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1. INTRODUCTION

Three approaches to the analysis of incomplete
data from sample surveys can be usefully distin-
guished. = A theoretically appealing strategy is
to accept the nonrectangular structure of data
subject to missing values, and to estimate pa-
rameters by methods based on a model for the
incomplete data. See, for example, Littlé (1982).
However, the practical problems of building suf-
ficiently realistic models for large data sets
with complex sample designs are not negligible.
Furthermore, the availability of special software
to fit such models to incomplete data is not ex-
tensive, and is limited to fairly specific models
The survey processor faced with incomplete data
has a strong motivation to create rectangular
files for statistical analyses or for public use
tapes. Thus alternative procedures that yield
rectangular data sets will continue to be impor-
tant in practice. Implicit or explicit models
also underpin these alternative strategies
(Rubin, 1978; Oh and Scheuren, 1983), so these
procedures are not incompatible with a modeling
philosophy.

Two strategies leading to rectangular data
sets are common in survey practice, namely
weighting and imputation. In the former approach
missing or incomplete units in the sample are
ignored, and the sampling weights for responding
units are inflated by dividing them by estimates
of the probability of response, typically the
response rate in a subclass of the sample. 1In
imputation approaches incomplete or missing units
are included in the sample, with missing values
replaced by the imputed values. For a recent re-
view of imputation methods in surveys, see Kalton
and Kasprzyk (1982).

In large government surveys weighting is often
used to handle unit response, which arises when
whole questionnaires are missed because of non-
contact or refusal. Here the weighting nonre-
sponse adjustment is a natural extension of the
sampling weight defined for sampled units. For
example, in the Current Population Survey (CPS),
unit nonresponse is handled by dividing the
sample weights of respondents by the response rate

Table 1. Adjustment:Ce11 Estimator for an Overall Mean: Example

A = Adjustment Cell (Region)

STATISTIC ,

¢=1 c=2 ! =3
RESPONSE RATE 80/100 70/100 50/100
MEAN INCOME ($1,000) 9.8 11.6 13.6
TOTAL INCOME ($1,000) 780 815 680

Respondent Mean : }R = (780 + 815 + 680)/(80 + 70 + 50) = 11.4

100 100 100
. 780(gg) + 815(57) + 680(5p)
Ya = 1.7

100 + 100 + 100

Adjusted Mean

within homogeneous collections of primary sampling
units (Hanson, 1978). Imputation is often used to
handle item nonresponse, where particular items in
the interview are missing. For example, missing
income items in the Income Supplement of the CPS
are imputed by a flexible hot deck matching scheme
(Welniak and Coder, 1980; Oh and Scheuren, 1980).

A common preliminary to weighting or imputation
is to classify respondents and nonrespondents into
adjustment cells. Consider the artificial example in
Table 1, where 200 out of 300 sampled individuals
respond to a question on y = annual income. Re-
spondents and nonrespondents are classified into
three adjustment cells defined by the variable
A = Region. Within each cell, the response rates
are 80/100, 70/100 and 50/100 and the respondent
mean incomes (in $1,000) are 9.8, 11.6 and 13.6,
respectively. Suppose that all individuals in the
population have an equal chance of selection, so
that sample weights are not required.

A simple estimate of the mean income in the
population is the respondent mean Yp = 11.4.

However the table suggests that nonresponse is
higher in the high income region (C=3) than in the
low income region (C=1), and hence y_ may be an
underestimate. Weighting the income contribu-
tions in each cell by the inverse of the response

rate in the cell yields an adjusted mean y, = 11.7
that plausibly reduces the bias from restriction
to the respondent sample. It is well known that
the same adjusted mean (y,) can be obtained by im-
puting the cell respondent mean for all the non-
respondents in that cell (for example, 11.6 for
all 30 nonrespondents in cell 2).

These two basic adjustment methods - weighting
by reciprocal cell response rates and imputing
cell means - are the focus of this article, al-
though other methods are discussed for comparative
purposes. Note that mean imputation has the dis-—
advantage of distorting the distribution of in-
come values in each cell (Kalton and Kasprzyk,
1982). Hence hot deck versions of the method
where values from individual respondents in the
same cell are imputed rather than cell means, are
popular in practice. These modifications in-
crease the variance of population estimates by an
amount that depends on the method used to assign
respondent values to nonrespondents (Ernst, 1980;
Kalton and Kish, 1981). We do not consider hot
deck methods here, although results about the
large sample bias of cell mean imputation also
apply to hot deck methods that impute values that
average the cell mean in hypothetical repetitions

In section 2 we consider mean squared error
properties of yp, Fa and a modification of §A
that assumes the population distribution over the
adjustment cells is known. Thomsen (1973, 1978)
and Oh and Scheuren (1983) perform similar calcu-
lations, but consider a single predetermined
choice of adjustment cells. Our focus is on how
to choose adjustment cells when a large amount of
information is available to form them. Two key
dimensions in the space of potential stratifiers
are distinguished, the response propensity p(x)
and the predicted mean y(x). Stratifying on the
former dimension controls large sample bias, and



Table 2. Adjustment Cell Estimators for a Crossclass Mean: Example
RESPONSE RATE A = Adjustment Cell (Region)
MEAN INCOME ($1,000) c=1 C=2 €=3
TOTAL INCOME ($1,000)

20/30 15/30 10/30

Z = Education High 12.0 14.0 16.0
240 210 160

60/70 55/70 40/70

Low 9.0 1.0 13.0
540 605 520

Total 80/100 70/100 50/100

9.8 11.6 13.6
780 815 680

Respondent Mean in = (240 + 210 + 160}/(20 + 15 + 10) = 13.56

Weighted in cell c:

5120, 200100/80) + 210(100/70) + 1600100/50) _ 15 g5
38 T20(100/80) * 15(100/70) + 10(100/50)

(3)
Inputed in cell ¢ © = 240 + 10;2.8):210+;g(11.6):160+§g(13.6) - 12.82

stratification on the latter dimension controls
both bias and variance, but (unlike p(x)) re-
quires separate models and nonresponse adjust-
ments for each y variable.

Adjustment cell weighting and mean imputation
yield the same estimator S;A for population means.
They also yield the same estimators for means or
totals in domains of the population, which we
define as collections of adjustment cells. How-
ever, weighting and imputation yield different
estimators of means or totals in crossclasses of
the population, which we define as subclasses of
the population that cut across adjustment cells
(David, Little, Samuhel and Triest, 1983). Con-
sider, for example, Table 2, where the data in
Table 1 are further classified by the crossclass
variable Z = Education. Suppose the objective is
to estimate the mean income in the high education
group. As shown in the calculations below the
table, the respondent mean is §jR = 13,56.

