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INTRODUCTION

When planning a sample, allocating it to
strata is a central problem. One tries to a-
chieve a sample with least possible cost that pro-
vides estimates with sampling errors no larger
than specified goals. When only one mean or pro-
portion is estimated, with specified sampling er-
ror, the problem is a classical one {cochran
(1953), p. 75]. When several upper bounds on
sampling errors are specified, the problem is
more complex, but it has been solved by non-lin-
ear mathematical programming [Kokan (1963) , Jagan-
nathan (1965), Schwartz (1978)]. An interesting
and powerful method of this kind is geametric
programming [Duffin, Peterson and Zener (1967),
Beightler and Phillips (1976), Ecker (1980)). 1In
this paper, it is applied to the allocation of
stratified samples when several constraints on
sampling errors and sample sizes are imposed. An
example from the allocation of integrated samples
[Schwartz, (1978)] is used to illustrate the
method. Allocations with complex variance con~
straints and constraints requiring equal work-
loads over time are also shown. They were pre-
pared for use by the Redetermination Review Sys-
tem for quality control in the Supplemental Se-
curity Income program of the Social Security Ad-
ministration of the United States of America.

STRATIFIED SAMPLE ALLOCATION

Optimum allocation in stratified random sam-
pling is discussed by Cochran (1953). 1In his no-
tation (p. 66), a population of N items is di- «
vided into L strata, indexed by h. The popula-
tion sizes N, are known. Also known, or esti-
mated externally, are variances Sﬁ and costs per
sampled unit Cp in each stratum. A sampling al-
location consists of choices of ny,, the sample
size in each stratum. Clearly, 0 < ny < Ny,
since the sample cannot be larger than the popu-
lation.

L

The cost of the entire sample is C = a +£E
Chn , where a is an overhead cost. The variance
of the estimatetPf the mean is "

- Yo |

V(Gst) = 15 2 Nis (M=) S

An optimal sample allocation is found by
minimizing the variance V with respect to the
sample sizes My , subject to fixed cost Co. Using
a Lagrange multiplier, one minimizes V + M (C-Co) .
An alternative is to minimize the cost C with re-
spect to the #,, subject to a fixed variance V.
Then one minimizes C-+A(V—Vo), an equivalent
problem. Actually, the constraint on the vari-
ance then specified could be found at the same
minimal cost. If several variance constraints
are imposed, the cost of sampling is minimized.
Several constraints imply several terms with
Lagrange multipliers in the quantity to be mini-
mized. Some constraints, however, do not active-
ly constrain the problem, even though they are
satisfied. Then their Lagrange multipliers are
zero. Lagrange multipliers for active constraints
are like weights expressing the importance of the
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constraints. They are alse the variables in the
dual problem of geometric programming, by means
of which we allocate samples.

GECOMETRIC PROGRAMMING

Developed in an engineering context by
Duffin, Peterson and Zener (1967), geometric
programming is a technique for minimizing a func-
tion called a "posynomial" subject to several
constraints consisting of "posynomials" being
less than or equal to 1. A "posynomial" is a
polynomial in several variables with positive co-
efficients in all terms, The powers to which the
variables are raised can be any real numbers.
Both the cost function and the variance con-
straint functions are "posynomials", so geo-
metric programming is applicable to these alloca-
tion problems.

Geometric programming transforms the primal
problem of minimizing a "posynomial" subject to
"posynomial" constraints to a dual problem of
maximizing a function of the weights on each con-
straint. Usually, there are fewer constraints
than strata, so the transformation simplifies.
Exhibit 1, copied from Duffin, Peterson and Zener
(1967, pp. 78-8l) defines geometric programming
concisely. Fcker (1980) reviews the extensive
literature,

Application of geometric programming to al-
location is best described in an example. First,
allocation of sampling units to strata in an in-
tegrated sample is stated as a problem. Second,
the problem is interpreted as a primal problem in
geometric programming. Third, the dual problem
is found by transforming from the primal problem.
Fourth, the dual problem is solved, partly ana-
lytically and partly by an iterative numerical
calculation.

