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i. INTRODUCTION 

Three approaches to the analysis of incomplete 
data from sample surveys can be usefully distin- 
guished. A theoretically appealing strategy is 
to accept the nonrectangular structure of data 
subject to missing values, and to estimate pa- 
rameters by methods based on a model for the 
incomplete data. See, for example, Little (1982). 
However, the practical problems of building suf- 
ficiently realistic models for large data sets 
with complex sample designs are not negligible. 
Furthermore, the availability of special software 
to fit such models to incomplete data is not ex- 
tensive, and is limited to fairly specific model~ 
The survey processor faced with incomplete data 
has a strong motivation to create rectangular 
files for statistical analyses or for public use 
tapes. Thus alternative procedures that yield 
rectangular data sets will continue to be impor- 
tant in practice. Implicit or explicit models 
also underpin these alternative strategies 
(Rubin, 1978; Oh and Scheuren, 1983), so these 
procedures are not incompatible with a modeling 
philosophy. 

Two strategies leading to rectangular data 
sets are common in survey practice, namely 
weightin$ and imputation. In the former approach 
missing or incomplete units in the sample are 
ignored, and the sampling weights for responding 
units are inflated by dividing them by estimates 
of the probability of response, typically the 
response rate in a subclass of the sample. In 
imputation approaches incomplete or missing units 
are included in the sample, with missing values 
replaced by the imputed values. For a recent re- 
view of imputation methods in surveys, see Kalton 
and Kasprzyk (1982). 

In large government surveys weighting is often 
used to handle unit response, which arises when 
whole questionnaires are missed because of non- 
contact or refusal. Here the weighting nonre- 
sponse adjustment is a natural extension of the 
sampling weight defined for sampled units. For 
example, in the Current Population Survey (CPS), 
unit nonresponse is handled by dividing the 
sample weights of respondents by the response rate 

Table I. Adjustment"Cell Estimator for an Overall Mean: Example 

STATISTIC 
A = Adjustment Cel l  (Region) 

c=I I c=2 ~ c=3 

RESPONSE RATE 80/I00 70/I00 50/I00 

MEAN INCOME ($I,000) 9.8 I I .6  13.6 

TOTAL INCOME ($I,000) 780 815 680 

Respondent Mean : YR = (780 + 815 + 680)/(80 + 70 + 50) = l l . 4  

780(18-~) + 815(~00)+ 680(15-~) 
Adjusted Mean " YA = = l l . 7  

l O0 + l O0 + l O0 

within homogeneous collections of primary sampling 
units (Hanson, 1978). Imputation is often used to 
handle item nonresponse, where particular items in 
the interview are missing. For example, missing 
income items in the Income Supplement of the CPS 
are imputed by a flexible hot deck matching scheme 
(Welniak and Coder, 1980; Oh and Scheuren, 1980). 

A common preliminary to weighting or imputation 
is to classify respondents and nonrespondents into 

adjustment ceils. Consider the artificial example in 
Table i, where 200 out of 300 sampled individuals 
respond to a question on y = annual income. Re- 
spondents and nonrespondents are classified into 
three adjustment cells defined by the variable 
A = Region. Within each cell, the response rates 
are 80/100, 70/100 and 50/100 and the respondent 
mean incomes (in $i,000) are 9.8, 11.6 and 13.6, 
respectively. Suppose that all individuals in the 
population have an equal chance of selection, so 
that sample weights are not required. 

A simple estimate of the mean income in the 
population is the respondent mean YR = 11.4. 

However the table suggests that nonresponse is 
higher in the high income region (C=3) than in the 
low income region (C=I), and hence YR may be an 
underestimate. Weighting the income contribu- 
tions in each cell by the inverse of the response 
rate in the cell yields an adjusted mean YA = 11.7 

that plausibly reduces the bias from restriction 
to the respondent sample. It is well known that 
the same adjusted mean (yA) can be obtained by im- 
puting the cell respondent" mean for all the non- 
respondents in that cell (for example, 11.6 for 
all 30 nonrespondents in cell 2). 

These two basic adjustment methods - weighting 
by reciprocal cell response rates and imputing 
cell means - are the focus of this article, al- 
though other methods are discussed for comparative 
purposes. Note that mean imputation has the dis- 
advantage of distorting the distribution of in- 
come values in each cell (Kalton and Kasprzyk, 
1982). Hence hot deck versions of the method 
where values from individual respondents in the 
same cell are imputed rather than cell means, are 
popular in practice. These modifications in- 
crease the variance of population estimates by an 
amount that depends on the method used to assign 
respondent values to nonrespondents (Ernst, 1980; 
Kalton and Kish, 1981). We do not consider hot 
deck methods here, although results about the 
large sample bias of cell mean imputation also 
apply to hot deck methods that impute values that 
average the cell mean in hypothetical repetition~ 

In section 2 we consider mean squared error 
properties of YR, YA and a modification of YA 
that assumes the population distribution over the 
adjustment cells is known. Thomsen (1973, 1978) 
and Oh and Scheuren (1983) perform similar calcu- 
lations, but consider a single predetermined 
choice of adjustment cells. Our focus is on how 
to choose adjustment cells when a large amount of 
information is available to form them. Two key 
dimensions in the space of potential stratifiers 
are distinguished, the response propensity p(x) 
and the predicted mean y(x). Stratifying on the 
former dimension controls large sample bias, and 



Table 2. Adjustment Cell Estimators for a Crossclass Mean: Example 

RESPONSE RATE 

MEAN INCOME ($I,000) 

TOTAL INCOME ($I,000) 
e 

Z = Education High 

Low 

A = Adjustment Cell (Region) 

C=l C=2 C=3 

20/30 15/30 10/30 

12.0 14.0 16.0 

240 210 160 

60/70 55/70 40/70 

9.0 l l .O 13.0 

540 605 520 

Total 80/I O0 70/I O0 50/I O0 

9.8 I1.6 13.6 

780 815 680 

Respondent Mean : YjR = (240 + 210 + 160)/(20 + 15 + lO) = 13.56 

(2) 240(I00/80). + 210(I00/70) + 160(I00/50) = 13.85 
Weighted in cell c: YjA = 20(I00/80) + 15(I00/70) + lO(lO0/50) 

_(3) 240 + I0(9.8)+210+15(II.6)+160+20(13.6) = 12.82 
Imputed in cell c : YjA = -' 30 + 30 + 30 

stratification on the latter dimension controls ^ 

both bias and variance, but (unlike p(x)) re- 
quires separate models and nonresponse adjust- 

ments for each y variable. 
Adjustment cell weighting and mean imputation 

yield the same estimator YA for population means. 
They also yield the same estimators for means or 
totals in domains of the population, which we 
define as collections of adjustment cells. How- 
ever, weighting and imputation yield different 
estimators of means or totals in crossclasses of 
the popu~tion, which we define as subclasses of 
the population that cut across adjustment cells 
(David, Little, Samuhel and Triest, 1983). Con- 
sider, for example, Table 2, where the data in 
Table i are further classified by the crossclass 
variable Z - Education. Suppose the objective is 
to estimate the mean income in the high education 
group. As shown in the calculations below the 

table, the respondent mean is YjR = 13.56. 