Weighting the respondent income amounts by the
inverse of the adjustm?%§ cell response rates

yiflds the estimator Vi< 13.85, whereas imput-
ing adjustment cell means yields §§i)= 12.82, a

value even lower than the unadjusted mean ¥ip-
In section 3 formulae are gresegted for the
bias and variance of ij, yjA > Via and some

natural alternative estimators. We show that
different choices of adjustment cells are appro-
priate for weighting and imputation when the
objective is to control the bias of crossclass
mean estimates. Specifically, when weighting
adjustments are employed, adjustment cells

based on the estimated response propensity p(x)
are appropriate, whereas adjustment cells based
on the predicted mean y(x) may yield biased esti-
mates. On the other hand, when imputation is
employed, adjustment cells based on j(x) are
appropriate, whereas adjustment cells based on
p(x) may yield biased estimates. This theory
establishes links between weighting and response

propensity stratification and between imputation
and predictive mean stratification.

Variance properties of crossclass mean esti-
mators are also examined in section 3. Mean
squared errors properties of the estimators of
domain and crossclass means in sections 2 and 3
are then explored by a simulation study, described
in section 4. Finally, section 5 indicates some
modifications of response propensity methods to
control variance whilst retaining their bias re-
ducing properties.

2. ADJUSTMENT CELL ESTIMATOR OF DOMAIN MEANS

2.1 Moments of Adjustment Cell Estimators in
Repeated Sampling

In this section we discuss adjustment cell esti-
mators of the population mean Y of a variable y.
The theory also applies to estimators of domain
means, where a domain consists of a subset of the
adjustment cells. Notation is defined in Table 3
A). Population and sample quantities have upper
and_lower case letters, respectively. The symbols
N, Y, B and P are used for population counts,
means, response rates and cell proportions, re-
spectively. The suffix ¢ refers to adjustment
cell ¢, and the suffix R denotes restriction to
respondents.

Three estimators of Y are compared. The re-
spondent mean,

C

I = z Per Yer ’ 1S
c=1

is obtained when a constant weighting adjustment

b;Iis applied to respondents, or when §R is im-
puted for all nonrespondents. The adjusted mean
C

o T L Pe YeRr ? (2)
c=1

is obtained by weighting respondents in cell c by

Table 3. Notation for Population and Sample Quantities

A) For Inferences about ‘;

Population Counts Means Variances
Cell ¢ Overal] Ratio Cell ¢ Overall Cell ¢

Respondents (R) NCR N#R PCR VCR VR Sch

Nomrespondents (V) | N o B '

Ratio (R/(R+N)) Bc B,

Sample Counts Means Variances
Cell Overall Ratio Cell Overall Cell ¢

Respondents (R) N R PR ;cR 9R SzR

Nonrespandents ) | g S S y

Ratio (R/{R+N}) bc b,

B) For Inferences about the Crossclass Mean, y

+j

Population Counts Means Variances
Ceil ¢ Overail Ratio Cell ¢ Overall  Cellc
R Nejr MR | PR | Yesr ViR s
R+N ch N+j ch le V*j
R/ {R+N) Be; Byj
Sample Counts Means Variances
Cell ¢ Overall Ratio Cell ¢ Overall Cell ¢
R iR "R | PeR | Yesr YagR SR
Red "cj M43 Pej Yej Y4j
R/ (R+N) b_. b

3} +]



bgl , or by imputing §cR for nonrespondents in
cell c¢. Finally, the poststratified estimator
—_ C -

Yo = I Py s (3)

c=1
can be calculated when the population cell pro-
portions {P } are known. For example, adjustment
cells could be based on age, race and sex, and
{P _} may be available from census tables. The
bids and variance of y_, §A and y_ are considered
by Thomsen (1973, 1978§ and by Oh and Scheuren
(1983), but comparisons are complicated by dif-
ferent assumptions and choices of reference dis-
tribution. Specifically, let y=(y1,...,yN) de-
note the vector of y values in the population;
r=(r,,...,r,) denote the vector of response indi-
cators, such that r_,=1 if unit i responds if
sampled, and 0 othetwise; s=(s_,...,s. ) denote
the vector of sample indicators, such that s.,=1
if unit i is sampled, and O otherwise; *
g=(n1,...,n ) denote the vector of sample sizes
in the C adjustment cells; and 9R=(n R""’nCR)
denote the vector of respondent sampie sizes in
the C adjustment cells. Thomsen calculates the
bias and variance of §R’ y, and y. over the dis—
tribution of s, with y and r held fixed. Oh and
Scheuren calculate moments over the distribution
of r and s, with i) y held fixed and ii) y, n
and oy held fixed. They call the former uncon-
ditional moments and the latter conditional
moments. This approach requires specification
of the distribution of r ; Oh and Scheuren
assume the distribution corresponding to Bernoulli
subsampling within the adjustment cells, an as-
sumption they describe as quasi~randomization. They
also include finite population corrections (fpc's),
assuming simple random sampling without replace-
ment; Thomsen ignores these corrections.

We prefer the calculations of Oh and Scheuren
that condition on n and n, as well as y, since
they provide more precise results when the re-
spondent sample sizes {n_,} are small. The sit-
wation is analogous to Egat of Holt and Smith
(1979), who condition on n when comparing un-
stratified and poststratified estimates of a
mean from complete data. On the other hand, we
prefer (like Thomsen) to calculate moments con-
ditional on r, since the validity of the quasi-
randomization assumption of Oh and Scheuren is
specific to a particular choice of adjustment
cells, and we wish to consider a variety of
choices. Hence we present in Table 4 moments
conditional on y, r, n and n_ ., Expressions for
bias assume an équél ﬁrobabi?ity sampling design.
Expressions for variance apply assuming simple
random sampling with replacement. For simple
random sampling without replacement the vari-
ances are modified by multiplying Sc by the fpc
(l—nCR/N ), yielding similar results to the con-
ditional calculations of Oh and Scheuren (1983).

Note that y, is undefined if, for one of the
adjustment celés, n >0 and n R=0. In calcula-
tions that condition on n and n,, we assume that
this event has not occurred. In Thomsen's un-
conditional calculations, the assumption is
made that this event has negligible probability
of occurrence.

Each of the bias components in Table 4 is
written as the sum of two terms, say C and LSB.

