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Introduction 
Data from complex survey designs require 

special consideration with regard to variance 
estimation, due to the departure from simple 
random sampling assumptions. Design components 
often include unequal selection probabilities of 
elements in the population, with several stages 
of clustering. Stratification and proportionate 
representation are two widely used design 
features of many general purpose surveys to 
increase precision and minimize bias. Dispro- 
portionate sampling is another strategy adopted 
to insure sufficient representation of specific 
subgroups from an underlying population, while 
simultaneously allowing for the capacity to 
yield reliable estimates of relevant charac- 
teristics for the complete target population. 
In addition, the estimation procedures often 
include unequal weighting factors, adjustments 
for nonresponse, and poststratification. 

Standard methods of variance estimation which 
assume simple random sampling generally result 
in an under-estimation of variance, when used 
with data from a complex survey design. 
Observations made on sampling units are not 
independent due to the correlations induced by 
cluster sampling and stratification. Several 
methods of variance estimation have been 
developed, which incorporate the complex survey 
design components in their derivation. In this 
study, design effects are determined for a 
representative set of survey statistics specific 
to data from the National Medical Care Expendi- 
ture Survey. The survey statistics under 
consideration estimate medical care utilization, 
expenditures, and health insurance coverage 
characteristics of the U.S. population. These 
statistics are expressed in terms of domain 
means, and proportions. Controlling for 
criterion variable type and range, class of 
statistic and sample size, the design effect 
variation is examined. In addition, the 
accuracy of alternative methods of variance 
estimation appropriate for complex survey data, 
which include the average design effect model 
and relative variance curve technique, are 
compared. 
Design of the National Medical Care Expenditure 
Survey 

The National Medical Care Expenditure Survey 
(NMCES) has been established to assess the 
health insurance coverage, health-related 
utilization, costs and sources of payment for 
the civilian population of the United States 
from a multistage national probability sample of 
approximately 14,000 households. The data are 
meeting the needs of government agencies, 
legislative bodies, and health professionals for 
more comprehensive national data required for 
the analysis and formulation of national health 
policies. The survey was designed to provide 
data for a major research effort in the Division 
of Intramural Research of the National Center 
for Health Services Research (NCHSR) and cospon- 
sored with the National Center for Health 
Statistics (NCHS). The survey was conducted 
from samples chosen by two survey organizations, 

the Research Triangle Institute (RTI) and the 
National Opinion Research Center (NORC). Data 
collection was applied to the same panel of 
sample households in three rounds of personal 
interviewing and three rounds of telephone 
interviewing to cover the year 1977. 

The sampling design can be characterized as 
two independent replicates of similar four stage 
probability samples of the noninstitutionalized 
population, with multivariate stratification in 
the first two stages (Cohen and 
Kalsbeek, 1981). The survey population for 
NMCES included both residential housing units 
and a special class of group quarters. Sampling 
units in the first three stages of each 
replicate are land areas ranging in size from 
small groups of contiguous counties in the first 
stage to small area segments consisting of a few 
dozen housing units. Sampling units in the 
first stage were generally stratified by 
location in the country, degree of urbanization, 
and size of city (RTI) or by family income and 
percentage black (NORC). Selection in each of 
the first three stages was with probabilities 
proportional to certain size measures. Individ- 
ual housing units were chosen in the fourth 
stage from a machine-readable frame by a 
systematic sampling method. 

Estimation from NMCES implies the need for 
appropriately formulated sampling weights to 
reflect the variation in selection probablities 
for observation units. NMCES sampling weights 
consist of the reciprocal of the original selec- 
tion probability, multiplied by a number of 
needed adjustments. A nonresponse adjustment 
was used to partially accommodate the effect of 
nonresponse among eligible units, which for one 
reason or another, did not participate initially 
or for all rounds of interviewing. A second 
adjustment was designed to accommodate the 
smoothing of excessively large sampling 
weights. A third so-called post-stratification 
adjustment served to force sums of weights to 
presumably more accurate Census population 
figures for the nation by age, race, and sex. 
Design Effect Variation in the NMCES 

Given the complex nature of the NMCES survey 
design, the assumptions of independence and 
equal selection probabilities are not 
satisfied. The extent of the departure from 
simple random sampling assumptions, and its 
impact on variance estimation, is measured by 
the design effect. The design effect is defined 
as the ratio of the true variance of a statistic 
to the variance derived under simple random 
sampling assumptions. The more notable the 
deviation from unity, the more severe the risk 
of inaccurate statistical inference when estima- 
ting variances for statistics derived from 
complex survey data under simple random sampling 
assumptions. 