Weighting the respondent income amounts by the 

inverse of the adjustment cell response rates 
estimator ~(2): 13.85, whereas imput- yields the j~ 

~(3) 12.82 a ing adjustment cell means yields ~jA = ' 

value even lower than the unadjusted mean ~ • jR 
In section 3 formulae are presented for the 

bias and variance of - -(2) -(3) and some YjR' YjA ' YjA 
natural alternative estimators. We show that 
different choices of adjustment cells are appro- 
priate for weighting and imputation when the 
objective is to control the bias of crossclass 
mean estimates. Specifically, when weighting 
adjustments are employed, adjustment cells ^ 
based on the estimated response propensity p(x) 
are appropriate, whereas adjustment cells based 
on the predicted mean y(x) may yield biased esti- 
mates. On the other hand, when imputation is 
employed, adjustment cells based on ~(x) are 
appropriate, whereas adjustment cells based on 
~(x) may yield biased estimates. This theory 
establishes links between weighting and response 

propensity stratification and between imputation 
and predictive mean stratification. 

Variance properties of crossclass mean esti- 
mators are also examined in section 3. Mean 
squared errors properties of the estimators of 
domain and crossclass means in sections 2 and 3 
are then explored by a simulation study, described 
in section 4. Finally, section 5 indicates some 
modifications of response propensity methods to 
control variance whilst retaining their bias re- 
ducing properties. 

2. ADJUSTMENT CELL ESTIMATOR OF DOMAIN MEANS 

2.1 Moments of Adjustment Cell Estimators in 
Repeated Sampling 

In this section we discuss adjustment cell esti- 
mators of the population mean Y of a variable y. 
The theory also applies to estimators of domain 
means, where a domain consists of a subset of the 
adjustment cells. Notation is defined in Table 3 
A). Population and sample quantities have upper 
and lower case letters, respectively. The symbols 
N, Y, B and P are used for population counts, 
means, response rates and cell proportions, re- 
spectively. The suffix c refers to adjustment 
cell c, and the suffix R denotes restriction to 
respond ent s. 

Three estimators of Y are compared. The re- 
spondent mean, 

C 

YR = Y PcR YcR ' (i) 
c=l 

is obtained when a constant weighting adjustment 

b + l i s  applied, to respondents ,  or when YR- is  im- 
puted for all nonrespondents. The adjusted mean 

C 

YA : E Pc YcR ' (2) 
c=l 

is obtained by weighting respondents in cell c by 

Table 3. Notation for Population and Sample Quantities 

A) For Inferences about i .  

Popu.lation Means Variances 

Cell c Overall Cell c 
2 

ScR Respondents (R) 
Respondents + - ., (R+N~ Nonrespondents 
Ratio (R/(R+N)) 

Counts 

Cell c Overal l  Ratio 

NcR N+R PcR 

N c N+ Pc 

B c B+ 

YcR YR 

~c 

Sample Means 
Cell Cell Overall 

Respondents (R) 

Respondents + (R+N) 
Nonrespondents 

Ratio (R/(R+N)) 

ncR 

n c 

Counts 
Overall Ratio 

n+R PcR 

n+ Pc 

b+ 

YcR YR 

Pc 

B)  For Inferences about the Crossclass Mean, Y+j . 

Population Counts Means 
Cell c Overal l  Ratio Cell c Overall 

_ 

R NcjR N+jR Pc jR YcjR Y+jR 
_ 

R+N Ncj N+j Pcj Ycj Y+j 

R/(R+N) Bcj B+j 

Sample Counts Means 

Cell c Overal l  Ratio Cell c Overall 
- - ! R ncjR n+jR PcjR YcjR Y+jR 
_ 

R+N ncj n+j Pcj Ycj Y+j .... 

R/(R+N) bcj b+j 

Variances 

Cell c 
2 

ScR 

Variances 
Cel l c 

S 2 
c jR 

Variances 

Cel I c 
2 

ScjR 



bc -i , or by imputing YcR for nonrespondents in 

cell c. Finally, the poststratified estimator 

C 
_ 

YS = Z e (3) c YcR ' 
c=l 

can be calculated when the population cell pro- 
portions {P } are known. For example, adjustment 
cells couldCbe based on age, race and sex, and 
{P } may be available from census tables. The 

C -- -- -- 

bias and variance of YR' YA and YS are considered 

by Thomsen (1973, 1978) and by Oh and Scheuren 
(1983), but comparisons are complicated by dif- 
ferent assumptions and choices of reference dis- 
tribution. Specifically, let Y=(Yl .... ,yN ) de- 
note the vector of y values in-the population; 
r=(rl,...,r.) denote the vector of response indi- 
cators, suc~ that r.=l if unit i responds if 

i 

sampled, and 0 otherwise; -is=(s '''''SN) denote 
the vector of sample indicator§, such that s.=l 

i 
if unit i is sampled, and 0 otherwise; 

n=(nl''C" 'no) denote the vector of sample sizes 
zn the adjustment cells; and nR=(nlR .... ,nCR ) 

denote the vector of respondent sample sizes in 
the C adjustment cells. Thomsen calculates the 

-- -- -- 

bias and variance of YR' YA and YS over the dis- 

tribution of s, with y and r held fixed. Oh and 
Scheuren calculate moments over the distribution 
of r and s, with i) y held fixed and ii) y, n 
and n_ held fixed They call the former uncon- 
ditional moments and the latter conditional 
moments. This approach requires specification 
of the distribution of r ; Oh and Scheuren 
assume the distribution corresponding to Bernoulli 
sub sampling within the adjustment cells, an as- 
sumption they describe as quasi-randomization. They 
also include finite population corrections (fpc's), 
assuming simple random sampling without replace- 
ment ; Thomsen ignores these corrections. 