As the sample size increases, the proportions

Per and p, converge to their population analogs
PCR and Pc respectively, so the first terms C in
these expressions tend to zero (for y., C is iden-
tically equal to zero). We call the Second terms
LSB in the bias expressions large sample biases,
since they increasingly dominate the bias as the
sample size increases. The mean squared error of
each estimator can be decomposed as

mse= (C+LSB) 24V=C2+2 (C) (LSB)+LSB24V ,

where V is the variance. In section 2.2 we dis-
cuss the formation of adjustment cells to minimize
the large sample squared bias LSB2 of y, and y,.
In section 2.3 we consider the formation of ad=
justment cells to limit the size of LSBZ + v,
which we call the conditional mean squared error
increment (AMSE). The cross product term
2(C)(LSB) can have either sign and is generally
small in magnitude.

2.2 Choosing Adjustment Cells to Control Large
Sample Bias

The respondent mean y_ has zero large sample
bias if YR = ¥, that is If the mean of y is the
same for respondents and nonrespondents. More
generally, if interest concerns the entire dis-~
tribution of Y rather than simply the mean, un-
adjusted inferences based on the respondent sample

require that y and response are independent, that

1s
yllr,

where ll_is Dawid's (1979) notation for indepen-
dence. This assumption is usually unrealistic.

The large sample bias of the adjustment cell
estimators §A and §S is

C -—
LsB= & P @

which equals zero if ¥ _ = ¥ for all c¢c. More
generally, we seek adjﬁstmen% cells within which
the distribution of y is the same for respondents
and nonrespondents. Let c denote the level of the
adjustment cell variable A. Then we seek A such
that y is conditionally independent of the re-
sponse indicator r, given A. That is

y J_L r|A . (4)

Now suppose we have a large set of potential
stratifiers x, recorded for respondents and non-
respondents in the sample, and that

y rlx , (5)

Table 4. Bias and Variance of Three Estimates
of Y in Repeated Samp]ing*

Estimator Bias ] Variance
M M g 7 2
R e = Fepl¥er *+ (g = V) ZPer Scr/M4r
)—'A E(pc - Pc)ch + zPa:(YcR - Yc) L pc2 SczR/ncR
c c c
_ _ _ 2 s
s 0 I PlYeg - Ye) E Pe Scr/Mer

* See text for detai]s of reference distribution.



so that a full stratification on x removes the
nonresponse bias. In practice, adjustment cells
cannot be based on x, because some variables are
interval scaled, or the joint distribution of x
contains cells with sampled units, none of which
respond. The question is how to define A based
on a restricted subset of the x information, so
that (4) is approximately satisfied. Two ap-
proaches to this question can be distinguished.

The first approach is to model the distribu-
tion of y given x. Let D(x) be the distribution
of population y values for respondents (and by
(5), for nonrespondents) with value x of the co-
variates. Pooling over values of x such that
D(x) is constant clearly leads to subpopulations
within which y and r are still independent. More
specifically, suppose we specify the model that
D(x) and D(x'), the distributions of y for dif-
ferent values x and x' of the covariates, differ
only in their location parameters, viz the pop-
ulation means Y(x) and Y(x'). Then forming ad-
justment cells with constant values of Y(x)
yields a variable A for which (4) is satisfied.

If A is formed so that ¥(x) is constant within
adjustment cells, then condition (4) is satisfied
and the large sample bias eliminated.

In practice the means Y(x) have to be esti-
mated from the data. Let y(x) be the predicted
mean of y from the regression of y on x, fitted
to the respondent sample Form a categorical
version of y(x) say yG, by grouping y(x) into
intervals, and then form adjustment cells by
stratifying on y Values of Y(x) should be
approximately constant within these cells, so the
large sample bias of y, and y should be nearly
eliminated. We refer éo this method of forming
adjustment cells as predicted mean (PM) stratifi-
cation.

If imputation is the chosen method of adjust-
ments, then the adjustment cell mean is assigned
to nonrespondents. An alternative method is re-
gression imputation, where predictions y(x,) are
imputed directly, without forming adjustmeint
cells based on y(x). If the regression equation
captures the systematic variation in the y values,
and the adjustment cells are large, then these
methods should be quite similar. If adjustment
cells contain a small number of respondents, the
adjustment cell method lies somewhere between re-
gression imputation, which imputes a conditional
mean, and stochastic regression imputation, where
noise is added to the predicted means (Little and
Samuhel, 1983). As noted in section 1, weighting
by the inverse response rates in the adJustment
cell yields the same estimate y, of ¥ as that
obtained by mean imputation. ﬁls property
establishes a link between weighting and regres-
sion imputation.

Practical limitations may inhibit PM strati-
fication for certain problems. Note that regres-
sions need to be developed for every y-variable
subject to missing values, and these regressions
yield different PM stratifications, and hence
different weighting adjustments if weighting is
the chosen mode of adjustment. One strategy is
to estimate prediction equations for a small
number m of key survey variables, and then to
form joint classifications of the sample by the
adjustment cell variables A;, A,,...,A . Some
pooling of the cells from this joint classifica-
tion can form the basis for weighting adjustments

that are relatively efficient for all the vari-
ables involved.

The second strategy for forming adjustment
cells has the merit that it ylelds a unique set of
adjustment cells for any block of variables
Yqs+0++5Y, With the same response pattern. Such
biocks occur notably with unit nonresponse, where
the entire interview is missing for nonrespondents
in the sample. Furthermore, the adjustment cells
can be based on the results of a single regres-
sion, rather than requiring the fitting and com-
bination of results from regressions on each
y-variable.

The approach is suggested in David, Little,
Samuhel and Triest (1983), and is a straightfor-
ward extension of the propensity score theory of
Rosenbaum and Rubin (1983), developed in the con-
text of matching in observational studies. De-~
fine the response propensity

p(x) = pr(r=l]x) s

and suppose p(x) > 0 for all observed values of x.
Then the theory of Rosenbaum and Rubin shows that
(5) implies that

x ]| rlp) (6)

and

y 1l rlpx) . )

That is, (4) is satisfied with A = p(x). This
suggests the following strategy for choosing ad-
justment cells to limit nonresponse bias.

A) Estimate the propensity score p(x) by p(x)
from the regression of the response indicator r on
Xx. Forms of regression suitable for binary re-
sponses, such as logistic or probit regression,
are advisable if response rates are close to zero
or one.

B) Form adjustment cells based on ﬁ , a
grouped version of p(x). We describe this method
of forming adjustment cells as response propensity
(RP) stratification.

