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ABSTRACT. Suppose that a user possesses vague 
prior information about the association structure 
of a 2x2 contingency table and consider the 
problem of estimating the cell probabilities of 
the table using this prior information together ~, 
with sample counts from an incomplete table. It 
is shown that a special mixture of Dirichlet 
distributions can reflect vague prior beliefs 
about an odds ratio and this prior information is 
used in the development of a posterior credible 
region for the vector of cell probabilities. The 
computation of this region is illustrated in the 
special case when the classification variables 
are believed independent. 

I. INTRODUCTION. In this paper, Bayesian 
estimation methods are proposed for the cell 
probabilities of a 2x2 contingency table, when 
both completely and partially cross-classified 
data are collected. To illustrate the sampling 
scheme, consider data on 456 premature live 
births, given in Chen and Fienberg (1974) and 
presented in Table I. The classification 
variables in this example are the infants' health 
index score (low, high) and their serum bilirium 
reading (low, high). Of the entire sample, 279 
infants are completely classified with respect to 
both variables; 24 are partially classified with 
respect to their serum bilirium reading and the 
remaining 153 are classified only with respect to 
their health index. It is a trivial problem to 
estimate the cell probabilities of the 2x2 
table using solely the completely classified 
counts. A nontrivial problem is how to use the 
counts in the two partially classified tables 
together with the completely classified counts to 
estimate the cell probabilities. 

TABLE I 

DATA OF PREMATURE INFANTS CLASSIFIED WITH 
RESPECT TO HEALTH INDEX AND SERUM BILIRIUM LEVEL 

(from Chen and Fienberg (1974)) 

Serum Low 
Bilirium 

Level High 

Health Index 

Low High 

35 75 

57 112 

117 

II 

13 
279 24 

36 I 153 

Many authors, e.g. Hocking and Oxspring (1974), 
Chen and Fienberg (1974), and Fuchs (1982), have 
found maximum likelihood estimates (~E's) of the 
cell probabilities. As will be shown in Section 
3.1, these estimates allocate the partially 
classified counts to the 2x2 tables using pro- 
portions that are obtained from the completely 
classified table. The manner in which the par- 
tially classified counts are allocated to the 
complete table depends primarily on the 

association structure in the table. In the N~E 
procedure, the association structure is "esti- 
mated" by the completely classified counts. 

Consider the situation where only a small 
portion of the total number of counts are 
completely classified. In this situation, the 
completely classified counts provide little 
information about the manner in which the 
partially classified counts are allocated to the 
table. In the extreme case where all of the 
counts are partially classified, the cell 
probabilities are not even estimable by the data. 
However, if prior information exists about the 
association structure in the table, then this 
information can be used (together with the 
completely classified counts) to allocate the 
partially classified counts to the table and 
give estimates for the cell probabilities. As 
Antelman (1972) explains, this Bayesian approach 
is necessary when all the data collected is 
partially classified. 

To use the Bayesian method, the main task is to 
find a prior distribution which can reflect the 
typical vague form of prior information about the 
association structure of the table. To this end, 
Albert and Gupta (1982) introduced a class of 
priors, a mixture of Dirichlet distributions, 
which is designed to reflect vague prior beliefs 
about the cross-product ratio a, a common 
measure of association in a 2x2 table. (The 
rationale for the use of this class versus the use 
of the conjugate class is given in Albert and 
Gupta (1982).) One advantage of this class is 
that only two parameters are elicited from the 
user; basically these parameters reflect a guess 
at the association structure of the table and a 
statement of the precision of this guess. 

Before we proceed, some notation will be given. 
Suppose that n observations are completely 
classified with respect to classification 
variables A and B and n I (n 2) observations 

are partially classified with respect to variable 
A (B), resulting in the observed counts below. 

B 

Xll x12 

x21 x22 

X X 
• I .2 

A 
Xl • Yl 

A 
x2 • Y2 

n n I 

"B B 
I Yl Y2 I n2 

(The dot notation represents summation over the 
appropriate index.) It is of interest to esti- 

mate p = (Pll,P12,P21,P22), where Pij denotes 

the probability of falling in the (i,j) cell. 
If observations are classified from an infinite 
population, then the likelihood is given by 
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A B 
xij Yi Yi 

wPij wPi "p'i " (i.i) 

Since the prior used is a mixture of Dirichlet 
distributions, it will be convenient to define 

Kf..-I 
~J /r(Krij )' (i 2) fD(PlKg) = F(K).~.Pij 

i,j 

the Dirichlet density with prior mean vector 
= (fll,f12,f21,f22) and precision parameter K. 