We prefer the calculations of Oh and Scheuren 
that condition on n and n_ as well as y, since 
they provide more precise results when the re- 
spondent sample sizes {n_} are small. The sit- 
uation is analogous to t~at of Holt and Smith 
(1979), who condition on n when comparing un- 
stratified and poststratified estimates of a 
mean from complete data. On the other hand, we 
prefer (like Thomsen) to calculate moments con- 
ditional on r, since the validity of the quasi- 
randomization assumption of Oh and Scheuren is 
specific to a particular choice of adjustment 
cells, and we wish to consider a variety of 
choices. Hence we present in Table 4 moments 
conditional on y, r n and n_. Expressions for 
bias assume an equal probability sampling design. 
Expressions for variance apply assuming simple 
random sampling with replacement. For simple 
random sampling without replacement the vari- 
ances are modified by multiplying $2 R by the fpc 

c 
(l-n ~/N ), yielding similar results to the con- 

c~ c 
ditional calculations of Oh and Scheuren (1983). 

Note that y. is undefined if, for one of the 
adjustment cel~s, n >0 and n ~=0. In calcula- 

c 
tions that condition on n an~ n_, we assume that 
this event has not occurred. In Thomsen's un- 
conditional calculations, the assumption is 
made that this event has negligible probability 
of occurrence. 

Each of the bias components in Table 4 is 
written as the sum of two terms, say C and LSB. 

As the sample size increases, the proportions 

PcR and Pc converge to their population analogs 
cR and Pc respectively, so the first terms C in 

these expressions tend to zero (for y_, C is iden- 
5 

tically equal to zero). We call the second terms 
LSB in the bias expressions large sample biases, 
since they increasingly dominate the bias as the 
sample size increases. The mean squared error of 
each estimator can be decomposed as 

mse=(C+LSB) 2+V=C2+2 (C) (LSB)+LSB2+V , 

where V is the variance. In section 2.2 we dis- 
cuss the formation of adjustment cells to minimize 
the large sample squared bias LSB 2 of YA and y_. 
In section 2.3 we consider the formation of ad -~ 
justment cells to limit the size of LSB 2 + V, 
which we call the conditional mean squared error 
increment (AMSE). The cross product term 
2(C)(LSB) can have either sign and is generally 
small in magnitude. 

2.2 Choosing Adjustment Cells to Control Large 
Sample Bias 

The respondent mean YR has zero large sample 
bias if YR = ~' that is if the mean of y is the 
same for respondents and nonrespondents. More 
generally, if interest concerns the entire dis- 
tribution of Y rather than simply the mean, un- 
adjusted inferences based on the respondent sample 
require that y and response are independent, that 
is 

y~r , 

where ~ is Dawid's (1979) notation for indepen- 
dence. This assumption is usually unrealistic. 

The large sample bias of the adjustment cell 
estimators YA and YS is 

C 

LSB = Z P (YcR - Yc ) c 
c = l  

which equals zero if YcR = ~ for all c. More 
generally, we seek adjustmen~ cells within which 
the distribution of y is the same for respondents 
and nonrespondents. Let c denote the level of the 
adjustment cell variable A. Then we seek A such 
that y is conditionally independent of the re- 
sponse indicator r, given A. That is 

Y Jl r lA • (4) 

Now suppose we have a large set of potential 
stratifiers x, recorded for respondents and non- 
respondents in the sample, and that 

y ~ r lx , (5) 

Table 4. Bias and Variance of Three Estimates 
_ 

of Y in Repeated Sampling 

Estimator I Bias I 

YR ~](PcR- PcR)YcR + (YR-  i )  
c 

Variance 

~ PcR S~R/n+R 

YA E(Pc- Pc)YcR + zP (YcR- Yc ) 
c c c 

YS 0 + z Pc(YcR- Yc) 
C 

z pc 2 Sc2R/ncR 
c 

2 SceR/nc R z Pc 
c 

* See text for details of reference distribution. 



so that a full stratification on x removes the 
nonresponse bias. In practice, adjustment cells 
cannot be based on x, because some variables are 
interval scaled, or the joint distribution of x 
contains cells with sampled units, none of which 
respond. The question is how to define A based 
on a restricted subset of the x information, so 
that (4) is approximately satisfied. Two ap- 
proaches to this question can be distinguished. 

The first approach is to model the distribu- 
tion of y given x. Let D(x) be the distribution 
of population y values for respondents (and by 
(5), for nonrespondents) with value x of the co- 
variates. Pooling over values of x such that 
D(x) is constant clearly leads to subpopulations 
within which y and r are still independent. More 
specifically, suppose we specify the model that 
D(x) and D(x'), the distributions of y for dif- 
ferent values x and x' of the covariates, differ 
only in their location parameters, viz the pop- 
ulation means Y(x) and Y(x'). Then forming ad- 
justment cells with constant values of Y(x) 
yields a variable A for which (4) is satisfied. 
If A is formed so that Y(x) is constant within 
adjustment cells, then condition (4) is satisfied 
and the large sample bias eliminated. 

In practice the means Y(x) have to be esti- 
mated from the data. Let y(x) be the predicted 
mean of y from the regression of y on x, fitted 
to the respondent sample. Form a categorical 
version of y(x), say YG' by grouping ~(x) into 
intervals, and then form adjustment cells by 
stratifying on YG" Values of Y(x) should be 
approximately constant within these cells, so the 
large sample bias of YA and YS should be nearly 
eliminated. We refer ~'o this method of forming 
adjustment cells as predicted mean (PM) stratifi- 
cation. 

If imputation is the chosen method of adjust- 
ments, then the adjustment cell mean is assigned 
to nonrespondents. An alternative method is re- 
gression imputation, where predictions y(x.) are 
imputed directly, without forming adjustment 
cells based on ~(x). If the regression equation 
captures the systematic variation in the y values, 
and the adjustment cells are large, then these 
methods should be quite similar. If adjustment 
cells contain a small number of respondents, the 
adjustment cell method lies somewhere between re- 
gression imputation, which imputes a conditional 
mean, and stochastic regression imputation, where 
noise is added to the predicted means (Little and 
Samuhel, 1983). As noted in section i, weighting 
by the inverse response rates in the adjustment 
cell yields the same estimate YA of Y as that 
obtained by mean imputation. THis property 
establishes a link between weighting and regres- 
sion imputation. 

Practical limitations may inhibit PM strati- 
fication for certain problems. Note that regres- 
sions need to be developed for every y-variable 
subject to missing values, and these regressions 
yield different PM stratifications, and hence 
different weighting adjustments if weighting is 
the chosen mode of adjustment. One Strategy is 
to estimate prediction equations for a small 
number m of key survey variables, and then to 
form joint classifications of the sample by the 
adjustment cell variables A I, A2,... ,A . Some 
pooling of the cells from this joint c~assifica- 
tion can form the basis for weighting adjustments 

that are relatively efficient for all the vari- 
ables involved. 