ALLOCATION IN INTEGRATED SAMPLING

Schwartz (1978) designed an integrated sam-
ple combining qguality control samples from three
welfare programs of the U.S. Federal Government:
Aid to Families with Dependent Children (AFDC),
Food Stamps (FS) and Medicaid (Md). Seven strata
were identified, including families with all pos-
sible combinations of assistance. Three variance
constraints were established, to achieve accept-
able estimates of the proportions of errors in
each program, Population sizes, costs and vari-
ance constraint coefficients were:

Stratum Population Cost. Variance constraint coeff. Cost times variance coeff.
Size, LY ‘hours 1 2 3 1 2 3
arnc rs na AFDC rs na

1 arcc $,000 2.5 €7.01 o [ 636,27 0 o
2 AFIC,PS 18,000 1,5 294.55 119,83 o 3387,27 1378.01 o
3 APDC,7S M 2,000 13.5 2,97 2.15 ©0.27 40,15 29.00 2.5
4 AYDC, M4 1,000 11.5 0.66 o 0.10 7.56 o 1.10
5 P8 23,000 9.5 o 32.20 o [ 2965.87 o
LR 7,000 11.5 ° 23.65 3.38 o 271.96 38.87

7Tm 45,000 9.5 o o 193.10 o o 1034.47



PRIMAL PROBLEM

Minimize go(t) = 9.5t; + 11.5t, + 13.5t5 +
11.5t4 + 9.5t5 + 11.5t6 + 9.5t7

subject to

91(t) = 67.01¢71 + 294.55t51 + 2,97¢31 + o.66t7T
<1
= -1 -1 -1 -1

gy (t) = 119.83t31 + 2.15¢31 + 312.20t5T + 23.65t5
1

gs(t) = 0.27¢31 + o.10tz! + 3.38tgl + 193.10t3!
<1

where ty =y = sample size in stratum h.

DUAL PROBLEM

Maximize ln v(®) =
/636.278,
+[33BT. 278+ 1378.01%,
+{40.158; + 29.008, + 3.59%83
+{7.568, + 1.10%3
+[2965.87 8y,

+f271.56%;, + 38.8733
+{1834.47§3

+ 0 (5,48, 483~ 1)

The §'s are weights, one for each constraint,
which must add to one. Their coefficients are
costs multiplied by variance constraint coeffi-
cients. This expression is derived analytically
in this special case from the general dual expres-
sion in Exhibit 1. Computational methods for
solving dual problems are described in Rosen (196Q
Dinkel, Kochenberger and McCarl (1974) and Dinkel,
Elliott and Kochenberger (1977). A slow, but sim-
ple and serviceable, method iterates to a solutim:

§,= .34232 8, = .54582 §y = .11186

In substituting these values of the 8's into
In v(§), each term is the quantity used to calcu-
late the optimum sample size and its cost:

Stratum Yy Ch ty =, =
numbexr term (;quyq(z(;“u,/ek
1 14.76 9.5 206
2 43,73 11.5 504
3 5.47 13.5 54
4 1.65 11.5 19
5 40,23 9.5 561
6 12.36 11.5 142
7 14.32 9.5 200
sum 132,52 1686

Optimum sample sizes are calculated by multi-
plying eachnf—term by their sum and dividing each
by Chr—its cost. The total sample size is 1686,
The total cost is 17,563 hours, equal to (i{"
terms) © except for rounding up the sample sizes to
integers. Checking the primal problem, using ty,
go(t) = 17,563 hours, gj(t) = 0.99945, go(t) =
1.00062, g3(t) = 0.99957, so the variance con-
straints are satisfied.

Programs written in Basic are available for
this special case, which was used as a test case
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and an expository example.