The impact of a complex survey design on 
variance estimation is best illustrated by the 
following relationship: 

o 2 ~ [I + P (n - I)] 

complex = SRS 
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where o 2 complex is the true variance of a 
statistic derived from complex survey data, 

o 2 is the variance estimate obtained for the 
stS~stic under simple random sampling 
assumptions, 

n is the average cluster size, and 

P is the intra cluster correlation coefficient. 

Consequently, the design effect can be expressed 
as: Design Effect = 

o 2 

complex = [I + P (n- I)] • 
~2 

SRS 

When the effects of clustering are dominant in a 
survey design, and the average cluster size is 
moderate to large, the design effect markedly 
deviates from unity. It presents a powerful 
argument for the need to appropriately 
accommodate the complexities of a survey design 
in variance estimation strategies and subsequent 
analyses. 

The three most generally accepted and 
frequently used techniques are the method of 
Balanced Repeated Replication (BRR), the "jack- 
knife" method, and the Taylor series lineariza- 
tlon method (McCarthy, 1966; Kish and Frankel, 
1974). These variance estimation strategies 
have been incorporated in several of the promi- 
nent statistical packages. Use of these proced- 
ures would be prohibitive with respect to 
computation time and cost, however, if applied 
to each parameter estimate of interest. Conse- 
quently, most users are willing to accept modest 
levels of bias that result when alternative 
cost-effective variance estimation strategies 
are applied. Two alternative variance 
estimation procedures which incorporate the 
complexities of the survey design in their 
derivation have gained widespread usage in the 
statistical community. They are referred to as 
the average design effect model and the relative 
variance curve technique (Cohen, 1981, 1982). 

Using data from the NMCES, the accuracy of 
these alternative methods of variance estimation 
were compared for a representative set of 
statistics expressed in terms of population 
totals and means (Cohen, 1982). Three distinct 
classes of statistics were considered in an 
attempt to represent the diverse set of 
statistics available from the NMCES data base: 
narrow, medium and wide range. The average 
design effect model consistently demonstrated a 
superior performance in its capacity to yield 
variance estimates with the greatest accuracy. 

This study will further investigate the 
properties of the average design effect model 
and determine whether gains in precision and 
accuracy are achieved through the introduction 
of stratification on the criterion variable of 
interest. For a wide range of survey 
statistics, the design effect variability will 
also be examined to determine those conditions 
under which stability and proximity to unity are 
noted. Similarly, conditions associated with 
marked design effect departures from unity will 

be identified. In this study, approximately 
unbiased estimates of variance for survey 
statistics are generated through the Taylor 
Series linearization method, and used in the 
determination of design effects (Woodruff, 
1971). 

To provide for a comprehensive investigation, 
design effects are determined for a representa- 
tive set of survey statistics which estimate 
medical care utilization, expenditures, and 
health insurance coverage of the U.S. 
population. The utilization measures include 
the number of physician visits, hospital admis- 
sions and number of prescribed medicines. More 
specifically, physician visits consisted of all 
ambulatory physician contacts, excluding 
telephone calls. Hospital admissions included 
admissions of less than 24 hours and those for 
women giving birth. Newborns were not counted 
as separate admissions unless they were admitted 
separately following delivery. Prescribed 
medicines included any drug or other medical 
preparation prescribed by a physician, including 
refills. Expenditure data for each of these 
utilization measures were also considered: 
physician visit expenditures, total expenditures 
for prescribed medicines, and total expenditures 
for all hospital admissions (with charges 
excluded for inpatient physician services). The 
measure of health insurance coverage indicated 
the presence of private health insurance 
coverage. In addition, the domain defining 
demographic measures for the survey statistics 
under consideration included age (<5, 5- 
14,...55-64, 65+), race (white, nonwhite), sex 
(male, female), health status (excellent, good, 
fair, poor), marital staLus (<17, never married, 
married, widowed, separated, divorced), years of 
education (0-8, 9-11, 12, 13-15, 16+, under 17 
years of age), employment status (worked, unem- 
ployed, not in labor force, <16) and size of 
city (SMSA, non-SMSA). 