The second strategy for forming adjustment 
cells has the merit that it yields a unique set of 
adjustment cells for any block of variables 
Y '''''Yk with the same response pattern. Such 
blocks occur notably with unit nonresponse, where 
the entire interview is missing for nonrespondents 
in the sample. Furthermore, the adjustment cells 
can be based on the results of a single regres- 
sion, rather than requiring the fitting and com- 
bination of results from regressions on each 
y-variable. 

The approach is suggested in David, Little, 
Samuhel and Triest (1983), and is a straightfor- 
ward extension of the propensity score theory of 
Rosenbaum and Rubin (1983), developed in the con- 
text of matching in observational studies. De- 
fine the response propensity 

p(x) = pr(r=iIx) , 

and suppose p(x) > 0 for all observed values of x. 
Then the theory of Rosenbaum and Rubin shows that 
(5) implies that 

x ~ r ]p(x) (6) 

and 

y ~ r lp(x) . (7) 

That is, (4) is satisfied with A = p(x). This 
suggests the following strategy for choosing ad- 
justment cells to limit nonresponse bias. ^ 

A) Estimate the propensity score p(x) by p(x), 
from the regression of the response indicator r on 
x. Forms of regression suitable for binary re- 
sponses, such as logistic or probit regression, 
are advisable if response rates are close to zero 
or one. 

B) Form adjustment cells based on PG' a 
grouped version of p(x). We describe this method 
of forming adjustment cells as response propensity 
(RP) stratification. 

An alternative use of the estimated response 
propensity ~(x) is to weight respondent i direct- 
ly by the inverse of its estimated response pro- 
pensity p(x i) , without forming adjustment cells as 
in B). This procedure avoids the choice of cut- 
points required to form adjustment cells. How- 
ever, respondents with very low values of ~(x) re- 
ceive large weights that can inflate the variance 
of survey estimates excessively. In the stratifi- 
cation approach, large weights can be dampened by 
a suitable choice of cutpoints for the variable 
^ 

PG" Another argument for stratification is that 
it places less reliance on correct specification 
of the response propensity regression, since the 
predictions are used only to partially order the 
sample, rather than to supply probabilities to be 
used directly in the weighting. Thus a linear re- 
gression of the response indicator may be adequate 
to define the adjustment cells, but inadequate for 
defining weights directly. 

2.3 Choosing Adjustment Cells to Limit Conditional 
Mean Squared Error Increments 

If response and outcome variable are indepen- 
dent, then the large sample bias of YR' YA and YS 
is zero, and relative precisions are measured by 
their respective conditional mse increments 
2 2 

C R + VR, C A + V A and V S . Comparisons of C~ + V R 



and V S parallel those of Holt and Smith (1979) for 
the unweighted and poststratified mean, given com- 
plete response. Note that the sampling variance 

C 
of the weighted linear combination YW- Z W 

c=l c YcR 

is minimized with weights W proportional to 
PcR/S2R .~ If the within cel~ variance S2Ru is con- 
stant across cells, then this weight is equal to 
PcR' yielding the estimator YR" Hence for any 
choice of adjustment cells, 

V R <__V A, V R < V S , 

if $2~ is constant across cells. On the other 
c~ 

hand, in general we expect that 

although the second inequality does not apply in 
all cases. To establish (8), note that if we 
treat the sample counts {n } as multinomial with 
probabilities {P } and indCx n., then averaging 
C~ over this distribution yiel~s 

E{C A } 
C 

= E{E (Pc-ec)2y2R+ E (pc-Pc) (Pc -P ) 
c=l c#c ' ' c ' 

YcR ?c 'R } 

C 
= E P (I-Pc)Y2R/n +- E P e YcRYc R/n+ c=l C C~C' C C t ' 

C 

nl Y Pc(~cR- _ _~A )2 , 
+ c=l 

C 
-- 

where YA = E Pc YcR" Similarly, if {ncR} are 
c=l 

multinomial with probabilities {PcR} and index 
n+R , then averaging C R over this distribution 

yields 
C 

- - 2 

E{C R } = _i Y ecR(YcR-YR ) " 
n+R c=l 

If y and R are independent, then PcR = Pc' 
YA = YR and E{C~} = (n+R/_n+) E{C~} . so the ad- 

justment cell estimator y. reduces the expected 
value of the component C 2 Aof the mean squared 

- K 

error of YR by a factor equal to the sample re- 
sponse rate. 

For complete data, Holt and Smith (1979) dis- 
cuss factors affecting the relative size of 
C~ + V~ and V~, and conclude that poststratifica- 
• ~" ~ • 2 tlon is relatlvely useful (that Is, V s<C~+VR) when 

the sample size is large and the ratio B-/W-of 
between to within cell variances of y is large. 
On the other hand, if the means of y between ad- 
justment cells are close together, and the sample 
size is small, then the unweighted mean is favor- 
ed. To understand the influence of B/W, note 
that if B/W is large, then C~ makes a relatively 
large contribution to C 2 + V , and hence post- 

R 
stratification, which e~iminates C R at the ex- 
pense of inflating VR, is relatively profitable. 
Similar considerations apply to the weighting 
class _estimator YA" However, conditions under 
which YA is superior to YR are more restricted 

-- 2 ' since YA only reduces C R by n+R/n + (on the aver- 
age). 

The above discussion implies that adjustment 
cells should be chosen to maximize B/W, the ratio 
of between to within cell variance of y. With a 
large set of potential stratifiers x, this objec- 
tive is achieved by PM stratification method dis- 
cussed in section 2.2. Thus PM stratification has 
the virtue of controlling both the bias and vari- 
ance of y. ; RP stratification controls the large 

A 
sample bias, but yields estimates y. that may have 
large variance. The latter is particularly true 
when the response propensity is largely determined 
by variables that are not associated with y. 

3. ESTIMATES OF CROSSCLASS MEANS 

3. i Introduction 
Let ?. denote the population mean of a variable 

y in a c~ossclass defined by the value z=j of a 
crossclass variable Z, assumed to be observed for 
all units in the sample. Other notation for pop- 
ulation and sample quantities in crossclass j is 
given in Table 3 B); the notation parallels that 
in Table 3 A) with an additional subscript j for 
the crosSclass. 

Six estimators of Y. are shown in Table 5, with 
their bias and varianc~ properties under a re- 
stricted sampling distribution with y values, re- 
sponse indicators, and cell respondent and non- 
respondent sample sizes in the crossclass held 
fixed. 