ALLOCATION OF REDETERMINATION REVIEW SYSTEM
SAMPLES

Exhibit 2 shows allocations of samples devel-
oped by geometric programming. The sample size
per month and region is minimized subject to sev-
eral constraints on variances of proportions of
defective cases taken over several months. In
addition to variance constraints, sample sizes
per region per month are required to be equal over
months, to stabilize workloads. To achieve this,
a common upper bound t* on the monthly sample size
for each region is minimized. The monthly sample
sizes for areas within a region are the variables
ty in the primal problem. They are not necessar-
ily equal over months, but they are constrained
by "posynomial" constraints to add to a sum less
than or egual to t*. The constraints are:

tlt*— + tzt*—l + ... + tgt*—l 5 1

The resulting primal geometric program is
more intricate and larger than the expository
problem drawn from Schwartz (1978), but the same
methods are used to solve it.

In Exhibit 2, allocated sample sizes are
shown. Total sample sizes per region are nearly
equal, for each month, as specified. At the end
of Exhibit 2, expected sampling errors are shown
for each area over nine months and also over the
six sets of four consecutive month "rolls". The
samples were designed to produce 4% expected samp-
ling errors over nine months. Those calculated
from the allocations range from 3.96% to 3.99%.

COMPUTER PROGRAMS

Several programs have been written in APL to
produce these allocations and similar ones. Write
for details to Dr. Miles Davis, 1214 Bolton Street,
Baltimore, Maryland 21217, U.S.A.
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EXHIBIT 1
from Duffin, Peterson & Zener (1967) pp. 78-81.

1. PRIMAL PROGRAMS AND DUAL PROGRAMS

We begin this section by presenting the most general primal program.

Primal Program 4. Find the minimum value of a function gy(t) subject to
the constraints
>0, 135>0, ..., 1,>0 [6)]
and
a <), gO< ..., gM<I1 Q)
Here
PN ; ctpuida s tmm, k=01, ©)]
adlk]
where
J(k} = {my,m + 1, my + 2,0, M, kw=01,....0, 4
and
mg =1, moen o+, my=y 1, ..,

m, =n,., + 1,

= (9

The exponents a, are arbitrary real numbers, but the coefficients ¢, are
assumed 1o be positive. Thus the functions g,(t) are posynomials.

The posy ial to be d, namely go(t), is termed the primel
Jfunction, and the variables 1,, 1,, ..., 1, are called primal veriables. The
constraints imposed by (1) are termed merwral constraints, whereas those
imposed by (2) are called forced constraints. Collectively, these constraints
are referred to as primal constraints.

The matrix (a,) is termed the expoment marrix. It has n rows and m
columns.

The dual program correspoanding to primal program A is the following:

Dual Program B. Find the maximum value of a product function

o8) = LI‘I (g)*]q MBS, ©

A(8) =~ u;h 3,

where
k=12...,p (Y]

Here

JIK = (e, my+ 1, M +2,...,m), k=01...,p (8

where
my=n +1 ...,

mo=1, mo=ng+l,

mymn +1, n=n (9

The factors c, are assumed (o be positive and the vector variable

8 = (8,,...,8,) is subject to the linear constrainis:

530 530 ..., &30 19
> 4=, ()]
ei(0)

and
Sas=0 jel2..m a»

[r3)

Here the coefficients a,, are real numbers.
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In evaluating the product function o(§), it is to be understood that
x* = x~% = | for x = 0. This will make »(8) continuous over its domain
of definition.

The product function o(8) is termed the dwal function, and the variables
8, 8;,. .., 8, are called dual variadles. Relation (10) is termed the positivity
condition, (11) is calied the mermadity dition, and (12) i the
orth lity dition. Collectively, these diti are referred to as

dual constraints.