The diverse set of selected criterion 
variables also served to represent three 
distinct classes of survey statistics: narrow, 
medium and wide range. More specifically, the 
class of narrow range statistics was determined 
by data at the individual level, whose measure- 
ments generally fall within the range of 0-3. 
These measurements usually serve to indicate the 
presence or absence of a population attribute or 
its frequency of occurrence. Similarly, medium 
range statistics consist of measurement which 
infrequently fall outside the range of 0-10. 
Wide range statistics are characterized by data 
more continuous in nature that have much higher 
upper bounds. 

The class of narrow range statistics is 
represented by NMCES data on insurance coverage, 
and number of hospital admissions. Data on 
ambulatory visits and number of prescribed 
medicines served to represent the medium range 
class. The class of wide range statistics is 
represented by the following measures: total 
expenditures for hospital admissions, physician 
expenditures, and total expenditures for pre- 
scribed medicines. 

For each of the selected criterion variables, 
domain estimates were generated in terms of 
population means or proportions when 
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appropriate. The domain estimates are defined 
by marginal or cross-classified distributional 
categories of the selected demographic 
measures. For example, consider the mean annual 
expenditures for ambulatory physician visits 
within specific age-race-sex-health status 
classes of the U.S. population. The domain 
estimate, Yg, is derived as: 

= ~ WlXgiYi 

g Z WiX i gi 
where Y. is the ith individual's expenditures 
for medical provider visits, 

W. is the ith individual's sampling 
weight, expressed as the reciprocal of 
its selection probability and multiplied 
by nonresponse and post-stratification 
adjustments, and 

X i = 1 if the individual is a member of 
th~ gth age-race-sex-health status 
domain, 

= 0 otherwise. 

Controlling for criterion variable type and 
range, class of statistic and sample size, the 
design effect variation is examined. 

Tables A-G present the design effect 
variation for domain estimates of the selected 
criterion variables expressed in terms of 
population means or proportions. The quartile 
boundaries on sample size for the set of domain 
estimates under investigation were cross-classi- 
fled by the tertlle boundaries on the resultant 
mean (or proportional) estimates of the respec- 
tive health care measures, yielding twelve 
distinct strata. Within each of these strata 
and their marginal classes, the average design 
effect, its standard error and the sample range 
of design effects were derived. 

The most notable pattern in design effect 
variability was the positive incremental 
association of sample size with the value of the 
average design effect. This relationship was 
most obvious for domain estimates of the propor- 
tion of the population with private insurance 
coverage. In this setting, the average design 
effect ranged from 1.779 for domain estimates 
based on sample size less than 499, to 7.212 for 
sample sizes greater than 4960. Similarly, the 
pattern was quite evident for domain estimates 
of the mean number of prescribed medicines and 
mean expenditures for prescribed medicines. In 
the first setting, the average design effect 
differed significantly across stratum boundaries 
on sample size with a mean of 1.393 for domains 
characterized by n<498, contrasted to a mean 
design effect of 2.525 for n>4961. The pattern 
was also noticeable for domain estimates of the 
mean number of ambulatory physician contacts and 
related mean expenditures, though to a lesser 
degree. The pattern was least detectable for 
the domain estimates of the mean number of 
hospital admissions and related expenditures. 
Specifically, the average design effect for 
domain estimates of mean hospital expenditures 
differed significantly, with a mean of 1.07 for 
n<498 compared to a mean design effect of 1.201 

for n>4961. All tests of statistical 
signlf--icance are performed at the .05 level and 
consider z tests based on the asymptotic 
normality of the average design effects for 
specified domains. 

