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The bootstrap method of inference is extended 
to stratified sampling, involving a large number 

of strata with relatively few (primary) units 

sampled within strata, when the parameter of 
interest, @ , is a nonlinear function of the 
population mean vector. The bootstrap estimate 

of bias of the estimate, ~ , of e and the esti- 
mate of variance of @ are obtained. Bootstrap 

confidence intervals for @ are also given, 
utilizing the percentile method or the bootstrap 
histogram of the t-statistic. Extensions to 

unequal probability sampling without replacement 
and two-stage sampling are also obtained. 

1. Introduction 
Resampling methods, including the jackknife 

and the bootstrap, provide standard error esti- 

mates and confidence intervals for the parameters 
of interest. These methods are simple and 

straightforward but are computer-intensive, 
especially the bootstrap. Efron (1982) has given 
an excellent account of resampling methods in the 

case of an independent and identically distribu- 
ted (i.i.d.) sample of fixed size n from an 

unknown distribution F , and the parameter of 
interest @ = 0(F) . Limited empirical evidence 

(see Efron, 1982, p.18) has indicated that the 

bootstrap standard error estimates are likely to 

be more stable than those based on the jackknife 

and also less biased than those based on the 
customary delta (linearization) method. Moreover, 

the bootstrap histogram of t-statistic approxi- 

mates the true distribution of t with a remain- 
der term of O_ (n -1) in the Edgeworth expansion 

(Abramovitch anPd Singh, 1984), unlike the usual 
normal approximation with a remainder term of 

Op(n-½). Empirical results for the ratio 

estimate (Hinkley and Wei, 1984) also indicate 

that the confidence intervals from the bootstrap 
histogram of t (using the linearization variance 

estimator) perform better than those based on the 

normal approximation. 

The main purpose of this article is to propose 
an extension of the bootstrap method to strati- 

fied samples, in the context of sample survey 
data; especially to data obtained from stratified 

cluster samples involving large numbers of strata, 

L , with relatively few primary sampling units 
(psu's) sampled within each stratum. For non- 

linear statistics ~ that can be expressed as 
functions of estimated means of p (=> i) vari- 

ables, Krewski and Rao (1981) established the 

asymptotic consistency of the variance estimators 

from the jackknife, the delta and the balanced 

repeated replication (BRR) methods as L ÷ ~ 
within the context of a sequence of finite popu- 

lations {~L } with L strata in ~L " Their 
result is valid for any multistage design in 
which the psu's are selected with replacement and 

in which independent subsamples are selected 
within those psu's sampled more than once. Rao 

and Wu (1983) obtained second order asymptotic 

expansions of these variance estimators under the 

above set up and made comparisons in terms of 
their biases. 

The proposed bootstrap method for stratified 

samples is described in Section 2 and the proper- 

ties of the resulting variance estimator are 
studied. The bootstrap estimate of bias of 

is also obtained. Section 3 provides bootstrap 

confidence intervals for @ . The results are 
extended to stratified simple random sampling 

without replacement in Section 4. Finally, the 

method is extended to unequal probability samp- 

ling without replacement in Section 5 and to two- 
stage Cluster sampling without replacement in 

Section 6. 

2. The Bootstrap Method 

The parameter of interest @ is a nonlinear 

function of the population mean vector Y = 
(y% .... ,~p) T , say @ = g(Y). This form of @ 

includes ratios, regression and correlation 

coefficients. If n h (> 2) psu's are selected 

with replacement with probabilities Phi in 
stratum h , then Krewski and Rao (1981) have 

shown that the natural estimator ~ = g(~) can 

be expressed as ~ = g(y). Here ~ is a design- 
m 

unbiased linear estimator of ~ = 7. WhY h and 

y = ~WhY-- h where W h and Y--h = (Y--hl ..... Y--hp ) T 

are the h-th stratum weight (7W h = i) and popula- 

tion mean vector respectively and Yh is the 

mean of n h i.i.d, random vectors Yhi = 

,Yhip) T for each h with E(Yhi) = (Yhil'""" Y--h" 

For h ~ h' , Yhi and Yh' j are independent 

but not necessarily identically distributed. 