Three of the estimators in Table 5, the un- 
adjusted crossclass mean Y'R and the adjustment 
cell estimates from weighting (y(2)) and from im- 

putation (y~3A)) , have already be~ A introduced for 

the example in Table 2. The poststratified cross- 
class mean y.~ is obtained when the weights 
(P /p )b-lth~ result in the poststratified esti- 

C-- C . . 

ma~or YS are applied to respondents In ad3ustment 
cell c, crossclass j, The adjusted mean y(1) is 

obtained by weighting or mean imputation 3~ with- 
in adjustment cells formed by the joint classifi- 
cation of A and Z. Finally ~(4)is a model-based 

by the im~Ata estimator motivated tions leading to 

y(3) These imputations {Yc+R } pool the y values 
jA" 

across subclasses within adjustment cells, and 
hence effectively assume that 

YcjR = YckR for all j, k . (9) 

If the assumption (9) is firmly held, then a nat- 
ural alternative is to pool across crossclasses 
when estimating respondent as well as nonrespon- 
dent means in cell c, crossclass j. This leads 
to the estimate y +~ for Y in cell c, cross- 
class j. WeightiCg~ __ b~Jp yields ~(4), as 

C-PK C " j 
given in the table. With complete response, 
~(4) reduces to the so-called synthetic estimator 
"A 

s~metimes used when c represents census classi- 
fiers such as age, race and sex, and Z represents 
a small area classification (e.g., Gonzalez and 
Hoza, 1978). 

3.2 Large Sample Bias of Crossclass Mean 
Estimators 

The following results are obtained by consider- 
ing the expressions for bias in Table 5 when the 
sample size becomes large: 
i) The LSB of YjR is Y+jR- Y+j' which is zero 



when response and y are independent within 
crossclasses. 

2) If y ~ r lx , then v(1) has zero LSB under pre- 
J'A 

dictive mean or response propensity stratifica- 
tions for A. To see this, note that Y. is a 

J 
domain mean when adjustment cells are based on 
A and Z, so the arguments of section 2 apply 
here. 

3) If y ~ r lx , then y.(2)and y. have zero LSB 
with RP stratification, butJ~n general non-zero 
LSB with PM stratification. To see this, note 
that the LSB of these estimators differs from 
the LSB of ~(i) by the quantity Q=E(Pcj-Pcj) 

jA c 
YcjR' where Pcj=PcjBcjB-I/ZP B c Bc,1 If A 

c c '  c'j 'j " 
is formed by RP stratification, then response 
rates are homogeneous within A (that is, ex- 
pression (6) holds), so Bci=Bc~ and Pcj=Pcj for 

all c, and hence Q=0. In general, Q@0 for PM 
s trat if icat ion. 

rlx, then-(3) and y!4)have zero LSB 4) If y ~ I Y~A 
with PM stratificatmon, but {n general non-zero 
LSB with RP stratification. To see this, note 
that these estimators have zero LSB with 
YciR=YGkR~_ for all k, or more generally when 

y J~ Z|A. This condition is satisfied by PM 
stratification, but not in general by RP 
strat ificat ion. 

3.3 Conditional Mea n Squared Error Increments 
for Crossclass Mean Estimators 

The conditional mean squared error increments 
(AMSE) for the estimators in Table 5 have quite 

complicated expressions. Some general state- 
ments can be made, however: 

i) Comparisons_ of YjR and :jAT'(1) parallel compari- 

sons of YR and YA' except that they apply to 
quantities calculated within the crossclass. 
Thus ~(1)jA dominates YjR with respect to AMSE 

except when a) variability of y across the ad- 
justment cells is small, and b) the sample 
sizes n .~ are small. Note that b) is more 
likely ~ crossclass means than for domain 
means, since subclassification by crossclass 
reduces the sample sizes. Indeed, joint stra- 
tification by Z and A may yield cells with 
n c. > 0 and nc. R = 0, in which case y(1) can- 
no~ be calculated, jA 

2) RP stratification yields estimators with small- 
er AMSE than PM stratification, since the 
within-cell variance of y is minimized. 

3) With PMstratiflcation, the model estimator 
~(4) should have lower AMSE than y(3)or y(1), 
jA 

slnce the distribution of y withinJ~dju jA st~ent 
cells is homogeneous. However, as the simula- 
tions in section 4 show, the model estimator 
is more sensitive to departures from homo- 
geneity than the other estimators, so its use 
requires careful modeling of the regression of 
y on x when forming the adjustment cells. 

4) Unlike y(1), the weighting estimators y(2) and 
- jA 
y.~ do not require respondents in all c~lls 
J~ 
(c,j) where n . > 0. This property suggests 

that ~!2) andCv ~.I may have lower AMSE than 

v (I) JAhen th3eSrespondent sample sizes 
JjA 

Table 5. Estimators of Crossclass Means 

t l Estimator Bias 
. . . . . . . . . . .  -- 

YjR  : cZ PcjR YcjR cS (PcjR-PcjR) YcjR+(Y+JR-Y+J) 

~ ( I ) :  ~ Pcj YcjR Bz = s (Pcj-Pcj)  Ycj +z Pcj(YcjR-Ycj)  jA c c R c 

~(2) :  z Pcj YcjR B1 + z (pc j -Pc j )  YcjR jA c c 

= z  p*. - Bz c ^ *  - YjS c cj YcjR + z (Pc j -pc j )  YcjR 

= ~ + s pcj(l-bcj)Dcj YjA-(3) c~' Pcj YcjR BI c 

YjA-(4)-- cZ Pcj Yc+R BI + c ~' Pcj D cj 

Variance 
2 

PcjR S cjR/n+jR 
C 

2 

Pcj U cj 
C 

z p  2. 
cJ Ucj 

C 

~ - 2  
Pcj U cj 

C 

2 b 2. 2(ncj-ncjR) 
Pcj{ (I + - )Ucj+(l-bcj) 2 c cj nc+ R Vcj} 

Z p 2 . cJ Vcj 

Notes- the fo l lowing quant i t ies  in the table require de f i n i t i on "  

( I )  Pcj = Pcjbcjbcl /ZcPc' jbc ' jbc~ 

^ * = * b - i  . bc 1 (2) Pcj Pcj cjbc /z pc , j bc , j  , , 
C '  

where Pcj = PcjPc/Pc 

(3) YcjR : bcjYcjR + ( l -bcj)Yc+R 

(4) Dc j : ~ nc -z (~ k kR nc+R ckR 

=S 2. (5) Ucj cjR/ncjR 

(6) Vcj : Z:k nckR SckR/nc+R2 

- YcjR ) 



{ncj R} are small. We examine this possibility 

in the next section. 