An alternative use of the estimated response
propensity p(x) is to weight respondent i direct-
ly by the inverse of its estimated response pro-
pensity p(x;), without forming adjustment cells as
in B). This procedure avoids the choice of cut-
points required to form adjustment cells. How-
ever, respondents with very low values of p(x) re-
ceive large weights that can inflate the variance
of survey estimates excessively. In the stratifi-
cation approach, large weights can be dampened by
a suitable choice of cutpoints for the variable
Pg- Another argument for stratification is that
it places less reliance on correct specification
of the response propensity regression, since the
predictions are used only to partially order the
sample, rather than to supply probabilities to be
used directly in the weighting. Thus a linear re-
gression of the response indicator may be adequate
to define the adjustment cells, but inadequate for
defining weights directly.

2.3 Choosing Adjustment Cells to Limit Conditional
Mean Squared Error Increments
If response and outcome variable are indepen-
dent, then the large sample bias of y_, y, and y
R’ A S
is zero, and relative precisions are measured by
their respectlve conditional mse increments
Cr + Vg» CA + V, and Vg Comparisons of Cé + Vy




and Vg parallel those of Holt and Smith (1979) for

the unweighted and poststratified mean, given com-

plete response. Note that the sampling variance
C

of the weighted linear combination yw=c21 Wc YR
is minimized with weights W_ proportional to
P /S2 . If the within celi variance S2_ is con-
stant across cells, then this weight is equal to
Por> yielding the estimator y_,. Hence for any

: ? R
cﬁ01ce of adjustment cells,

Vg £V, Ve <V

A 'R s’

if 82 is constant across cells. On the other
hand, in general we expect that

(ct=0) <cf<ck, (8)
although the second inequality does not apply in
all cases. To establish (8), note that if we
treat the sample counts {n_} as multinomial with
probabilities {P_} and indéx n,, then averaging
€2 over this disfribution yielﬁs

A
E{Ci}
¢ 252
= E{x (p =P )Y o+ I '(pc—Pc) (por—P.+)
c=1 c#c
YcR Yc'R}
C -2 _
=1L Pc<l_Pc)YcR/n+— Z,PcPc'YcRYc'R/n+
c=1 c#c
C
1 S 5 £ 2
== 1 P @ _-Y%)°,
n+ =1 © cR A
-~ C —
where ¥, =c§ch Y - Similarly, if {ncR} are

multinomial with probabilities {PCR} and index

N, ps then averaging CR over this distribution
yields
2 1 ¢ 5 2
E{c;} == 1P (Y _-¥)°.
R R =1 cR "cR
If y and R are independent, then P, = P

>

Y, = —R and E{Ci} = (n+R/E+) E{Ci}C§ so “the ad-
justment cell estimator y, reduces the expected
value of the component €2 “of the mean squared
error of y_ by a factor equal to the sample re-
sponse rate.

For complete data, Holt and Smith (1979) dis~
cuss factors affecting the relative size of
Cﬁ + Vp and Vg, and conclude that poststratifica-
tion is relatively useful (that is,VS<C§+VR) when
the sample size is large and the ratio B/W of
between to within cell variances of y is large.
On the other hand, if the means of y between ad-
justment cells are close together, and the sample
size is small, then the unweighted mean is favor-
ed. To understand the influence of B/W, note
that if B/W is large, then Cﬁ makes a relatively
large contribution to 2 4 VR’ and hence post-
stratification, which eliminates Cgr at the ex-
pense of inflating Vp, is relatively profitable.
Similar considerations apply to the weighting
class estimator §A' However, conditions under
which y, is superior to ygp are more restricted,
sin;e Fa only reduces Cﬁ by n+R/n+ (on the aver-
age).

The above discussion implies that adjustment
cells should be chosen to maximize B/W, the ratio
of between to within cell variance of y. With a
large set of potential stratifiers x, this objec-
tive is achieved by PM stratification method dis-
cussed in section 2.2. Thus PM stratification has
the virtue of controlling both the bias and vari-
ance of § ;s RP stratification controls the large
sample bias, but yields estimates y, that may have
large variance. The latter is part?cularly true
when the response propensity is largely determined
by variables that are not associated with y.

3. ESTIMATES OF CROSSCLASS MEANS

3.1 Introduction

Let Y., denote the population mean of a variable
y in a crossclass defined by the value z=j of a
crossclass variable Z, assumed to be observed for
all units in the sample. Other notation for pop-
ulation and sample quantities in crossclass j is
given in Table 3 B); the notation parallels that
in Table 3 A) with an additional subscript j for
the crossclass.

Six estimators of ¥, are shown in Table 5, with
their bias and variancé properties under a re-
stricted sampling distribution with y values, re-
sponse indicators, and cell respondent and non-
respondent sample sizes in the crossclass held
fixed.

Three of the estimators in Table 5, the un-
adjusted crossclass mean y,. and the adjustment
cell estimates from weightifg (7(2)) and from im-

putation (§§z)), have already bedn introduced for

the example in Table 2., The poststratified cross-—
class mean §'S is obtained when the weights

(p /pclb lthd® result in the poststratified esti-
mator 'y, are applied to respondents in adjustment
cell c, crossclass j, The adjusted mean y(1) is
obtained by weighting or mean imputation I8 with-
in adjustment cells formed by the joint classifi-
cation of A and Z. Finally §§4) is a model-based

estimator motivated by the im%utations leading to
ygg). These imputations {§c+R} pool the y values

agross subclasses within adjustment cells, and
hence effectively assume that

chR = YckR for all j, k . (9)
If the assumption (9) is firmly held, then a nat-
ural alternative is to pool across crossclasses
when estimating respondent as well as nonrespon-—
dent means in cell ¢, crossclass j. This leads
to the estimate §c _for §c' in cell c, cross-
class j. Weighting Ye4r bprc. yields ygz), as
given in the table. With compiete respohse,

§§4) reduces to the so-called synthetic estimator,

sgmetimes used when ¢ represents census classi-
fiers such as age, race and sex, and Z represents
a small area classification (e.g., Gonzalez and
Hoza, 1978).

3.2 Large Sample Bias of Crossclass Mean
Estimators
The following results are obtained by consider-
ing the expressions for bias in Table 5 when the
sample size becomes large: _
1) The LSB of ij is Y+jR - Y+j’ which is zero




2)

3)

4)

when response and y are independent within
crossclasses.

If y ll rlx, then y(l) has zero LSB under pre-
dictive mean or res onse propensity stratifica-

tions for A. To see this, note that §j is a

domain mean when adjustment cells are based on
A and Z, so the arguments of section 2 apply
here.