2.1. The Naive bootstrap. In the case of an 

{yi} ~ i.i.d, sample with E (yi) = Y , the boot- 

strap method is as follows: (i) Draw a simple 
random sample { .}n with replacement from the Yi 1 

observed values YI'Y2'''''Yn and calculate 

@* = g (y*) where y * • ~Yi/n . (ii) Independent- 
ly replicate step (i) a large number, B , of 

times and claculate the corresponding estimates 

~,I,...,~,B . (iii) The bootstrap variance 

estimator of e = g(y) is given by 

B 

[ (8 *b G*)2 (2~) v b (a) = B-I - a ' " 
b=l 

where @* = 7. @*b/B. The Monte-Carlo estimator 
a 

v b (a) is an approximation to 

v b = vex,(e*) = E,(@* - E,@*)2 , (2.2) 

where E, denotes the expectation with respect 
to bootstrap sampling from a given sample 

YI'''''Yn" No closed-form expression for 

var,(@*) generally exists in the nonlinear case, 

but in the linear case with p = I, @* = y* and 

v b reduce s to 

n-I 2 n-i 
var,(y*) = ---~ s = -- var(y), (2.3) 

n n 

2 2 
where (n-l)s = ~ (Yi - ~) and var(y) = s2/n 

106 



is the unbiased estimator of variance of y . The 

modified variance estimator [n/(n-l) ]var. (0") 
exactly equals var(y) in the linear case, but 

Efron (1982) found no advantage in this modifica- 

tion. In any case, n/(n-l) - 1 in most applica- 

tions and var. (0") is a consistent estimator of 

the variance of ~ , as n ÷ ~ (Bickel and 

Freedman, 1981) . The bootstrap histogram of 

@.I,...,@.B may be used to find confidence 

intervals for 0 . This method (Efron, 1982) is 

called the percentile method. 

Noting the i.i.d, property of the Yhi' s 
within each stratum, a straightforward extension 

of the usual bootstrap method to stratified 

samples (referred to as the "naive bootstrap") 

is as follows: (i) Take a simple random sample 

. n h 
{Yhi } with replacement from the given sample 

i=l 

n h 
{Yhi } in stratum h , independently for each 

i=l 
-. -i . -. -* 

stratum. Calculate Yh = nh •iYhi ' y =?WhYh 

and 0* = g(Y*)- (ii) Independently replicate 

step (i) a large number, B , of times and 

calculate the corresponding estimates @*l,..., 
@*B. (iii) The bootstrap variance estimator of 

@ = g(y) is given by 

B 

[ (~.b _ ~.)2, (2 4) 
v b (a) - B-I a 

b=l 

-- -- ^* *b 

where y = 7WhY h and 0a = ~@ /B . The Monte- 

Carlo estimator vb(a) is an approximation to 

@. 2 
V b = var.(0*) = E.(0* - E. ) , (2.5) 

where E. denotes the expectation with respect 

to bootstrap sampling. In the linear case with 

p = i, 0* = -* -* 7WhY h = y and v b reduces to 
2 

W h n h - i 2 (2 6) 
var.(y*) : 7, ~hh ( nh ) Sh ' 

2 = 7 (Yhi - Yh )2 Comparing (2 6) where (nh-i) Sh i " " 

with the unbiased estimator of variance of y , 

var(y ) = ?W2s2/nh , it immediately follows that 

var. (y*)/var (9) does not converge to 1 in 

probability, unless L is fixed and n h ÷ ~ for 
each h . Hence, var.(9*) is not a consistent 

estimator of the variance of 9 • It also 

follows that v b is not a consistent estimator 

of the variance (or mean square error) of a 
general nonlinear statistic. There does not 

seem to be an obvious way to correct this scaling 

problem except when^ n~ = k for all h in which 
case k(k-1)-ivar.(@*)'~ will be consistent. 