4. A SIMULATION STUDY 

4.1 Description of the Study 
A simulation study was carried out to explore 

the mean squared errors of the estimators in 
Tables 4 and 5. Six factors affecting the mean 
squared error of the estimators were chosen as 
parameters in the study: 

BA: variation of population response rates 
{B } between adjustment cells; 

B Z c : variation of population response rates 
{B c.} between crossclasses, within adjust- 
men~ cells ; 

MA: variation of population means {Yc+} between 

MZ adjustment cells; 
: variation of population means {Y . } between 

C 

crossclasses, within adjustment ~ells; 
R : correlation between response rates {B } and 

C 

cell means {Y }; 
c+ 

S : sample size. 
Each of these factors was assigned two levels 
(l=Low, 2=High) and the factors varied in a 26 
factorial design, yielding 64 problems, For each 
problem, i00 independent sets of sample sizes 
{nci} and respondent'sample sizes {ncj R} were gen- 
erated, and for each set the root mean squared 
error (rmse) of each estimator in Tables 4 and 5 
was calculated, using the formulae in the tables. 
Distributions of relative rmse's over the i00 data 
sets were then computed and summarized to yield 
measures of comparative performance. The simula- 
tions are similar to those of Holt and Smith 
(1979) directed at the effect of poststratifica- 
tion on estimates from completely observed simple 
random samples. However, our simulation design is 
considerably more complex since additional factors 
are involved. 

Populations were constructed with twelve cells, 
formed by the joint classification of a six cate- 
gory adjustment cell variable A and a two category 
crossclass variable Z. The percentage distribu- 
tion {i00 p_.} of the population across these cj 
cells was fixed, with values shown in Table 6A). 
Four sets of response rates {B . } were determined 

c3 

B A B Z by the levels of the factors and . Table 
6B) shows two choices (BA=I,2) for the marginal 
response rates {B c}, averaged over crossclass. 
Note that the variation of the response rates is 
small when BA=-I (60% to 70%) and large when BA=-2 
(40% to 90%). The factor B Z determines the re- 
sponse rates for each crossclass within the adjust- 
ment cells. When BZ=I, {B c.} are calculated so that 
Bc2=i.02 Bcl for all c, soJvariation of response 
rates between crossclasses is small. When BZ=2, 
B c =1.2 Bcl for all c, so the variation of response 
ra~es between crossclasses is large. 

Means {Yc" } for the outcome variable y were de- 
termined by levels of the factors M A and M Z. 
Table 6C) shows two choices (MA=-I,2) for the mar- 
ginal means {Yc+} averaged over crossclass. Note 
that variation of these means is smaller when MA=-I 
(30 to 40) than when MA=2 (i0 to 60). These ranges 
can be compared with the within cell variances 
{V .} of the y values, which were set to i00 for 
al~Jthe cells. The factor M Z determines the means 
{Yci } for each crossclass within the adjustment 

Table 6. Parameters for Simulation Study 

A) Population_ Distributions, {100 Pcj}, {I00 Pc } 

Crossclass, l 

Z 2 

Cel I ,  A 

l 2 3 4 5 

3.66 7 . 3 2  9 . 7 6  12.20 13.41 12.20 

8.54 9 . 7 6  7.32 6.10 6.10 3.66 

5 8 . 5 4  

4 1 . 4 6  

ALL 12.20 17.07 17.07 18 .29  19.51 15.85 lO0.O0 

B ) Population Response Rates, Averaged over Crossclass, {B c} 

Cell, A 

FACTOR l 2 3 4 

B A= l 

B A = 2 

5 6 

0.60 0.62 0.64 0.66 0.68 0.70 

0.40 0.50 0.60 0.70 0.80 0.90 

C) Population Means, Averaged over Crossclass, {Yc+} 

Cell, A 

FACTOR 1 2 3 4 5 6 

M A = I 30 32 34 36 38 40 

M A = 2 lO 20 30 40 50 60 

Other parameters are described in the text. 

cells. When MZ=I, {Ycj} are calculated so that 
Yc2=Ycl +2 for all c, so variation of means be- 
tween crossclasses is small_ When MZ=2, {Ycj } 
are calculated so that Yc2=Ycl+lO for all j,- so 
variation of means between crossclasses is large. 
The respondent means {Yo~} were set equal to 

-- , _ j  .,.~. -- -- 

{Yc_.} for all c, j. However, Yc+R~Yc+, since 
J 

these marginal means are composed of different 
linear combinations of the cell means Ycl and Yc2 " 

Two other factors, R and S, complete the des- 
cription of tile simulation design. When R=2, the 
response rates and population means are arranged 
as in Table 6, so they have a strong positive 
association: both the response rates and the cell 
means increase across the adjustment cells. When 
R=I, the marginal response rates {B c} and the cor- 
responding within adjustment cell rates {B c. } are 
permuted so that rates indexed i, 2, 3, 4, ~ and 
6 are assigned to cells i, 3, 5, 2, 4 and 6 re- 
spectively. This change largely eliminates the 
association between the means and the response 
rates. Finally, two sample sizes are chosen, 
n=240 (S=I) and n=2400 (S--2). These sample sizes 
are reduced by about 40% by nonresponse, and of 
course are further reduced for crossclass mean 

The sample sizes {ncT} are selected by multi- 
nomial random number generator GGMTN in the IMSL 
subroutine library, (IMSL, 1980), under the as- 
sumption that they have a multinomial distribution 
with index n and probabilities {Pcj } given in 
Table 6A). The respondent sample sizes {ncl R} 
are selected by the binomial random number ~enera- 
tor GGBN in the IMSL library, under the assumption 
that they have independent binomial distributions 
with index n . and probabilities B_. determined by 

C A J Z values B an~ B. To avoid indeterminacy in the 
estimators in Table 5, samples were restricted to 



outcomes where n_.~ > 0 for all c and j, a similar 
. c 3 ~  

strategy to that aaopted by Holt and Smith (1979). 

4.2 Summary Results 
For each sample, the root mean squared error 

for each method was calculated as the square root 
of the sum of the bias 2 and variance in Table 4 
or 5. Relative rmse's were then calculated with 
yA and ~(2), the estimators obtained by weighting 
r~sponde~ts by the inverse of the response rates 
in the adjustment cells, as baseline estimators. 

Hence 
rel (yR) =i00 (rmse (YR)/rmse (YA)-I), 

rel(Ys)=100 (rmse(y S)/rmse(YA)=l) 

for estimators in Table 4, and 

rel(~jR)=100(rmse(y~)/rmse(y~2))-l), • .. , 

rel (~}4))= i00 (rmse (y} "4) ). / rms e~y~2) ) -i), 

for estimators in Table 5. 

