero.

WAGE_INC and R FH INC, which are examples of
two different types of estimators, have negative
correlations. Of the 15 parameters studied,
only the correlation coefficients and WAGE INC
have negative correlations and only these three
parameters with a negative correlation between

8 and V(6) have t-distributions with a heavier
upper tail than lower tail.

Figures 6, 7 and 8 show the relationship bet-
ween the number of random groups and the
t-distribution for the largest sample size 480.
RG3 refers to two random groups, each of size 12
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per stratum. RG2 has four random groups of size
6 per stratum and RGl has eight randam groups of
size 3 per stratum. For ground beef, the number
of random groups has a significant effect on the
lower tail and little effect on the median or
upper tail. For the other variables, the effect
is more symmetric. As the number of random
groups increases, the distribution of the
t-values approaches normality. Therefore,
although the bias of the random group wvariance
estimator is reduced as the size of the groups
increases and the number decreases, a larger
number of random groups is better with respect
to coverage properties.

V. OONCLUSION

The results of this study indicate the bias
of the variance estimators studied is relatively
small. If one assumes the variance estimators
can be accurately approximated with a second or-
der Taylor series, the randam group, jackknife
and BRR variance estimators are all positively
biased when the estimator of interest is a ratio
estimator where the numerator is not a subset of
the denominator. If the ratio estimator is a
proportion, the variance estimators could be
negatively biased. The bias of the random group
variance estimator decreases as the number of
the random groups decreases or the size of the
groups increases. -But over all the parameters,
sample sizes and wvariance estimators studied,
the maximum relbias is only 9 percent. The
Monte Carlo results support the conclusion that
the relbias is small.

On the other hand, the variance of the varia-
nce estimators is not insignificant, and the
normal-theory confidence intervals do not always
have the desired coverage probabilities when the
estimator is of a ratio type or a correlation
coefficient. For the ratio estimator where the
numerator is a function of a wvariable from a
very skewed population, the sample may not incl-
ude enough extreme wvalues if the effective
samp{e size is small. Consequently, not only
may 9 be small and negatively biased, but V(9)
my be significantly smaller yielding large
negative t-values. These situations are
indicated by a large correlation between 8 and

V(8). when 8 and V(8) are negatively correlated,
the t~distribution has a heavy upper tail.
Users should be warned that the construction of
confidence intervals and tests of hypothesis as-
suming normality may not be appropriate in these
situations. As shown in the Mulry and Wolter
paper, confidence intervals based upon transfor-
mations may be better.

When the effective sample size is smll, the
balanced repeated replication variance estimator
is a better choice than the random group esti-
mator with only two random groups. As the sam-
ple size increases allowing more random groups,
the difference in these two variance estimators
appears to be minimal.
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Table 1. The Bias of the Variance Estimators Assuming a Taylor Series Expansion
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Table 1. The Bias of the Variance Estimators Assuming a Taylor Series Expansion
(Continued)
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TABLE 2
DISTRIBUTION STATISTICS FOR POPULATION VALUES