Bickel and Freedman (1984) also noticed the 

scaling problem, but they were mainly interested 

in bootstrap confidence intervals in the linear 

case (p = i). They have established the 

asymptotic N(0,1) p_ro~erty of the distribution 

of t = (y - Y) / [var (y) ] ~ and of the conditional 

distribution of (9* - Y)/[var.(Y*) ] ½ in 
stratified simple random sampling with replace- 

ment, and also proved that (?,W~Sh2/nh)/var . ~  ~ (9*) 

converges to 1 in probability as n = 7,n h ÷ ~ , 

where (nh-l)Sh 2 7 i( . -. 2 = Yhi -Yh ) " Their result 

implies that one could use the bootstrap histo- 

~*i ~*B 
gram of t ,...,t to find confidence inter- 

- ~*b .b w2.b2 ½ 
vale for Y , where t = (Y - Y)/[?h hs /nh] 

shb2- is the value of Sb 2L, for the b-th where 

bootstrap sample (b = 1 .... ,B). In the non- 

linear case, there does not seem to be a simple 

way to construct t'b-values similar to those of 

Bickel and Freedman since v b has no closed form. 
Moreover, the straightforward extension of the 

bootstrap (hereafter called the naive bootstrap) 

does not permit the use of the percentile method 
based on the bootstrap histogram of @*i ..... @*B. 

Although ~.b is asymptotically N (0, i) in 

the linear case, it is not likely to provide as 

good an approximation to the distribution of t 

as a statistic whose denominator and numerator 

are both adequate approximations to their counter- 

parts in t . Such statistics will be proposed 

in Section 3.2. These are also applicable to the 
nonlinear case. 

Recognizing the scaling problem in a different 
context, Efron (1982) suggested to draw a boot- 

strap sample of size n h -1 instead of n h from 
stratum h (h =I,...,L) . In Section 2.2, we 

will instead propose a different method which 

includes his suggestion as a special case. 

2.2 The proposed method. Our method is as 

follows: (i) Draw a simple random sample 

i of size m h with replacement from 
i=l 

n h 
{Yhi } . Calculate 

i=l 

Yhi Yh 4 (nh-i)-½ ( * - = + Y h i  - Yh ) 

~ = -I -½ -. - 

Yh mh [ Yhi : Yh + 4(nh-l) (yh-y h) 
i=l 

(2.7) 

~ : Y Wh~ h , ~:g(~) 

(ii) Independently replicate step (i) a large 

number, B , of times and calculate the corres- 
ponding estimates ~i ..... ~B . (iii) The boot- 

strap estimator E. (8) of 0 can be approxi- 

mated by 0a =^zOb/B- . The bootstrap variance 

estimator of 0 is given by 

o b = v b = var.(8) = E.(0 - E.0)2 

with its Monte-Carlo approximation 

O b(a) : v b(a) : B-I g ( - ~a ) " 
b=l 

(2.8) 

(2.9) 

A 

One can replace E.0 in (2.8) by 0 . 

2.3. Justification of the method. In the 

linear case, 0 : Y , v b reduces to the custo- 
mary unbiased variance estimator var(y) : 
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Y.WhSh/n h for any choice m h . In the nonlinear 

case, it can be shown that 

-2 
v b = v L + Op(n ) (2.10) 

for any m h , where v L is the linearization 
variance estimator (Rao and Wu, 1983) . In the 

linear case (p=l) , v L reduces to var(y) . 

Under reasonable regularity conditions, v L is a 

consistent estimator of variance of @ , Var(@). 

Hence, it follows from (2.10) that v b is also 
A 

consistent for Var(8) . 
The asymptotic N(0,1) property of the 

conditional distribution of (8- 8)/O b can be 

established, assuming that 0 < 61 < mh/(nh-l) < 

62 < ~ for all h , i.e. the bootstrap sample 

size m h should be comparable to the original 

size n h in each stratum. 