If y il_ ]x then y(z)and y
with RP stratiflcatlon but §n general non-zero
LSB with PM stratification. To see this, note
that the LSB of these estimators differs from
the LSB of ygl) by the quantity Q= Z(P " cj)
=P __.B BI/EP.B,Bl. If A
cj "ejejesre'je'je

is formed by RP stratlflcation then response
rates are homogeneous within A (that is, ex—

have zero LSB

chR’ where P

pression (6) holds), so B .—B and P cj for
all ¢, and hence Q=0. In general, Q%O for PM
stratification. -(3) —(&)

If y ll rlx, then y, and y., 'have zero LSB

jA
with PM stratlflcation but 1n general non-zero

LSB with RP stratification. To see this, note
that these estimators have zero LSB with

YC. =Y kR for all k, or more generally when

y Z|A. This condition is satisfied by PM

stratification, but not in general by RP
stratification.

3.3 Conditional Mean Squared Error Increments

for Crossclass Mean Estimators
The conditional mean squared error increments
(AMSE) for the estimators in Table 5 have quite

1

2)

3)

4)

complicated expressions.
ments can be made, however:
Comparisons of yJR and y(l) parallel compari-

Some general state-

sons of y and y,, except that they apply to
quantlties calcuéated within the crossclass.

Thus §§k) dominates §jR with respect to AMSE

except when a) variability of y across the ad-
justment cells is small, and b) the sample
sizes n are small. Note that b) is more
likely %gr crossclass means than for domain
means, since subclassification by crossclass
reduces the sample sizes. Indeed, joint stra-
tification by Z and A may yield cells with
. >0and n = 0, in which case y(1) can-

no% be calcula%ed ia
RP stratification yields estimators with small-
er AMSE than PM stratification, since the
within-cell variance of y is minimized.
With PM stratification, the model estimator

(4) should have lower AMSE than y(3)or y(k)

s{nce the distribution of y within” adJust&ent
cells is homogeneous. However, as the simula-
tions in section 4 show, the model estimator
is more sensitive to departures from homo-
geneity than the other estimators, so its use
requires careful modeling of the regression of
y on x when forming the adjustment cells.
Unlike y(l) the weighting estimators y(2) and

V. ‘s do ngt require respondents in all c% 1s
> 0.
may have lower AMSE than

(c,3) where n_,

that 3(2) and %

- A
;i) 3 when the respondent sample sizes

This property suggests

Table 5. Estimators of Crossclass Means

Estimator [ Bias I Variance
- = M - - 2
ViR T EPesr Yegr z pejrPegn) Yesrt (MhgroYay) E Pejr Scik/ MR
75 p .3 B, = T (pi-P ) Y 4T Po(Y 0¥ ) L pgy Ugs
yM c cj “cjR 1 e eded ch c¢j' c¢jR '¢j o € el
-(2)_ p2 U .
JA L pCJ CJR B, + I (pCJ pca) Y k pCJ UCJ

[d c C
ij E pcj ych BI + ﬁ (pcj pcj) chR E pCJ UCJ
2(n_.-n_.p)
=(3)_ 5 2 2 cj cjR )
Yia'T L Pej Yesr B + 2 po;(1-b )05 Pejibey (1 + — " W y+(1-be3) V50
o c c

_(4)_ -
YT é Pej Yeir B ¥ g Pej ch z ch VcJ
Notes: the following quantities in the table require definition:

N -1 ~ 1. 5
Mm pcj pc3 cj c /ch jc Jb (4) ch =z MekR Me+R (YckR chR)

“w 1 o2 _
(2) p chchbc /z pc|J ctiber (5) Ugs = Scir/Mesr

where p*. = p .P_/p

cj cj ¢ Pe - 2 2
(6) Vej = T neyp Sckr/Near

(3) 9ch = bej¥eir * (]'bcj)yc+R



{n } are small. We examine this possibility

cjR
in the next section.

4, A SIMULATION STUDY

4.1 Description of the Study

A simulation study was carried out to explore
the mean squared errors of the estimators in
Tables 4 and 5. Six factors affecting the mean
squared error of the estimators were chosen as
parameters in the study:
A

: variation of population response rates
7 {B_} between adjustment cells;

B”: variation of population response rates

{B .} between crossclasses, within adjust-

ment cells;
MA: variation of population means {YC+} between
adjustment cells; B
M”: variation of population means {YC.} between
crossclasses, within adjustment aells;
correlation between response rates {BC} and
cell means {¥  };

: ct+

S : sample size.

Each of these factors was assigned two levels
(l=Low, 2=High) and the factors varied in a 2
factorial design, yielding 64 problems, For each
problem, 100 independent sets of sample sizes
{n.;} and respondent:sample sizes {n.:p} were gen-
era%ed, and for each set the root meah squared
error (rmse) of each estimator in Tables 4 and 5
was calculated, using the formulae in the tables.
Distributions of relative rmse's over the 100 data
sets were then computed and summarized to yield
measures of comparative performance. The simula-
tions are similar to those of Holt and Smith
(1979) directed at the effect of poststratifica-
tion on estimates from completely observed simple
random samples. However, our simulation design is
considerably more complex since additional factors
are involved.

Populations were constructed with twelve cells,
formed by the joint classification of a six cate-
gory adjustment cell variable A and a two category
crossclass variable Z., The percentage distribu-
tion {100 pc.} of the population across these
cells was fixed, with values shown in Table 6A).
Four sets of response rates {Bcj} were determined

R

by the levels of the factors BA and BZ. Table
6B) shows two choices (BA=1,2) for the marginal
response rates {B,}, averaged over crossclass.
Note that the variation of the response rates is
small when BA=1 (60% to 70%) and large when BA=2
(40% to 90%). The factor BZ determines the re-
sponse rates for each crossclass within the adjust-
ment cells. When BZ=1, {B_.} arecalculated so that
Bc2=1'02 Bc for all c, so variation of response
rates betweéen crossclasses is small. When B4=2,
B. =1.2 B., for all ¢, so thevariation of response
ra%es between crossclasses 1s large.