One potential explanation for this 
relationship on the insurance coverage data is 
the small range of variability exhibited by 
proportions as a function of the constraint: 
0< P (I-P) <.25. Consequently, the effects of 
clustering are more pronounced. In addition, 
ultimate cluster units in the NMCES sample 
design are the household or family. Since a 
strong relationship exists between individuals 
in the same household with respect to their 
insurance coverage, a clustering effect induced 
by the survey design was noted in the estimated 
variance. A similar relationship is present for 
the number of prescribed medicines, ambulatory 
physician contacts and related expenditures 
among members of the same household. Hospital 
admissions, however, are rare events and least 
likely to be associated with a clustering effect 
induced by members of the ultimate cluster 
units. Consequently, domain estimates derived 
for this data base are characterized by rather 
stable design effects with small departures from 
unity. 

No distinct relationshlp was observed between 
the average design effect and the respective 
tertile boundaries which characterized the 
distribution of criterion variable domain 
estimates. However, a significant incremental 
effect on the average design effect was noted in 
relation to the tertile distribution of domain 
estimates for insurance coverage. In this 
setting, the mean design effect was 2.532 for 
proportional estlmates <__.7, increasing to 3.458 
for the proportionate range .701 - .761, and 
measured at 4.636 for proportional estimates in 
excess of .761. On occasion, the mean design 
effect was more pronounced for the middle class 
of the criterion variable distribution 
characterizing the domain estimates, though not 
constituting a statistically significant differ- 
ence at the .05 level. 
Comparison Between Average Design Effect and 
Relative Variance Curve Strategy 

Variance estimates were not directly computed 
for each statistic considered in the NMCES, due 
to the constraints of computation time and 
cost. As noted, the two most frequently used 
alternative variance estimation strategies, 
appropriate for complex survey data, were the 
average design effect model and relative 
variance curve technique. Using NMCES data on 
health expenditures, utilization and health 
insurance coverage, the accuracy of these 
alternative methods of variance estimation were 
compared. Two design effect procedures were 
considered in the comparisons: the average 
design effect model stratified by sample size 
and criterion variable boundaries, and without 
stratification. For the design effect models, 
the variance of a domain estimate is derived by 
multiplying the respective variance estimated 
under simple random sampling assumptions with 
the appropriate design effect. 

The relative variance curve technique makes 
use of the empirically determined relationship 
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between an aggregate statistic, expressed as a 
population total, Y, and its relative 
variance. The relationship is expressed as: 

Rel Var (Y) = S~ o e + 8 

y2 y 

where S~ is the variance of the statistic 
generate~ from complex survey data, and e and 
8 are model parameters. 

Relative variances of ratio estimators, such 
as population means, are derived by considering 
the relationship which specifies the relative 
variance is approximately equivalent to the sum 
of the relative variance of the statistic's 
numerator and denominator components. The 
relationship is expressed as: 

Rel Var (R) " Re~ Var (N) + Rel Var (D) 
where R = -- 

D' 
N is the numerator estimate, and D 
is the denominator estimate of the 
ratio estimator, R. 

The relative variances of the numerator and 
denominator components are then estimated in the 
manner specified for aggregate totals. Conse- 
quently, the relative variance of the ratio 

estimator is estimated as: 

• N N D Rel Var (R) N + __ + D + D-- 

As in the average design effect model, only a 
representative subset of related parameter 
estimates are considered in the determination of 

the prediction equation. It is advised that the 
subset of related statistics included in this 
curve fitting procedure are defined by domains 
whose underlying demographic characteristics 
insure a wide range of variability in parameter 
estimates. Variance estimates of these 
statistics are derived by one of the direct 
methods appropriate for complex survey data. 

Several alternative curve fitting procedures 
with different optimization criteria have been 
considered for estimating model coefficients. 
These include a weighted least squares 
estimation strategy, and an iterative procedure 
that minimizes the relative squared deviations 
of predicted and observed relative variance 
estimators (Cohen, 1979). Once the model 
coefficients are determined, variances can be 
predicted for all related statistics by multi- 
plying the resultant relative variance estimates 
by the square of the statistic. 