2.4. Estimate of bias of @. Our bootstrap 

estimate of bias is 

B(@) = E.(~) - ~ (2.11) 

which is approximated by 8 a - 8. It can be 
shown that B(@) is a consistent estimator of 

B(@) (Rao and Wu, 1983). On the other hand, the 

bias estimate B(@) = E,(@*) - @ , based on the 

naive bootstrap, is not a consistent estimator of 

B(@) (Rao and Wu, 1983). 

3. Confidence Intervals 

We now consider different bootstrap methods 

for setting confidence intervals for 8 . 

3.1. Percentile method. For ready reference, 

we now give a brief account of the percentile 

method based on the bootstrap histogram of 
~i ..... ~B . Define the cumulative bootstrap 

distribution function as 

= ~b 
CDF(t) #{ < t; b = 1 ..... B}/B . (3.1) 

~ I"--1 
For Q < 0.5, define 8LOW(C~) = CDF (Q) and 
~ ~-i 
8Up(Q) = CDF (I-Q). Then the interval 

{~LOW (Cz)' ~UP (~) } (3.2) 

is an approximate (l-2Q)-level confidence inter- 

val for 8 . It has the central i-2~ portion 

of the bootstrap distribution (Efron, 1982, p.78). 

One can also consider a bias-corrected percentile 

method, following Efron (1982, p.82). This 

method leads to 

{~F-l(~(2z0-z )), CD~-I(}(2z0 + z ))} (3.3) 

as an approximate (l-2<~)-level confidence interval 

for 8 , where ~ is the cumulative distribution 

function of a standard normal, z0 = @-I (CDF (@)) 
and z~ = ~-i(i-~). The advantage of the inter- 

val (3.3) over (3.2) has been demonstrated by 

Efron (1982) in the i.i.d, case. 

3.2. Bootstrap t-statistics. Instead of 

approximating the distribution of @ by the 

bootstrap distribution of ~ , we can a~proximate 

the distribution of the t-statistic t=(8-8)/O b by 

- I~* (a) its bootstrap counterpart t * = (e e)/O b 

°b~*2 (a) = * where vb(a) is the bootstrap variance 

estimator obtained from (2.9) by bootstrapping 

the particular bootstrap sample {Yhi } i.e. by 

replacing Yhi by Yhi in the proposed method. 
For the second phase bootstrapping one could 

choose values (m~, B') different from (m h,B) - 
This double-bootstrap method thus leads to B 

values t *I t *B of t* Utilizing the ,. o. , 

• I *B 
bootstrap histogram of t ,...,t , we define 

A t, b A -i 
(x) #{ < x}/B {LOW CDF t = , : CDF t (Q) # 

~-I 
tup = CDF (l-Q) , and construct an approximate 

(l-2Q)-level confidence interval for @ given by 

{@- tupO b , ~- tLOWOb } . (3.4) 

We now provide an asymptotic justification for 

t*. Noting that Vb (a) is a Monte Carlo 

approximation to 

~ 2 ~, (~* 2 
o~ : v  : ~ .  - ~ . .  v ** , ) , (3.5) 

where ~* is the value of ~ obtained from 

bootstrapping the particular sample {Yhi } and 
E** is the second phase bootstrap expectation, 

write t* = (~-@)/U*. In the linear we can case 

8 = Y it is easily seen that 

~*2 ~2 
E,O b : O b . (3.6) 

In the nonlinear case, following Bickel and 
~,2 ~2 

Freedman (1984), we can show that O b /O b con- 

verges to 1 in probability as n ÷ ~. Hence, 

it follows that the conditional distribution of 

t* is asymptotically N (0,1) . 

One could use a jackknife t-statistic tj = 

(@ - 8)/Oj instead of t , where ~2_ is a 
jackknife variance estimator of @ J(see Krewski 

and Rao, 1981). The corresponding confidence 

interval is then given by 

A A A A 

{@ - tupOj, ~ - tLOWUJ} (3.7) 

h A 

where tLO and t are the lower and upper 
Q-points o~ the sta~Pstic t* : (~ - 0)/~j 

J 

obtained from the bootstrap histogram of 

t . 1  *B "*2 ] tj and oj is obtained from ~2 ,..., , j 

by jackknifing the p@rticular bootstrap sample 

{Yhi }. It can be shown that the confidence 

interval (3.7) is also asymptotically correct. 