Means {YC.} for the outcome variable y were de-
termined by 1evels of the factors MA and MZ,
Table 6C) shows two choices (MA=1,2) for the mar-
ginal means {Yc+} averaged over crossclass. Note
that variation of these means is smaller when MA=1
(30 to 40) than when MA=2 (10 to 60). These ranges
can be compared with the within cell variances
{Ves} of the y values, which were set to 100 for
all the cells. The factor MZ determines the means
{Yci} for each crossclass within the adjustment

Table 6. Parameters for Simulation Study*

A} Population Distributions, {100 ch), {100 PC)
Cell, A
1 2 3 4 5 6
Crossclass, 1 [ 3.66 7.32 9.76 12.20 13.41 12.20( 58.54
z 2 18,5 976 7.32 6.10 6.10 3.661 41.46

ALL 12.20 17.07 17.07 18.29 19.51 15.85 100.00

B) Population Response Rates, Averaged over Crossclass, (Bc)

Cell, A
FACTOR 1 2 3 4 5 6
BA =1 0.60 0.62 0.64 0.66 0.68 0.70
BA =2 0.40 0.50 0.60 0.70 0.80 0.90

C) Population Means, Averaged over Crossclass, {;c+)

Cell, A
FACTOR 1 2 3 4 5 6
wh = 0 32 38 40
W= 2 0 20 3¢ 40 50 60

*
Other parameters are described in the text.

cells. When M%=1, {?c‘} are calculated so that
Yo=Y+ 2 for all ¢, s6 variation of means be-
tween crossclasses is small. When MZ=2, {ch}
are calculated so that YC2=YC1+10 for allj, “so
variation of means between crossclasses is large.
The respondent means {?C.R} were set equal to
{Y.:} for all ¢, j. However, Yoig 7 Yoy since
theSe marginal means are composed of different

linear combinations of the cell means Y andYCZ

cl

Two other factors, R and S, complete the des-
cription of the simulation design. When R=2, the
response rates and population means are arranged
as in Table 6, so they have a strong positive
association: both the response rates and the cell
means increase across the adjustment cells, When
R=1, the marginal response rates {B.} and the cor-
responding within adjustment cell rates {B.:} are
permuted so that rates indexed 1, 2, 3, 4, and
6 are assigned to cells 1, 3, 5, 2, 4 and 6 re-
spectively. This change largely eliminates the
association between the means and the response
rates. Finally, two sample sizes are chosen,
n=240 (S=1) and n=2400 (S=2). These sample sizes
are reduced by about 40% by nonresponse, and of
course are further reg?zed for crossclass mean
estimates other than y'R)‘

The sample sizes {nc.} are selected by multi-
nomial random number ge%erator GGMIN in the IMSL
subroutine library, (IMSL, 1980), under the as-
sumption that they have a multinomial distribution
with index n and probabilities {P.,} given in
Table 6A). The respondent sample sizes {n, r}
are selected by the binomial random number genera—
tor GGBN in the IMSL library, under the assumption
that they have independent binomial distributions
with indgx n,. ﬁnd probabilities B,; determined by
values B an&JB-. To avoid indetertinacy in the
estimators in Table 5, samples were restricted to



outcomes where n_., > 0 for all ¢ and j, a similar
strategy to that adopted by Holt and Smith (1979).

4,2 Summary Results

For each sample, the root mean squared error
for each method was calculated as the square root
of the sum of the bias and variance in Table 4
or 5. ?latlve rmse's were then calculated with
§A and Yin's the estimators obtained by weighting
respondeﬁts by the inverse of the response rates
in the adjustment cells, as baseline estimators.

Hence
rel(yR) =100(rmse(y )/rmse(yA) -1),

rel(ys) lOO(rmse(ys /rmse(yA) =1)
for estimators in Table 4, and @
rel(y. R) lOO(rmse(yJR)/rmse(yJ -1,...,

2% for estimates of the crossclass mean. Post-
stratification is useful here, as in the com-
plete data simu%aglons of Holt and Smith (1979).
The estimator y.,/, obtained by further subdivi-
sion of the adJ&stment cells by crossclass, per-
forms slightly better than y on average, with
a 3% reduction in rmse. -(3)
Imputation within adjustment cells (y ) is
markedly wgrse than weighting within adgastment
cells (y )}, with an average increase of 667 in
T e reason for the poor performance of
e CON
jA

rmse.

imputation and its model-based relative y
discussed below.

4.3 Detailed Analysis of Root Mean Squared
Errors
Detailed performance of the estimators is sum-

rel(y(4)) 100(rmse(y(4))/rmse(y(z)) 1),

for estlmators in Table 5.

marized in Table 7. A preliminary six-way analysis
of variance of the average relative rmse's allowed
two of the six factors to be eliminated with minor

The average relative rmse over the 100 gener-
ated samples is used to summarize relative per-
formances of the estimators for each problem.
Crude rankings of the methods are obtained by
further averaging over the 64 problems, which
yields the following results:

Relative rmse's(rel)

loss of information, v1z. BZ and MZ for analyses
of rel(yR) and rel(y , and B® and R for analyses
of the other estlmatgrs. The first sixteen rows
of Table 7 give average relative rmse's for each
of the sixteen combinations of the reduced factor
set, ranked from low to high on the first esti-
mator presented. The following eight rows give
marginal means for the two levels of each factor,

- - - - - - -(4
YR Yg Yir ygi) Vig y§z) §R) averaged over the other factors (M denotes aver-
112 _12 g% 33 iz 66 254 age in the table). These means are omitted when

Thus §R has on average 1127 higher rmse than §A,
reflecting its large bias for some problems.
Within crossclasses, y., has on average a 68%
higher rmse than §§§), a large increase but
smaller than that for ;R, reflecting the fact
that the benefits of adjustment increase with the
sample size. -(2)
Comparisons of yS with yA and y, ig with y, ia

the differential is small. Finally, the last row
gives the overall means, as presented in section
4.2, The main features of Table 7.are as follows:
1) The adjusted means YA and y dominate the
unadjusted means YR and y except when S=1,
R=1, BA=2 and MA—l The Rbenefits of adjust-
ment increase markedly when S, R, BA and MA
are set to high levels, reflecting conditions
where nonresponse bias of the unadjusted means

show the effects of poststratifying on the popu- ? large. -(2)
lation proportions {P_} when available. The 2) y has slightly lower rmse than y.,”, with
rmse is reduced by an average of 12% for esti- greatest reductions when M%, § or BZ are

mates of the overall mean, and by an average of

set to high levels. In comment 4) of section

Table 7. Average Relative Root Mean Squared Errors, Expressed as Percent Deviations, Classified by Four Most Important Factors
* - - * - -
FacTor” | Re1(5p) | Rer(3p) FACTOR Rel(Gg) | Rel(yyq) FACTOR Re1(y(3)) Rel(y(4)) EACTOR Re](y(]))