The average relative rmse over the i00 gener- 
ated samples is used to summarize relative per- 
formances of the estimators for each problem. 
Crude rankings of the methods are obtained by 
further averaging over the 64 problems, which 
yields the following results: 

Relative rasp' s (rel) 
. . . .  ( i )  - - ( 3 )  - ( 4 )  
YR YS YjR YjA YjS YjA YjR 

112 -12 68 -3 -2 66 254 

Thus YR has on average 112% higher rmse than YA' 
reflecting its large bias for some problems. 
Within crossclasses,_,^ Y'R has on average a 68% 
higher rmse than y.k~),Ja large increase but 

smaller than that J for YR' reflecting the fact 
that the benefits of adjustment increase with the 
sample size. 

- - -(2) 

Comparisons of YS with YA and YjS with YjA 
show the effects of poststratifying on the popu- 
lation proportions {P } when available. The 

C 
rmse is reduced by an average of 12% for esti- 
mates of the overall mean, and by an average of 

2% for estimates of the crossclass mean. Post- 
stratification is useful here, as in the com- 
plete data simulations of Holt and Smith (1979). 
The estimator y (I), obtained by further subdivi- 
sion of the adjUStment cells,~bv crossclass, per- 
forms slightly better than y~kZ)on average, with 
a 3% reduction in rmse. 

Imputation within adjustment cells (~A))t~ is 
markedly.worse than weighting within adjustment 
cells (v.(2)), with an average increase of 66% in 
rmse. - AT~e reason for the poor performance of 

-(4) 
imputation and its model-based relative Y~A is 
discussed below. o 

4.3 Detailed AnalYsis of R0ot Mean Squared 
Errors 

Detailed performance of the estimators is sum- 
marized in Table 7. A preliminary six-way analysis 
of variance of the average relative rmse's allowed 
two of the six factors to be eliminated with minor 
loss of information, viz. B Z and M Z for analyses 
of rel(YR ) and rel(Y4R) , and B A and R for analyses 
of the other estimators. The first sixteen rows 
of Table 7 give average relative rmse's for each 
of the sixteen combinations of the reduced factor 
set, ranked from low to high on the first esti- 
mator presented. The following eight rows give 
marginal means for the two levels of each factor, 
averaged over the other factors (M denotes aver- 
age in the table). These means are omitted when 
the differential is small. Finally, the last row 
gives the overall means, as presented in section 
4.2. The main features of Tablec~are as follows: 
I) The adjusted means YA and y:~" dominate the 

unadjusted means YR and y.~'l~except when S-l, 
R=I, BA=2 and MA=I. The 3~enefits of adjust- 
ment increase markedly when S, R, B A and M A 
are set to high levels, reflecting conditions 
where nonresponse bias of the unadjusted means 

is large. -_ (2) with 
2) ~jA~(1) has slightly lower rmse than YjA BZ 

greatest reductions when M A, S or are 
set to high levels. In comment 4) of section 

Table 7. Average Relative Root Mean Squared Errors, Expressed as Percent Deviations, Classified by Four Most Important Factors 

S~R-FAcToR~__~B A'- MA ] Re i i~n-)--[Rei ( ~ - " ) "  I J" [--- : ' F  S .... FACT O R ' B  z M A M Z I Reiiys) [ Rel(~jS) "S B ZFACTOR'M A M z Rel(y~ 3)), Rel (y~4)) [ [  S B ZFACTOR'M A M z 

1 1 2 1 -I -3 2 1 2 1 ~28 -5 
1 1 1 1 I 1 1 2 2 1 -28 -4 
2 1 1 1 2 1 2 2 2 1 -26 0 
l 2 l l 4 2 l l 2 l -26 -7 
2 l 2 l lO 3 l l 2 2 -24 -7 
l l l 2 13 7 2 l 2 2 -24 -4 
2 l l 2 17 II l 2 2 2 -19 -2 
l l 2 2 20 II 2 l l l -3 -2 
2 2 l l 24 15 2 2 l l -3 -I 
l 2 l 2 29 17 2 l l 2 -2 -2 
l 2 2 l 35 19 l l l l -2 -l 
2 l 2 2 72 38 l 2 l l -2 0 
2 2 l 2 146 91 l l l 2 -2 -l 
2 2 2 l 196 151 l 2 l 2 0 0 
l 2 2 2 260 135 2 2 l 2 l -l 
2 2 2 2 964 584 2 2 2 2 3 0 

Rel,-(1)) ~YjA 

2 2 2 1 -19 -9 2 2 2 2 -13 
1 2 1 1 -14 -16 2 2 2 1 -9 
1 1 1 1 -12 -15 2 2 1 2 -5 
l 2 2 l - l l  -14 l 2 2 2 -5 
l l 2 l - l l  -14 l l 2 l -4 
2 l 2 l -6 12 l l 2 2 -3 
2 2 l l -5 36 2 2 l l -3 
2 l l l -4 34 2 l 2 l -2 
l l 2 2 17 143 l 2 2 l -2 
l 2 2 2 26 160 2 l l 2 -l 
l l l 2 45 235 2 l 2 2 -l 
l 2 l 2 61 254 2 l l l -l 
2 l 2 2 181 682 l 2 l 2 -l 
2 2 2 2 185 621 l l l 2 -l 
2 l l 2 287 966 l l l l 0 
2 2 l 2 339 990 l 2 l l 0 

l M M M 45 l M M M 
2 M M M 179 2 M M M 
M l M M 17 9 M l M M -14 -4 
M 2 M M 207 127 M 2 M M -9 - l  
M M l M 29 18 M M l M -2 - l  
M M 2 M 194 l l7  M M 2 M -22 -4 
M M M l 34 24 M M M l -15 
M M M 2 190 If2 M M M 2 -9 
M M M M If2 68 M M M M -12 -2 

1 M M M 13 92 1 M M M -2 
2 M M M 120 417 2 M M M -4 
M 1 M M M 1 M M -2 
M 2 M M M 2 M M -5 
M M l M 87 311 M M l M -l 
M M 2 M 45 198 M M 2 M -5 
M M M l -lO .2 M M M l 
M M M 2 142 507 M M M 2 
M M M M 66 254 M M M M -3 

1 : Low, 2 = H i g h ,  M = Ave rage  



3.3 we speculated that ~.(2) may outperform 
~(i~ for small sample siz~. This does not 
jA 
happen in Table 7, but ~(2) had slightly lower 
(1%) average rmse in supplementary simulations 
at a smaller sample size, n=80. -(2) 

3) Comparisons of YS with YA and YjS with YjA 

indicate that poststratification nearly always 
reduces rmse for the problems simulated. Gains 
are greatest when a) MA=-2, b) BZ=I and c) the 
overall mean rather than crossclass means are 
considered• These findings agree with those of 
Holt and Smith (1979) for complete data. 