A confidence interval of this type was considered 

by Efron (1981) in the case of an i.i.d, sample 
{yi}. 

o 

It is possible to replace ~ by the BRR or 

the linearization variance estimator and obtain 
L2 

a confidence interval similar to (3.7). 

3.3. Choice of m h . The choice m h = n h 

is a natural one. The choice m h = nh-i gives 

~ * and our method reduces to the naive 
Yhi = Yhi 

bootstrap, except that in step (i) of the latter 

method a simple random sample of size nh-i is 
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selected from {Yhi}~"l__ is stratum h. For 

n h =2 , m h =i , the method reduces to the well- 
known random half-sample replication and the 
resulting variance estimators are less stable than 
those obtained from BRR for the same number, B , 
of half samples (McCarthy, 1969). It may be worth 
considering a bootstrap sample size ~ larger 

than n h = 2, say m h = 3 or 4. 

In the linear case (p = i), it can be shown 
that the bootstrap third moment, E, (y - y) 3 , 
matches the unbiased estimate of the third moment 

of y , if ~ = (nh-2)2/(nh-l) , ~ > 4. This 

property is not enjoyed by the jackknife or the 
BRR. Similarly, it can also be shown that the 
same choice of m h ensures that the bootstrap 
histogram of a t-statistic (see section 3.2) 
approximates the true distribution of t with a 
remainder term of O_(n-l). Details will be 

provided in a separa[e paper. 

4. Stratified Simple Random Sampling without 
Replacement 

All the previous results apply to the case of 
stratified simple random sampling without replace- 
pent by making a slight change in the definition 

o f Yhi : 

~ _ -½ ½ - 

Yhi =Yh +~(nh-1) (1-fh) (Yhi -Yh ) ' (4.1) 

where fh =nh/Nh is the sampling fraction in 
stratum h. It is interesting to observe that, 

even by choosing mh =nh,l ' Yhi ~yhi " Hence the 
naive bootstrap using Yhi will still have the 
problem of giving a wrong scale as discussed 
before. In the special case of n h =2 for all 
h , McCarthy (1969) used a finite population 
correction similar to (4.1) in the context of BRR. 
It can be shown that the choice 

mh = [ (nh_2) 2/(nh_l ) ] [ (l_fh)/(l_2fh) 2] (4.2) 

matches the third moments, but it provides an 
approximation to the true distribution of the t- 
statistic with a remainder term of Op(n -½) only, 
as in the case of a normal approximation. 

Bickel and Freedman (1984) considered a differ- 
ent bootstrap sampling method in order to recover 
the finite population correction, 1- fh ' in the 
variance formula. This method essentially creates 
populations consisting of copies of each Yhi ' 
i =l,...,n h and h =I,...,L and then generates 

n h 
{y*} as a simple random sample without replace- 
hi 1 

pent from the created population, independently 
in each stratum. This "blow-up" bootstrap was 
first proposed by Gross (1980) and also independ- 
ently by Chao and Lo (1983). The variance estima- 
tor resulting from this method (by working 
directly with Yhi ) , however, remains^inconsistent 
for estimating the true variance of @ . It is 
possible, however, to make the variance estimator 
consistent by reducing the bootstrap sample size 
to nh-I , as in Section 2. 

The "blow-up" bootstrap approximates the true 
distribution of the t-statistic with a remainder 

of Op(n -I) (see Abramovitch and Singh, term 
1984) , unlike our method. 

5. Unequal Probability Sampling Without 
Replacement 

5.1. The Rao, Hartley and C0chran Method. 
Rao, Hartley and Cochran (1962) proposed a simple 
method of sampling with unequal probabilities and 
without replacement. The population of N units 
is partitioned at random into n groups G 1 ..... 