s R B M s 82 Wb W s 82 W W s gt wt W
11 2 1 -1 -3 21 2 1 =28 -5 22 21 -19 -9 22 2 2 -13
111 1 1 1 12 2 1 -28 -4 12 1 1 -14 -16 2.2 2 1 -9
211 1 2 1 22 2 1 -26 0 11 1 -12 -15 2.2 1 2 -5
121 1 4 2 11 2 1 -26 -7 12 2 1 -1 -14 12 2 2 -5
21 2 1 10 3 11 2 2 -24 -7 11 2 1 -1 -14 11 2 -4
111 2 13 7 21 2 2 -24 -4 21 2 1 -6 12 11 2 2 -3
2 11 2 17 11 12 2 2 -19 -2 22 1 -5 36 2.2 1 -3
112 2 20 11 21 1 -3 -2 21 1 -4 34 21 2 -2
221 1 24 15 2.2 11 -3 -1 11 2 2 17 143 12 21 -2
121 2 29 17 21 1 2 -2 -2 12 2 2 26 160 21 1 2 -1
12 2 1 35 19 11 1 -2 -1 11 1 2 45 235 21 2 2 -1
21 2 2 72 38 T2 o1 -2 0 12 1 2 61 254 21 1 1 -
221 2 146 91 111 2 -2 -1 21 2 2 181 682 12 1 2 -1
2.2 2 1 196 151 T2 1 2 0 0 2.2 2 2 185 621 11 1 2 -
122 2 260 135 22 1 2 1 -1 21 1 2 287 966 11 1 1 0
222 2 964 584 22 2 2 3 0 2.2 1 2 339 990 12 1 1 0
1 MMM M 45 1T M M M 1T M M M 13 92 T M M M -2
2 MM K 179 2 M N M 2N M M 120 47 2 M M M -4
M1 M M 17 9 M1 M M -14 -4 M M M M1 M M -2
M2 M M 207 1e7 M2 M M -9 -1 M2 M M M2 M M -5
MM T M 29 18 MM 1 M -2 -1 MM 1 M 87 amn MM 1 M -1
M M2 M 194 17 MM 2 M -22 -4 MM 2 M 45 198 MM 2 M -5
MMM 34 24 MM M -15 MM M -10 .2 MM MO
MMM 2 190 12 MM M 2 -9 MM M 2 142 507 MM M 2
MMM M 12 68 MM M M -12 -2 MM M M 66 254 MM M M -3
*
1 = Low, 2 = High, M = Average



3,3, we speculated that §§2) may outperform
§§i5 for small sample siz8. This does not
happen in Table 7, but y{2) had slightly lower
(1%) average rmse in sup éementary simulations
at a smaller sample size, n=80. -(2)

3) Comparisons of g with Ya and yjS with yjA
indicate that poststratification nearly always
reduces rmse for the problems simulated. Gains
are greatest when a) MA=2, b) BZ=1 and c) the
overall mean rather than crossclass means are
considered. These findings agree with those of
Holt and Smith (1979) for complete data.

4) For crossclass means, imputation (§$3)

forms weighting (§§2)) when MZ=1, JAthat is,
crossclass means wléhin adjustment cells are
nearly equal. This should be the case with PM
stratification. However y! does very poorly
when MZ=2, where bias dominates its rmse.

5) The model estimator y. should dominate all
estimators if crosscld8s means are equal within
adjustment cells. Nevertheless, whep this con-
dition is E?agly satisfied (MZ=1), y¢3) still
dominates y.4 in our simulations, iﬁéicating
sensitivityjof ¥ to even mild departures
from the modeliné assumption. §(2) is partic-
ularly bad in large samples(S=2ﬂ and has very
high rmse when M%=2, when it is seriously
biased.

) outper-

5. NEW APPROACHES

5.1 Introduction

It would be quite unjustified to draw general
conclusions about the relative merit of the esti-
mators in Tables 4 and 5 from the simulations in
section 4, since the results are highly dependent
on the parameter levels chosen in the study.
Nevertheless the simulations do illustrate how
the relative performance of the estimators
changes as a result of changes in the sample size
and in the population structure. If adjustment
cells are chosen by PM stratification, then mean
imputation within the adjustment cells works well,
and weighting yields the same estimator for domain
means and somewhat less efficient estimates for
crossclass means. If adjustment cells are chosen
by RP stratification, then weighting successfully
controls nonresponse bias but may have large vari-
ance, and imputation controls variance but may
lead to serious bias.

Weighting class estimators based on RP strati-
fication have useful bias reduction properties,
and are particularly economical for data sets con-
taining a large set of y variables with the same
missing data pattern. However, weighting need-
lessly increases the variance when the outcome
variable y is not related to the propensity to
respond. In this concluding section, we propose
modified weighting class estimators that seek to
limit variance whilst retaining the ability to
adjust for nonresponse bias. Section 5.2 con-
siders the case of domain means, and section 5.3
considers crossclass means.

5.2 Modified Weighting Class Estimators
for Domain Means
A straightforward approach to limiting the var-
iance of estimates of domain means is to regress
y on the estimated response propensity p(x) using

the respondent sample (David, Little, Samuhel and
Triest, 1983). If the coefficient of p(x) is
significantly different from zero, then adjustment
is in order. A regression more closely related
to RP stratification is obtained by replacing the
regressor p(x) by dummy indicators for the ad-
justment cells. If an F-test for the adjustment
cell coefficients reveals significant effects,
then §A is chosen; otherwise § is chosen.
An elaboration of the above approach that

leads to a compromise between y, and yp is ob-
tained by fitting separate means for each adjust-
ment cell, but treating the means as random vari-
ables from a common distribution. The simplest
version of the model assumes that

Oerl¥eps Sepos ™ ~ NI, 8%/n g) (10)
T gl8Zzovs 1D ~ N, 1),

where N(a,b) denotes the normal distribution with

mean a, variance b, Given y, SgR and 12, Y

can be estimated by its posterior mean

g 2 .2
BT g 1801

cR

-1 = ~1,. 2,02 =1
) yCR+ncR(T +S5,n Yy (11)

= 12(12482 )
TS g cRcR

cR7cR
= ncR(ncR+X) t Yer* A(ncR+A) 1 s
if 82.=S2 is constant across cells, and A= Sﬁ/Tz,
the ratio of within cell to between cell vari-
ances., In practice, p and X need to be estimated
from the data.