4) For crossclass means, imputation (~!3)) outper- 
forms weighting (~(2)) when MZ=I, J~that is, 
crossclass means w~hin adjustment cells are 
nearly equal. This should be the case with PM 
stratification• However v (3) does very poorly 
when MZ=2, where bias dominAtes its rmse. 

5) The model estimator ~(4) should dominate all 
estimators if crosscl~ss means are equal within 
adjustment cells. Nevertheless, when this con- 

d M Z i (3) still dition is nearly satisfie ( = ), y.~ " 
dominates ~(4) in our simulations, i~icating 

• . . J ' A  - 

sensltlvltyJof y.(4) to even mild departures 
from the modelin~Aassumption ~(4) is partic- 

• A 
ularly bad in large samples (S=2~, and has very 
high rmse when MZ=2, when it is seriously 
biased. 

5. NEW APPROACHES 

5. I Introduction 
It would be quite unjustified to draw general 

conclusions about the relative merit of the esti- 
mators in Tables 4 and 5 from the simulations in 
section 4, since the results are highly dependent 
on the parameter levels chosen in the study• 
Nevertheless the simulations do illustrate how 
the relative performance of the estimators 
changes as a result of changes in the sample size 
and in the population structure. If adjustment 
cells are chosen by PM stratification, then mean 
imputation within the adjustment cells works well, 
and weighting yields the same estimator for domain 
means and somewhat less efficient estimates for 
crossclass means. If adjustment cells are chosen 
by RP stratification, then weighting successfully 
controls nonresponse bias but may have large vari- 
ance, and imputation controls variance but may 
lead to serious bias. 

Weighting class estimators based on RP strati- 
fication have useful bias reduction properties, 
and are particularly economical for data sets con- 
taining a large set of y variables with the same 
missing data pattern. However, weighting need- 
lessly increases the variance when the outcome 
variable y is not related to the propensity to 
respond. In this concluding section, we propose 
modified weighting class estimators that seek to 
limit variance whilst retaining the ability to 
adjust for nonresponse bias. Section 5.2 con- 
siders the case of domain means, and section 5.3 
considers crossclass means. 

5.2 Modified Weighting Class Estimators 
for Domain Means 

A straightforward approach to limiting the var- 
iance of estimates of domain means is to regress 
y on the estimated response propensity p(x) using 

the respondent sample (David, Little, Samuhel and 
Triest, 1983)• If the coefficient of p(x) is 
significantly different from zero, then adjustment 
is in order. A regression more closely related 
to RP stratification is obtained by replacing the 
regressor p(x) by dummy indicators for the ad- 
justment cells. If an F-test for the adjustment 
cell coefficients reveals significant effects, 
then YA is chosen; otherwise YR is chosen• 

An elaboration of the above approach that 
leads to a compromise between YA and YR is ob- 
tained by fitting separate means for each adjust- 
ment cell, but treating the means as random vari- 
ables from a common distribution• The simplest 
version of the model assumes that 

- , S 2 2) ~ S2R/ncR) (YcRIYcR cR,~, T N(YcR, 
(i0) 

(?cR IS2 2) 2) • cR,~,T ~ N(~,T , 

where N(a,b) denotes the normal distribution with 
mean a, variance b. Given ~, S 2 and T 2 

cR ' cR 
can be estimated by its posterior mean 

E(YcRIU,S2cR, T2) 

2( 2+S2Rn~R )-I ~cR+n~R(T2 2 -I = T T +ScRncR) ~ (Ii) 

= ncR(ncR+X) -I YcR + X(ncR+X)-I~ , 

if S 2 =S~ is constant across cells, and X= S~/T 2 
cR 

the ratio of within cell to between cell vari- 
ances. In practice, ~ and X need to be estimated 
from the data. 

If adjustment cells are chosen so that ncR is 
constant across adjustment cells, then an 
efficient estimator of ~ is YR; X can be esti- 
mated by equating observed an~ expected means 
squares from analysis of variance, or by the 
more refined procedures of Hill (1980)• If 
{n^~} vary across cells, then the iterative pro- 
ce~res of Carter and Rolph (1974) can be used to 
estimate ~ and X. 

Replacing ~ and X in (II) by estimates ~R and ? 
A, and substituting the resulting estimate of 
YcR for YcR in (2) yields an empirical Bayes (EB) 
estimator of Y: 

C 

- -I E YcR(Xcbc I) (12) YEB=n+ ncR 
c=l 

where 

ncR(n c + k I) 
X = 
c nc(ncR + k 2) 

(13) 

- i in yA and is a modification of the weight b c 
C 
Z n (ncR+X) -I 

C 

k = X c=I ; k = X . 
I C 2 

E ncR(ncR+X)-I 
c=l 

Note that YER is close to YA when adjustment 
is beneficial (large samples, large ratio of be- 
tween to within variances) and otherwise is close 
to YR'- Thus it is an attractive compromise be- 
tween Y-K and YA" However, the factors Xc for 
multiplying the raw weights b -I require some com- 
putational effort, and are different for each of 
a set of y variables. Thus some of the simplic- 
ity of the propensity weighting scheme is lost. 

The key assumption of (i0) is that the under- 
lying cell means YcR are exchangeable. If on the 



contrary the means are systematically related to 
the cell response rates b , then a random effects 
model^that shrinks towardCs the regression line 
~0 + B(b -b.) rather than towards the point YR 

C ~" 
would be preferable. Such a model would combine 
elements of (I0) and the fixed effects regression 
model that opened this section. A plot of YcR 
against b should serve as a useful diagnostlc 
tool for ~etermining whether this more elaborate 
model is needed. 

5.3 Modified Estimators for Crossclass Means 
The empirical Bayes estimator_~(12) is obtained 

by weighting respondents by %c bc ±' where %c is 

given by (13). If crossclass means are estimated 
using this weighting scheme, the result is an 
estimator that behaves like ~(2) when sample sizes 
are large, and like Y~'R when ~mple sizes are 
small. The regressio~ of y on p(x) in section 
5.2 also provides guidance as to whether adjust- 
ment of Y~-D for nonresponse is needed, although 
more specific information may be obtained by re- 
stricting the regression to respondents in the 
crossclass. 

If regression prediction is used to impute for 
nonrespondents, and elaborate regression modeling 
of y is too time consuming, then one might wish 
to restrict the regressors to the propensity 
score p(x) and dummy indicator variables for the 
crossclasses of interest. The inclusion of the 
latter variables avoids bias from imputing means 
that average over crossclasses that are hetero- 
geneous with respect to y. The inclusion of re- 
sponse propensity as a regressor protects against 
nonresponse bias. 

In summary, a number of alternative approaches 
can be envisioned for improving the estimators of 
Table 5, short of full modeling of the relation- 
ship between y and the crossclass variable and 
other regressors. 
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