G n of sizes NI,...,N n respectively (7.N k = N), 
and then one unit is drawn from each of the n 
groups with probabilities pt/Pk for the k-th 

group. Here mt=xt/x ' Pk =t~pt' xt = a 

measure of size of the t-th unit (t=l, .... N) 
that is approximately proportional to Yt (in 
the scalar case of p =i)_ and X = 7 x t. Their 
unbiased estimator of Y is given by 

^ n 

Y = 7. ZkP k (5.1) 
k=l 

where ~ =yk/(NPk) and (yk,Pk) denote the 

values for the unit selected from the k-th group 
(Y' Pk =i). An unbiased estimator of variance of 

Y is 

12 
^ 

2 
var(Y) = Y. pk(Zk - Y) ' (5.2) 

where 

12 = (~ N2-N)/(N 2- Y.N 2) . (5.3) 

In the special case of equal group sizes, N k = 
N/n , I reduces to (1-f) ½(n-l)-½ where 
f = n/N. 

Our bootstrap sampling for the above method is 
as follows: (i) Attach the probability Pk to 
the sampled unit from G k and then select a 

sample {Yl ,}m of size m with replacement 
' Pi i=l 

}n 
with probabilities Pk from {Yk'Pk k=l" 

Calculate z* */(NPl) i =Yi 

~. = Y + Im½(z. - ) 
1 l 

m ^ 
~ -I -- ~* 
Y = m ~ zi = Y + Im½( -~) (5.4) 

i=l 

where z* Z * = z./m . (2) Implement steps (ii) 
and (iii) of Seltion 2.2, using ~ obtained from 
(5.4). 

In the linear case with p =i, @ = Y , we get 

E,(Y% = E,(zi ) = Y+Im½(y - Y) = Y (5.5) 

and 
var, (~) 1 12var, = -- var,(z.) = (z l) m 1 

12 n ^ 
- = var (Y) . (5.6) 

k=l 
~ 

Hence, the bootstrap variance estimator, var,(Y), 
^ 

r e d u c e s  t o  v a r ( Y )  i n  t h e  l i n e a r  c a s e .  The 
p r o p e r t i e s  o f  v a t , ( 8 )  i n  t h e  n o n l i n e a r  c a s e  and  
t h e  b o o t s t r a p  m e t h o d s  o f  s e t t i n g  c o n f i d e n c e  
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intervals for @ , given in Section 3, are being 

inves ti gate d. 

5.2 General Results. A general linear un- 

biased estimator of the population total Y (in 
the scalar case of p =i) based on a sample s 
of size n with associated probability of selec- 

tion p(s) , is given by 

A 

y = 7. d i(s)y i , (5.7) 
i e s  

where the known weights di(s) can depend on s 
and the unit i (i ~ s). Rao (1979) proved that 
a nonnegative^unbiased quadratic estimator of 
variance of Y is necessarily of the form 

var(Y) = - 7. 7. d.. (s) w.w.(z. -z.)2, 
i < j 13 i 3 l 3 

£ s 

(5.8) 

where z i = Yi/Wi , the w.l are known constants 

such that Var(Y) = 0 when Yi ~ wi • Here the 
known coefficients d.. (s) satisfy the unbiased- 

ness condition 13 

Edi3.(s) = Cov[d i(s),dj(s)] , (5.9) 

where d. (s) = 0 if i ~ s , and d..(s) = 0 if 
l 13 

s does not contain both i and j. As an 
example,the well-known Horvitz-Thompson estimator 

YHT satisfies (5.7) with d.l(s) = i/7 i , i £ s 

and w. = 7[. and 
1 1 

~.7[. -7[.. 
-d..(s)w.w. = , (5.10) 

~3 x 3 7.. 
13 

where 7. = 7~ p(s) and 7.. = 7. p(s) are 
1 sgi l] s 9 i,j 

the first and second order inclusion probabili- 

ties_ Let bij (s) = -d i • (s)/2 and assume that 
3 

bi~(s) > 0 for all i < j £ s and all S 

4 
This is true for many well-known schemes, 
including the Rao-Hartley-Cochran (RHC) method. 

Our bootstrap sampling is as follows: (I) 

consider all the n(n-l) pairs (i,j), i ~ j 
and select m pairs (i*, j*) with replacement 

with probabilities ~ij (= ~ji ) to be specified. 