To measure the accuracy of the respective 
variance estimation strategies, the average 
relative absolute difference between direct and 
predicted estimates of variance for domain 
specific population estimates, was considered. 
The measure took the form: 

A =  r. = 
i = l  "2  

S o i  

where S 2. is the variance estimated by the 
Taylor S°~ies linearization method for^~he i-th 
domain specific population estimate, S-. is the 
variance predicted by either the averag~ldesign 
effect or relative variance curve method for the 

i-th domain specific population estimate, and n 
is the number of domain estimates that 
constitute a representative subset for the 
criterion variable of interest. 

Table H presents the comparisons in accuracy 
for the alternative variance estimation 
techniques. Study findings revealed a 
consistently lower average relative absolute 
difference, (~), for both design effect methods 
over the relative variance curve technique. All 
observed improvements in accuracy were 
significant at the .01 level as determined by 
application of paired t-tests. The null 
hypothesis of interest was specified as: Ho: 
no difference in accuracy. The improvements in 
accuracy were most prominent for the prescribed 
medicine and physician related parameter 
estimates. In addition, the comparison across 
the two average design effect methods revealed 
significant improvements in accuracy were 
obtained through the introduction of stratifica- 
tion. 

The order of magnitude observed in the 
accuracy measure for the relative variance curve 
strategy was disturbing. The technique has 
gained a degree of respectability as a 
consequence of its theoretical justification and 
widespread usage among a large statistical 
audience. Given the potential costs incurred by 
application of one of the direct methods of 
variance estimation appropriate for complex 
survey data, most users are willing to accept 
modest levels of bias that result when 
alternative cost-effective estimation strategies 
are applied. The consistent improvement in 
accuracy obtained by the design effect 
estimation strategy argues that greater scrutiny 
must be given to the relative variance curve 
strategy prior to a decision for adoption. 

Table I presents the relative percent 
reduction in the average absolute relative 
difference obtained by using the design effect 
model over the relative variance curve 
strategy. This measure, I, which also indicates 
the relative percent improvement in accuracy, is 

expressed as: 

[A(RV)-A(Deff )] 
I = I00 . • . . . .  

A(RV) 

where A (RV) and A (Deff) are defined as the 
average relative absolute deviation in variance 
estimates for the respective relative variance 
curve and design effect strategies. 

The design effect models consistently yielded 
a reduction in A over the relative variance 
curve technique. For the average design effect 
model with stratification, the minimum relative 
reduction in A was 65 percent. For over 50 
percent of the specified comparisons, the reduc- 
tion was greater than 92 percent, signifying a 
marked improvement in accuracy. When 
comparisons were directed towards the percent 
improvement in accuracy obtained by the design 
effect model, the stratified model was consis- 
tently judged superior. 

The ratio of standard errors for the accuracy 
measures of the respective variance estimation 
models were also presented in Table I. For each 
of the data sets under investigation, none of 
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the observed ratios relative to the relative 
variance curve method exceeded .58. In 
addition, the ratio for the design effect model 
with stratification relative to the overall 
average design effect model was consistently 
less than one with stratification. Further, the 
investigation revealed the range of absolute 
relative differences between predicted and 
Taylor Series variance estimates were markedly 
narrower for the design effect model (Table 
J). Consequently, this strategy also 
demonstrated a superior performance in its 
capacity to yield variance estimates with the 
greatest precision. In this setting, precision 
was defined in terms of the range of relative 
absolute deviations between predicted and Taylor 
Series variance estimates for the diverse set of 
specified domains. 
Summary 

An examination of design effect variability 
was considered for a representative set of 
survey statistics which estimate medical care 
utilization, expenditures, and health insurance 
coverage for the U.S. population. Generally, 
design effect variability was a function of 
criterion variable type and sample size. Sample 
size was observed to be associated with a 
positive incremental effect on the value of the 
average design effect. Similarly, design effect 
variability was influenced by the effects of 
differential weights, and clustering at the 
household level that were mirrored in the 
criterion variable selection. Since a strong 
relationship existed between individuals in the 
same household with respect to their health 
insurance coverage, number of prescribed 
medicines, ambulatory physician visits and 
related expenditures, a noticeable clustering 
effect yielded relatively higher design 
effects. For data on hospital admissions, a 
relatively rare event, the criterion variable 
was less affected by a clustering effect 
generated by household members. Consequently, 
domain estimates derived for this measure were 
characterized by rather stable design effects 
with small departures from unity. No distinct 
relationship, however, was observed between the 
average design effect and the selected intervals 
on the distribution of criterion variable domain 
estimates. 