If adjustment cells are chosen so that n R is
constant across adjustment cells, then an ¢
efficient estimator of yu is § ;s A can be esti-
mated by equating observed ang expected means
squares from analysis of variance, or by the
more refined procedures of Hill (1980). If
{n R} vary across cells, then the iterative pro-
cedures of Carter and Rolph (1974) can be used to
estimate y and A.

. Replacing p and X in (11) by estimates y_, and
A, and substituting the resulting estimate of

Y g for y p in (2) yields an empirical Bayes (EB)
estimator of Y: C
- _ -1 - -1
YEp~ My I ng ch(Acbc ), (12)
c=1
where
n . (n + k)
3 cR ¢ 1 (13)

c nc(ncR + kz)

is a modification of the weight b;l in §A’ and
C A
-1
by nc(nCR+A) R
1 s ko=,

2 -1
Lt R (PegtM)

k =1 _C

—
L el l]

[

Note that y is close to y, when adjustment
is beneficial %Earge samples, éarge ratio of be-
tween to within variances) and otherwise is close
to §R’— Thus it is an attractive compromise be-
tween y_ and y,. However, the factors A  for
multiplying the raw weights b " require Some com-
putational effort, and are digferent for each of
a set of y variables., Thus some of the simplic-
ity of the propensity weighting scheme is lost.

The key assumption of (10) is that the under-
lying cell means YcR are exchangeable. If on the



contrary the means are systematically related to
the cell response rates b _, then a random effects
model.that shrinks towards the regression line
W+ B(b -b,) rather than towards the point §R’
would be preferable. Such a model would combine
elements of (10) and the fixed effects regression
model that opened this section. A plot of ¥y R
against b should serve as a useful diagnost%c
tool for determining whether this more elaborate
model is needed.

5.3 Modified Estimators for Crossclass Means
The empirical Bayes estimator_(lz) is obtained
by weighting respondents by Ac bcl, where Xc is

given by (13). If crossclass means are estimated
using this weighting scheme, the result is an
estimator that behaves like y\ when sample sizes
are large, and like y,_ when ample sizes are
small. The regression of y on p(x) in section
5.2 also provides guidance as to whether adjust~
ment of y,  for nonresponse is needed, although
more specl%ic information may be obtained by re-
stricting the regression to respondents in the
crossclass.

If regression prediction is used to impute for
nonrespondents, and elaborate regression modeling
of y is too time consuming, then one might wish
to restrict the regressors to the propensity
score p(x) and dummy indicator variables for the
crossclasses of interest. The inclusion of the
latter variables avoids bias from imputing means
that average over crossclasses that are hetero-
geneous with respect to y. The inclusion of re-
sponse-propensity as a regressor protects against
nonresponse bias.

In summary, a number of alternative approaches
can be envisioned for improving the estimators of
Table 5, short of full modeling of the relation-
ship between y and the crossclass variable and
other regressors.

REFERENCES

Carter, G.M. and Rolph, J.E. (1974). '"Empirical
Bayes methods applied to estimating fire
alarm probabilities," Journal of the American
Statistical Association, 69, 880-5.

David, M., Little, R., Samuhel, M., and Triest, R.
(1983). '"Nonrandom nonresponse models based
on the propensity to respond," Proceedings of
the Survey Research Methods Section, American
Statistical Association 1983,

Dawid, A.P. (1979). "Conditional independence in
statistical theory," (with discussion),

Journal of the Royal Statistical Society,
Series B, 41, 1-31.

Ernst, L.R. (1980). '"Variance of the estimated
mean for several imputation procedures," Pro-
ceedings of the Survey Research Methods Sec-
tion, American Statistical Association 1980,
716-720.

Gonzalez, M.E. and Hoza, C.

(1978). "Small area

10

Rubin, D.B.

Thomsen, I.

Thomsen, I.

Welniak, E.G. and Coder, J.F.

estimation with application to unemployment
and housing estimates,'" Journal of the Ameri-
can Statistical Association, 73, 7-15.

Hanson, R.H. (1978). 'The current population
survey, design and methodology," Technical
Paper 40, Bureau of the Census, Washington,
DC 20233.

Hill, B.M. (1980). "Robust analysis of the
random model and weighted least squares re-
gression," in Evaluation of Econometric
Models, New York: Academic Press.

Holt, D. and Smith, T.M.F. (1979). '"Poststrati-
fication," Journal of the Royal Statistical
Society, Series A, 142, 33-66.

IMSL (1980)., IMSL Library, Edition 8. Reference
Manual. IMSL, Inc., 7500 Bellaire Boulevard,
Houston, TX 77036.

Kalton, G. and Kasprzyk, D. (1982). "Imputing
for missing survey responses,' Proceedings of
the Survey Research Methods Section, American
Statistical Association 1982, 22-31,

Kalton, G. and Kish, L. (1981). '"Two efficient
random imputation procedures," Proceedings of
the Survey Research Methods Section, American
Statistical Association 1981, 146-151.

Little, R.J.A. (1982). ''Models for nonresponse in
sample surveys," Journal of the American Sta-
tistical Association, 77, 327-350.

Little, R.J.A. and Samuhel, M.E. (1983)., "Alter-
native models for CPS income imputation,'" Pro-
ceedings of the Survey Research Methods Section,
American Statistical Association 1983.

Oh, H.L. and Scheuren, F. (1980). "Estimating the
variance impact on missing CPS income data,"
Proceedings of the Survey Research Methods
Section, American Statistical Association 1980,
408-415,

Oh, H.L. and Scheuren, F.S. (1983). "Weighting
adjustments for unit nonresponse," in Incom-
plete Data in Sample Surveys, Vol. 2, W.G.
Madow, I. Olkin and D.B. Rubin, eds. New York:
Academic Press.

Rosenbaum, P.R, and Rubin, D.B. (1983). '"The
central role of the propensity score in obser-
vational studies for causal effects,”
Biometrika, 70, 41-55.

(1978). '"Multiple imputations in

sample surveys - a phenomenoclogical Bayesian

approach to nonresponse,' Proceedings of the

Survey Research Methods Section, American Sta-

tistical Association 1978, 20-34,

(1973). "A note on the efficiency of

weighting subclass means to reduce the effects

of nonresponse when analyzing survey data,"

Statistik Tidskrift, 11, 278-283.

(1978). "A second note on the effi-

ciency of weighting subclass means to reduce

the effects of nonresponse when analyzing sur-

vey data," Statistik Tidskrift, 16, 191-196,

(1980). "A measure

of the bias in the March CPS earnings imputa-

tion scheme,”" Proceedings of the Survey Re-

Search Methods Section, American Statistical

Association 1980, 421-425,