Calculate 

= ~ + 1 7. k (z -z ) (5.11) 
m (i*,j*)£s* i'j* i* j* 

e = g (Y) , 

where k ij = kji for i < j £ s to be specified, 

and s* denotes the set of m bootstrap pairs. 

(2) Implement steps (ii) and (iii) of Section 2.2 
using @ obtained from (5.11). 

In the linear case with p =I, @ = Y , we get 

E,(Y) = Y + E,{kl, j. ,(zi, -zj,)} 

= Y + 7.7. k..I..(z. -z.) . (5.12) 
i~j 13 13 l 3 

£S 

Letting 7. k..I.. = c. and noting that 
j (~i) 13 13 l 

k..I.. = k..1.. , we get 
13 13 31 31 

E,(Y) = Y + 7. z. (c.-c.) = X . 
1 1 l 

i£s 
Similarly, 

var,(Y) = imE, {ki, j.(zi. -zj,)}2 

= 1 7.7. k..I..(z. -z.)2. (5.13) 
m i~j 13 l] 1 3 

£s 

2 /m such that (5.13) is We now choose kijli j 
A 

identical to vat(Y) given by (5.8), i.e., 

Thus 

var(Y) = 7.7. b..(s)w.w.(z. -z.)2 . 
i~j 13 1 ] l 3 

£s 

1 k 2.1. . = b..(s) w.w. . 
m 13 l] 13 i 3 

(5.14) 

The choice of k.. and I.. satisfying (5.14) 
13 13 

is not unique. One simple choice is I.. = 
I/In(n-l) ] , i.e. equal probabilities 13 

for each of the n(n-l) pairs of i ~ j. Another 
choice is 

lij = 7[ij/ds , 

where d = 7.7 7[... 
s iflj 13 

£s 

(5.i5) 

Special case. For the Horvitz-Thompson estimator, 
we have' 

7[.7. -7[.. 
k 2 I = 1 3 i~ (5 16) 

. . . .  , 
m 13 13 7[.. 

13 

using (5.10) in (5.14). If m = n(n-l) and 

I.. = i/[n(n-l)], then (5.16) reduces to 
13 

7.7[. -7.. 
k 2 2 2 i 3 i~ 

• = n (n-l) . (5.17) 
13 7[.. 

13 

Hence, Y reduces to 
HT 

m 7 *-~i* j* ½ 
YHT =YHT + 7 [ i*Tj -- - ] (zi,-zj,). (5.18) 

(i*, j*)=l 7i*j* 

It follows from (5.13) that var,(YHT)_ reduces 

to the well-known Yates-Grundy variance estimator: 

7.7[. -7[.. 
Var(YHT ) = 7~ 7. i 3 13 (z.-z.)2. (5.19) 

7[ , 1 3 
i<j£s i3 

The properties of var,(8) in the nonlinear 

case and the bootstrap confidence intervals on 

8 are being investigated. 

Remark. In the case of RHC method, we now have 
two different bootstrap methods: (i) The method 
of Section 6.1 based on selecting a bootstrap 

110 



sample with probabilities Pk and with replace- 
n 

ment from {yk,Pk}l . (2) The present method of 

selecting a bootstrap sample of pairs with re- 
placement from the n(n-l) pairs (i,j) £ s , 
i ~ j, with probabilities I... We are investi- 
gating their relative merits~,3but intuitively 
method (i) is more appealing. 