In Section 2, the prior distribution on ~ is 
defined and expressions are given for the poster- 
ior moments in the special case where partially 
classified counts exist for only one variable 
(the general case is considered in Albert (1983)). 
In Section 3, simple approximations are developed 
for the posterior means which show how the 
partially classified counts are allocated in the 
complete table. In Section 4, we conclude our 
discussion by illustrating the computation of the 
posterior means and variances for the data in 
Chen and Fienberg (1974) in the situation where 
the user believes that the two classification 
variables are independent. 

2. PRIOR TO POSTERIORANALYSIS. 
2.1. THE PRIOR DISTRIBUTION. Albert and Gupta 
(1982) introduced the following two-stage prior 
distribution to reflect prior beliefs about 
association in a 2×2 table. 

Stage I: The vector ~ is given the Dirich- 
let distribution (1.2), where the components of 
have row margins ha, I - ha, column margins n b, 

i - nb, and cross-product ratio s 0. Equiva- 

lently, the set of prior means satisfy the 
configuration 

qi( ha, % ) 

%-f11( ~a' nb ) 

na-fll( na,n b ) 

l-na-nb+fll ( na,n b ) 

qa 

1 - T] a 

% i - % (2.1) 

where s 0 = [fll (-,.)(l-na-nb+fll (',')]/ 

[(na-fll( -," ))(nb-fll( ",- ))]. 
Stage II: The vector of hyperparameters 

(na, nb) i--sgiven a uniform distribution on the 

unit square. 
The resulting prior density on ~ is given by 

~m(P) = I I fD(~[Kn~ *)dnadn b, (2.2) 

where ~* = (fll,f12,f21,f22) is the vector of 

prior means with configuration (2.1) (for ease of 
notation, we will write fll instead of 

fll(na'nb) , although it is understood that the 

prior mean is a function of the parameters n a 

and nb)" 

The prior distribution (2.2) is designed to 
accept the typical form of vague prior informa- 
tion about the association structure in the 
table. Two parameters are elicited from the user; 

the parameter s 0 is a guess at the cross-product 

ratio ~ and the parameter K reflects the sure- 
ness of one's guess at s 0. It is illustrated in 

Albert and Gupta (1982) that the induced prior on 
gn ~ is approximately bell-shaped and symmetric 
about in s 0. Therefore, by the specification of 

an interval which is thought to contain ~ with 
probability .9 and the use of Figure 2 inAlbert 
and Gupta (1982), one can obtain values of s 0 

and K. 
2.2 POSTERIOR ANALYSIS. If ~ is given the prior 
(2.2), then the posterior density of ~ is 
proportional to 

A B 
xij+Kfij-i Yi Yi 

~ w[Pij /F(Kfij )]wPi.P.idnadnb • 

(2.3) 

This density can be seen to be a mixture of 
densities with kernel 

A B 
aij-1 Yi Yi 

~pij ~pi.P.i, (2.4) 

where a.. = x.. + Kf... Here attention is 
IJ IJ I~ B B 

restricted to the special case Yl = Y2 = 0. In 

this case, the family of distributions with kernel 
(2.4) is called by Antleman (1972) the simple 
Dirichlet-beta (D8) family. First some facts 
about the simple D8 distribution are summarized 
in Section 2.2.1 and these results are applied in 
obtaining expressions for the posterior moments 
in Section 2.2.2. 
2.2.1. The Simple Dirichlet-Beta Distribution. 

After some manipulation, it can be shown that 
the simple D8 density can be represented as 

A A 
Yl Y2 

A ) 
~s(Pla, A) = ~ ~ fBb(i[Yl,all,al2 

i:0 j=0 

i , ) 
• fBb ( j [Y2' a21 a22 

+A . 
"fD(Plall +i, a12 Yl -i, 

A .) (2 5) 
a21+J, a22+Y2-J , 

A 
where a - (all ,a12,a21,a22), ~YA = (yA,y2) and 

fBb denotes the beta-binomial density given by 

fBb(klm,b,c) = (m)B(b+k c+m-k)/B(b c) 
k ' ' " 

Using the representation (2.5), Albert (1983) 
showed that the mean vector of p is given by 

= ( 111 , 112,121 , 122), where ~ 

A 
a..a. +Yi 
~J ~" . (2.6) ~ij = E(Pijla' ) - a. a + n I 

The posterior covariance matrix is given by 
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cov(pla,yA) = (a..+n I+I)-I 

( diag{lll,Â12,121,122}-l~ l~ ' 

where 

A1 o] + ), 
o A2 

(2.v) 

A 

NiA : Yililai2+ " [-I-ii~ 
(ai. l)af. , i = 1,2. 

B B 
2.2.2. Posterior Moments in the Case Yl ± = Y2 = 0. 