This paper also considers a comparison of two 
alternative methods that have gained widespread 
usage in the statistical community. In this 
setting, the design effect model consistently 
yielded variance estimates that were superior in 
terms of accuracy and precision when compared 
with those derived by the relative variance 
curve strategy. Further gains in accuracy were 
achieved for the average design effect model 
with the introduction of stratification. The 
results demonstrate that the decision concerning 
the method for adoption should not be 
indiscriminate. Measures of accuracy and preci- 
sion must be defined, and the behavior of both 
methods compared for a representative subset of 
sample data. The method of variance estimation 
which displays the most superior performance for 
the specified measures should then be selected. 
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Table H. Comparison for  aver i~e  r e l a t i v e  a tmolute  d i f f e r e n c e .  

Class of Statistics 

Number o f  Average Relative 
s p e c i f i e d  Absolute D i f f e r e n c e  

domains A (S.E.) Pai red  t - t e s t s  

Popular ion Neana 

Nsrro~ Remge 

1. Hospital Admissions 
2. Private Insurance 

Coverage 

Nedium Range 

1. Physician V i s i t s  
2. Presc r ibed  Nedicines 

Averl]e Relative 
Design ef fect  design variance 

mdel  with ef fect  curve 
n S t r a t i f i c a t i o n  Model Nodal 1,3 2,~ 1,2 

(1) (z) ( ) )  

386 .075(.003) .080(.00~) .62}(.028) -19.319 -19.077 -2.817 
~86 .197(.008) .~5~(.012) .556(.021) -15.982 -1~.011 -11.1~C 

~86 .110(.005) .126(.005) 1.706(.059) -26.91A -26.665 -2.~6~ 
386 .110(.006) .153(.006) 1.62~(.05~) -26.973 -23.877 -8.55~ 

Wide Range 

1. Hospital Expenditures }86 .09~(.006) .097(.006) .611(.023) -1~.871 .1) .260 -2 .5 )~  
2. Physician ~86 .09~(.006) .112(.005) 1.221(.061) -27.117 -26.624 -2.94% 

Expenditures 
~. Prescribed Nedicine ~86 .106(.004) .1A7(.005) 1.388(.06~) -29.629 -28.}80 -8.77~ 

Expenditures 

+Al l  test  s t a t i s t i c s  were s ign i f i can t  at the .01 leve l ,  when test ing the nu l l  hypothesis 
Ha: No di f ference in accuracy across models. 

Table I. Percent relative reduction in average absolute relative differmce and ratios of stmwlsrd 
errors for accuracy meJunn~. 

. . . . . . . .  Number of " ' Percent r e l ~ i v e  . . . . . . .  Patio o f  
Class of statistics specified domains reduction in ~ sta~lazds errors 

Popular ion Heacm 

Narro~ Pa~e 

I. Hospital Admissions 
2. Private Insu~arce 

Coverq~ 

386 
386 

S~dium 

I. l~ysiciam Visits 386 
2. Prescribed Mbdicinem 386 

~de ea~e 

I. }bspital Zxpendit~es 386 
2. l~ysicim 386 

Expendit uces 
3. Prescribed lIL~dicine 386 

Zxpenditure~ 

~(1) mz(2) ~(I) 

1/3, 2/3. 1/2 SE(3) SE(3) SE(2) 
• . . . . . . .  ...... 

88.0' 87.2 6.3 .106 .118 .894 
64.6, 36.3, 44.4 .390 .580 .672 

93.6, 92.6, 12.7 .081 .081 .991 
92.3, 89.2, 28.1 .083 .104 .791 

77.4 76.4, 4.1 .184 .194 .948 
92.4 90.8 17.0 .101 .116 .877 

92.5 89.4 29.3 .098 .123 .795 

IDer~tes average design effect model with stratificacior~ ~ tes average design effect model. tea relative variance curve. 

i,. i.,. 
1 

D .~D D .A ^^ 
s ss s s %% 
y YY Y y YY . 

A A ~  .A D A 

A 
A A. 

" "  ~ 

h 
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