6. Two-stage Cluster Sampling Without Replacement 

Suppose that the population is comprised of N 
clusters with M t elements (subunits) in the t-th 
cluster (t =i ..... N). The population size M 0 
(= 7. M. ) is unknown in many applications. A 
simple ~ random sample of n clusters is selected 
without replacement, and m i elements are chosen, 
again by simple random sampling without replace- 
ment, from the M i elements in i-th cluster if 
the latter is selected. The customary unbiased 
estimator of the population total Y is 

n n 
^ N N 
Y = n [ MiYi : n I Yi ' (6.1) 

i=l i=l 

where Yi is the sample mean for i-th sample 
cluster. The corresponding estimator of @ is 
written as ~ = g(~), where 

^ ! 1 

Y=M~0 n 
i = l  

1 n 1 mi MiYij 

:- II 
n i~l~ j= 

, (6.2) 

where M 0 = M0/N. For instance, if^ @ = Y/M 0 
A 

w h e r e  M 0 i s  unknown,  t h e n  0 = Y/X w h e r e  
^ 

X = X/M 0 and X = (N/n) 7~M.x.1 1 with X.l = i for 

a l l  e l e m e n t s  j i n  any  c l u s t e r  i .  An u n b i a s e d  
^ 

estimator of variance of Y is given by 
( C o c h r a n ,  1977 ,  p . 3 0 3 )  

var(Y) = n(n-l) 
i = l  

A 

+j • m. (m -i) -- - , (6.3) 

where Yij is the y-value for j-th sample element 

in the i-th sample cluster, fl =n/N and 

f2i = mi/M' . l 

We employ two-stage bootstrap sampling to ob- 
tain - i -~Y**~ from _{yi } as follows: (I) Select 

J J 
a simple random sample of n clusters with 
replacement from the n sample clusters and then 
draw a simple random sample of m i elements with 
replacement from the m i elements in i-th sample 
cluster if the latter is chosen. (Independent 
bootstrap subsampling for the same cluster chosen 
more than once.) We use the following notation: 
** = y-value of the j-th bootstrap element in Yij 

the i-th bootstrap cluster; m. =m.-value of the 
1 1 

i-th bootstrap cluster (similarly M[), and 

Y* = Y.-value of the i-th bootstrap cluster. 
l 1 

Calculate 
A, .., ** ^~ 

Yij : Y +11 ~0- g + 12i[ M0 - 

and 

m.* 

Y =-- 4 Yi 
n i=l mi j=i J 

~_ 11 
= y +-- 

n 

(6.4) 

^* ~** ^* 

Yi + (6 5) 

i=l 2i ' " 

~ ? ,  * - * *  - * *  * * .  , 
where i = MiYi ' Yi = lj Yij/mi , and 

m. 
,2 * i 

2 = n__~(l_fl ) ; = fl (I- ) (6 6) 
11 n-i 12i f2i m*-i " " 

1 

(2) Implement steps (ii) and (iii) of Section 
2.2 with @ = g(Y) . 

Let E2, and var2, respectively denote the 

conditional bootstrap expectation and variance, 
for a given bootstrap sample of clusters. 
Similarly, El, and varl, denote the bootstrap 

expectation and variance respectively for the 
sample clusters. Then 

^, 

E2,(~) = y + -- 7~ n ~ 

and 

E,(Y) =EI,E2,(Y) =Y +II(Y-Y) = Y . 

S imi i arly, ^, 

varl,E2,(?) = l I varl, ~- 

2 Yi _ 

- -  n 

(6.7) 

(6.8) 

Also 
m. 

n 1 l [MiYij Y )2 

i=l m i j=l 

2 
where 12i = fl (l-f2i)mi/(mi-l) " Hence, combin- 

ing (6.8) and (6.9) we get 
~ ~__ ~ ~__ 

var, (Y) = varl,E2, (Y) +El,var2, (Y) = var(Y) . 
~ 

Hence, the bootstrap variance estimator, var,(Y), 
reduces to vat(Y-) in the linear case. Thus the 
variability between bootstrap estimates correctly 
accounts for the between-cluster and within- 
cluster components of the variance without the 
necessity of estimating them separately as in the 
case of BRR or the jackknife. 
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