B B 
In the special case Yl = Y2 = 0, the 

posterior density (2.3) can be represented by 

w(plx,yA) : S S Wl(n a,n bjx,~ yA) 

"Ws(PI2 'x'yA,v )dnadnb, 
where 

~TI( n a, n b I x , f  ) 

(2.s) 

A) 
r(Kfij+xij ) r(K~a+Xl.+Yl 

w r(Kfij )" r(Kna+Xl. ) 

A 
r(K( l-n a )+x2. +Y2 ) 

I'( K( l-n a )+x2. ) 

and Ws(~l~,x,~~ ~ ) is given by (2.5) with 

a.. = Kf.. + x... Using expressions in Section zj zj zj 
2.2.1 and rules of conditional expectation, 

Var(PijJx,f) = E[Var(PijJ~,x,f)] 

+ Var[E(Pij I n,x,f)] 

: v. I. + v2.. + v3.. z~] zj zj 
where 

1 v . : (n+K+nl+l)-iE[lij(l-lij)Jx,y A] 
Ij ~~ 

(2.9) 

(2.1o) 

v2"2j = (n+K+nl +I)-IE[yi ui(ui +~)il xi2+Kfi2 IxN,yA] 

(2.ii) 

3 V . = Var[ Ix,y A] 
3J IiI ~ ~ ' 

lij = ( xij +Kfij )( ui +yiA)/ [ ui (n+K+n I )], 

u I x I. + Kn a, = u 2 = x 2 + K(I - n a), and the 

expectations and variance in (2.11) are taken 
with respect to the posterior distribution of 
(~a,qb) (2.9). 

3. NUMERICAL STUDY. The posterior expressions 
in (2.]'0")and (2.'11) are not written in closed 
form and, therefore, it is difficult to see how 
these moments incorporate the information con- 
tained in the prior and the sample counts. In 
this section, the computation of these expressions 
is discussed, and simple approximations are pro- 
posed in the independence case which illuminate 
the behavior of the posterior means and variances. 

First note that the posterior quantities 
(2.10) and (2.11) involve expectations using the 
posterior density of (na,n b) (2.9), which is not 

expressible in closed form. Thus it is necessary 
to compute expectations of the form 

i I 
~ g<n a,n b>wl<n a,n b>dnadn b 

E[g(n a ~)[x,y A] = 0 0 
' ~~ I I 

~ ~i ( n a, n b )dnadn b 
0 0 

(3.~) 

where g is an arbitrary function of n a and 

n b. One efficient way of computing the integrals 

in (3.1)uses the notion of importance sampling. 
The first step of this simulation technique finds 
a simple approximation for the posterior density 
w I. Since it can be shown for s 0 = I that 

x A lie Wl(na,nbI~,y ) = WL(na,nbJx,yA) 
K÷oo 

A 
= fB(n a[xl.+4+l, x2.+Y2+l) (3.2) 

• fB(%Ix.i +i, x.2+i), 

the limiting distribution w L can serve as a 

rough approximation to w I for values of s 0 

near one. Next, rewrite the expectation (3.1) as 

E[g(na,n b)lx,y A] = 

[Wl( Wa' Wb ))] 
~g( ha' nb ) LWL ( qa' nb ~L( ha' nb )dnadnb 

[Wl( na'nb 1 
/ LWL(na'nb WL(na'nb)dnadnb (3.3) 

Finally, to approximate the integrals in (3.3) 
using simulation, N O values of (na,n b) are 

randomly generated from the beta densities in 
(3.2). Call the randomly generated values 
(eai,ebi) , i = I,...,N O. Then (3.3) is approxi- 

mated by 

N o 

g( eai,ebi )Wl( eai,ebi )/WL( eai,ebi ) 

~=~ (3.4) 
N O 

~i ( eai ,ebi )/~L ( eai, ebi ) 
i=l 

In the example which follows, we will consider 
the situation where the user believes a priori 
that the two classification variables are indepen- 
dent. The prior parameter s 0 will be set to one 
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(reflecting a belief'in independence) and the 
value of the parameter K selected will reflect 
the precision of a user's belief in independence. 

Since the posterior means are, in some sense, 
a compromise between estimates from an unrestric- 
ted model and estimates from an independence 
model, we will first discuss the computation of 
these "traditional" estimates. Consider the 
hypothetical sample counts presented in Table 2. 
Under the unrestricted model, the MLE estimates 
a cell probability by allocating the partially 
classified counts according to the counts in the 
completely classified table. In this example 
the 30 counts partially classified in category 
one are allocated into the (I,I), (1,2) cells in 
the complete table by the proportions 
I00/(I00 + 50), 50/(100 + 50), respectively. 
In general, the MLE of Pij is given by 

A 
xij + yi'xij/xi ( 3.5 ) 

^ ~, -- 

Pij n + n I 

and the values of these estimates are given in 
Table 3. To understand the computation of the 
MLE under an independence model, first note that 
if the partially classified counts are ignored, 
then the expected cell count ~n cell (I,I) is 

Then the 30 partially classified counts Xl.X. I. 

are allocated into the (I,I), (1,2) cells by the 
"pooled" proportions 175/300, 125/300, 
respectively. The independence MLE of Pij is 
given by 

A 
X i 

QX O + 

j yi x.j/il . (3.6) 5 
~ij n + n I 

TABLE 2 

SOME HYPOTHETICAL SA~(PLE COUNTS 

B 

I00 50 

75 75 

150 

150 

175 125 300 

_.._..... 