PARAMETER N MEAN STD SKEWNESS KURTOSIS
FLOUR 1990 1.07 1.3294 6.688 97.7728
CANDY 3800 2.10 3.4714 8.5827 121.8822
GRBEEF 5415 §.91 11.6461 22.624 680.2998
EGGS 6668 1.47 1.785 40,1976 2508.2701
GASOLINE 10071 25.33 21.4416 4.9581 53.5673
FOODAWAY 10934 21.36 23,3353 3.9731 37.1022
WAGEX 11268 18790.88 14656.3233 2.0601 15.2658
FOODHOME 13113 39.17 38.3056 5.6814 91.8096
FINCBEFX 14360 18503.50 15674.2341 2.6230 24.1462
TABLE 3
AVERAGE STRATUM POPULATION MOMENTS
‘AMEVER M2 (xlxl)' M2 (X,X, M2 (XX;) M3 (X;X1%,) M3 (X;X5X5) M3 (X)X1X5) M3 (XyXoX,
oY 4.0602 0.1935 0.4062 109.7989 0.1866 2.6708 0.0899
5 1.9692 0.2474 0.3618 105,3453 0.0256 0.8196 0.0177
“CBEFX 2.3781 E08 9.0000 0.0000 9.6022 E12 0.0000 0.0000 0.0000
‘UR 0.3750 0.1162 0.1251 2.9231 0.0879 0.2940 0.0827
IDAWAY 486.0245 0.1791 3.7415 42011.7899 -1.9642 48.7938 -0.0917
‘DUOME 1450.4602 0.0788 3.0627 299670.4069 -2.4921 17.826% -9.0640
C0ST 450.6975 0.2078 5,2381 39407.0712 -2.0720 40,3502 -0.0818
VENQ 450.6975 1:1476 9.0153 39407.9712 5.5500 278.0115 2.2732
F 56.1506 0.2332 1.1455 13673.7427 0.2810 32.4989 0.0569
M_CLF 0.0246 0. 9576 0.0225 0.0308 0.0330 0.0276 0.7975
QTFAM 1.1476 0.1406 0.2435 2.2732 -0.1557 -0.1531 -0.089%
ECCAP 2.2152 E08 0.3322 8644,1466 6.0509 E12 88.1557 6.3185 E07 0.5935
E_INC 2.2152 £08 2.3782 E08 1.9651 EO8 6.0509 E12 6.2861 E12 6.0931 EI2 9.6022 E12
AVERAGE STRATUM DERIVATIVES FOR THE POPULATION
1) - (1) - (2) = = (2) 3 (3} 3 b (3) 3
F X F X F F
PARAMETER ) (x,) X X) (X, X, PR R R PR, K X
CANDY 0.1889 -0.3972 -0.0357 0.1503 0.0135 ~0.0854
EGGS 0.1077 -9.1578 -0.0116 0.0340 0.0025 -0.0110
FINCBEFX 0.0500 -925.1747 -0.0025 92.6449 0.0002 -13.9348
FLOUR 0.3652 -9.3959 -0.1335 0.2896 0.0978 ~0.3182
FOODAWAY 0.0656 ~1.4026 ~0.0043 0.1844 0.0005 -0.0364
FOODHOME 0.0547 -2.1446 -0.0030 0.2351 0.0003 -0.0387
GASCOST 0.0712 -1.8057 -0.0050 0.2578 0.0007 -0.0552
GAS_VENQ 0.0344 -0.4206 -9.0011 0.0289 0.0000 ~0.0030
GRBEEF 0.1326 -0.6509 -0.0176 0.1728 0.0046 ~0.0689
UNEM_CLF 6.0358 -0.0005 -0.0012 0.0000 0.0000 -0.0000
VEHQ_FAM 0.0603 -0.1059 -0.0036 0.0128 0.0006 ~0.0023
WAGE_CAP 0.0410 -497.6624 -9.0016 40,9444 0.0001 -5.0598
WAGE_INC 0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000
1 s 42 1 = - 2
1 (X, X)) == E(X_ .- X M (XX X) == I - X )X, - X t
2% n, Coni™ ST M%) n, T T N
TABLE 4 .
COMPONENT PERCENTAGES FOR VARIANCE OF THETA HAT Table 5. Comparison of the Second Order Component
PARAMETER TOTAL PROP'N  PROP'N of the Var 8 with Some Derivatives (nh=6)
FIRST SECOND
. ORDER ORDER
S1ZE
1) (2) 5 5 (37 52
Percent F( X
CANDY 0.384395 0.97804  0.0220 ( 1) F (Xlxz) F (Xlxz)
EGGS 0.058610 0.99194  0.008}1
FINCBEFX 1965738.083960 1.00000  0.0000 Second X =nx! =n2x=2 -on3x-3
FLOUR 0.112399 0.95125 0.0487 Order 2 2 2 - 2
FOODAWAY 3.853407 0.99733  0.0027
FOODHOME 13.223444 0.99925  0.000
GAS_VENQ 1.590538 0.99862  0.0016 WAGE_INC -1.52 0 0 0
GASTOST 5.424269% o.gveeg 0.9034
GRBEEF 3,034 0.9873 . M . _
UNEN_CLF 0.000104 1.00152 -0.0015 UNEM_CLF .15 <04 -001 -00009
VENQ_FAM 0.008743 0.99824 0.0018
WAGE_CAP  754106.591680 0.99351 0.0065 FOODHOME .08 13113 .05 -.003 .00033
WAGE_INC 0.001416 1.01517 -0.0152
s1ze12 GAS_VEHO RY .03 -.001 .00008
CANDY 0.188521 0.98871  0.0113 VEHO FA
EGGS 0.028949 19958 . HQ_FAM .18 .0 -
r{ncnsrx 914553.1;2525 1.00000 g.ooog g 6 004 -00044
FLOUR 1054396 0.9745 1025
FOODAWAY 2.898276 0.99864 0.0016 FOODAWAY .27 10934 .07 -.004 .00057
FOODIIOME 6.553612 0.99962 u.gog:
GAS_VEHQ 0.788117 0.99924  0.00
GASTOST 2° 700002 299827 00017 GASCOST .34 10071 .07 -.008 .00073
GRBEEF 1.495301 0.99352  0.0065
UNEM_CLF 0.000052 .1.00068 -0.0007 WAGE_CAP .65 .04 -.002 00014
VEHQ_FAM 0.0843:; s;;z;g ggggg -
WAGE_CAP  372676.1967 . .
WAGE INC 0.000708 1.00729 =-0.0073 EGGS .81 6668 1 -.012 .00251
SIZE24
CANDY 0.092145 0.99420 0.0053 GRBEEF 1.26 5415 .13 -.018 .00468
EGGS 0.014206 0.99787  0.0021
FINCBEFX  479011.625007 1.00000 0.0000 CANDY 2.20 3800 a9 -.036 .01356
FLOUR o.ozezgg o.zgegt{ 8‘3%32
FOUDAWAY 1.423 0.999 L0007
FOODNOME 3.220542 0.99980  0.0002 FLOWR 4.87 1990 .37 -.134 .09782
GAS_VEHQ 0.387269 0.99956  0.0004%
GASTOST 1.3261064 0.99911  0.0009
GRBEEF 0.732740 6.99668  0.0033
UNEM_CLF 8.000025 1.00027 -0.0003
VEHQ_FAM 0.002128 0.99954  0.0005
WAGE_CAP  182872.231948 0.99835 0.0017
WAGE_INC 0.000349 1.00342 -0.0036,
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