3O 

6O 

9O 

TABLE 3 

COMPUTED VALUES OF NILE' S, EXACT AND APPROXI~IATE 
POSTERIOR MEANS FOR DATA OF TABLE 2 

Expected cell Probability 
counts estimates 

MLE, 
unrestricted 

MLE, 
independence 

I00 + 30(.667) 
5o + 30(.333) 

75 + 60(.500) 
75 + 6o(.5oo) 

87.5 + 30(.583) 
62.5 + 3o(.417) 

87.5 + 6o(. 583) 
62.5 + 60(•417) 

.3O8 
.154 

.269 
.269 

.269 
.192 

• 314 
.224 

Exact 
posterior 
means, 
K - I00 

Approximate 
posterior 
means, 
K = I00 

Expected cell 
counts 

Probability 
estimates 

ioo+~0o( .266 )+3o( .646 ) 
~o+~oo( .~92)+3o(. 354) 

75+~oo(. 3~o )+6o(. 52o ) 
75+~oo( .226)+6o(.48o) 

.298 

.28O 
.163 

.258 

I00+I00( 269 )+30(.646) 
5o+~oo( .192 )+3o(. 3~4) 

75+~00(.3~4)+60(. ~2~) 
75+~oo( .224)+6o(.479) 

.299 

.281 
.163 

.257 

The posterior mean (2.10) can be rewritten as 

E(Pij Ix'~yA) = (n+K+nl)-l[xij+KE(fij Ix'yA) 
+ y ((x j+Kqj Ix, )J. 

(3.7) 

Using techniques similar to those discussed in 
Albert and Gupta (1982), the following approxima- 
tion to (3.7) is proposed: 

E(Pij Ix'? ) (n+K+n I )-I ~ A^ [xij+KPij+YiYij 

where 
Xo• X o 

n ij + K -j _ 

Yij n + K x. n + K n 
I" 

] = Pij 
(3.s) 

Values of the exact posterior mean together with 
the approximate values are also given in Table 3. 
To illustrate the computation of (3.7), note that 
for the (I,I) cell the observed count I00 is first 
added to the count 26.6, reflecting a shift of the 
observed count towards an expected count assuming 
an independence model. Then the 30 partially 
classified counts are allocated to the (I,I), 
(1,2) cells by the probabilities .646, .354, 
respectively. The probability .646 is a 
compromise between the allocation probabilities 
assuming an unrestricted model and an independence 
model. Thus the posterior means allocate the 
partially classified counts to the complete table 
in a way which reflects the vague prior beliefs in 
independence. 

4. AN EXAMPLE. To illustrate the application of 
.--... 

the Bayesian estimation procedures proposed in 
this paper, consider the Chen and Fienberg (1974) 
data discussed in Section I. Suppose the user 
believes a priori that an infant's health index 
score is unrelated to his/her serum bilirium 
reading. Equivalently, the odds of a low health 
index score infant having a high serum bilirium 
reading are believed to be equal to the odds of a 
high health index score infant having a high serum 
bilirium reading. In addition, suppose that the 
user is 90 per cent confident that the ratio of 
the above odds is between .2 and 5. Using the 
Albert and Gupta (1982) table, this prior belief 
is translated to the values of the prior parameters 
s 0 = I, K = 150. Using the prior (2.2) with this 

prior knowledge, Table 4 gives the (approximate) 
posterior means and variances. (Expressions for 
these moments are given in Albert (1983).) These 
moments can be used to construct approximate 
credible intervals for the components of ~. For 
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example, by assuming that the marginal posterior 
distribution of Pll is approximately normal, 
the interval 

E( Pll I x'y ) + 2( Var( PlllX,y ) )½ 

= .186 + 2(395.10 -6)½ 

= .186 + .040 

is an approximate 95 per cent credible interval. 
These procedures are attractive alternatives to 
the usual classical procedures when vague prior 
beliefs exist about the association structure in 
the 2x2 table. For future research, we plan 
to identify situations where vague prior beliefs 
exist and suggest ways of eliciting these beliefs 
so they can be used in the estimation process. 

TABLE 4 

APPROXIMATE POSTERIOR MEANS AND VARIANCES FOR 
CHEN AND FIENBERG DATA, s 0 = I, K = 150 

Posterior Means Posterior Variances 

(unit = 10 -6 ) 

.186 .211 395 416 

.291 .313 550 510 
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