Notice how dual program B is obtained from its corresponding primal
program A. The factors ¢, appearing in the dual function (8) are the
coeflicients of the posynomials g,(t), & = 0, 1,2,..., p. We say that §, is
associated with the ith term cyfu---1$= of primal program 4, so that
each term of g,(t), k = 0, 1, 2,.. ., p, is associated with one and only one
of the dual variables §,, 3,,.. ., 3,. Each factor A, (8)*® of p(8) comes
from a forced constraint g,(t) < . Notice that no such factor appears
from the primal function because the normality condition forces A(8) to
be one. The normality condition is the only part of dual program B that
distinguishes between the primal function go(t) and those posynomials
&(t), k = 1,2, .., p, that appear in the forced constraints. Finally, it
should be noted that the coefficient matrix (a,,) appearing in the ortho-
gonality condition is simply the exponent matrix of primal program A.

2. THE DUALITY THEORY

We say that a program (either primal or dual) is comsistens if there is at
least one point (vector) that satisfies its constraints. Primal program A
is said to be smperconsistens if there is at least one vector t* that has
positive components and the property

Kt <1, k=12...p m

It should be noted that primal program A can be consistent without being
superconsistent but that each superconsistent program is consistent.

In terms of the preceding concepts we state Theorem 1, which is called
the first duality theorem of geometric programming and is the main
theorem of the present formulation of geometric programming.

Theorem 1. Suppose that primal program A is superconsisteni and that
the primal function go(t) ariains its constrained minimum value ar a
point that satisfies the primal constraints. Then

(i) The corresponding dual program B is consisient and the dual
Suncrion W(8) aitains its constrained maximum value at a poimt
which satisfies the dual constraints.

(i) The constrained maximum value of the dual function is equal to the
constrained minimum vaiue of the primal function.

(ili) If ¢ is a minimizing point for primal program A, there are non-
g Lagrange muitipliers p,', k = 1,2,.. ., p, such that the
Lagrange function

Lt p) = go® + .i. plg® = 1] @
has the property
Lt W) < gol®) = LE, 1) < Lit, W) ®

for arbitrary t, > O and arbitrary u, 3 0. Moreover, there is a
maximizing vector 8 for dual program B whose components are

C'_""_h".')-“‘_ﬂ ieJo),
0
5 = . . 4)
wel B e, k=
where t = ' and u = w'. Furthermore, X
=2 kel
A8 = 2y 2...,p (&)

(iv) If 8 is a maximizing point for dual program B, each minimizing
point t for primal program A satisfies the system of equations

8 o), e
S S - ,
atit U&F)’ ieJIk, ©®

where k ranges over all positive integers for which A,(8") > 0.

Relation (4) provides a formula for computing a maximizing vector §’
from the knowledge of a minimizing vector t' and appropriate Lagrange
multipliers u,’, k = 1, 2,..., p. On the other hand, (6) gives a method for
finding a minimizing vector t’ from the knowledge of a maximizing vector
¥'. It should be mentioned that (6) is easily reduced to a system of linear
equations in the variables log ¢, j = 1, 2,..., m, by taking the logarithm
of both sides of each equation. Thus a minimizing point t is easily found
from a maximizing point 8’. Finally, it should be noted from (5) that the
numbers A(8"), aside from a constant factor, are the Lagrange multipliers
for primai program A.




EXHIBIT 2

POPULATION SIZE
JuL AUG

REQION 1 CHANGE CASE SREA JUN -
EISTON DEF RATE 3 %% PERCENT ! 290 13
SAMPLE 212E 369 28:
AREA MAR APR mAY auN L AUG <EP acT NOY ] AVE 34z 190
1 57 0 S& 52 52 a5 29 45 42 448 S0 a 434 219
] az s2 =3 50 s £8 75 7% 77 Ss2 53 < s08 =29
3 = 50 55 52 53 53 72 57 7 Ss¢ 62 - 449 136
s 73 23 &8 57 ) 7 as aa a9 €13 7 7
UM 220 231 2%z 2 22w 2t 2%z 32 31 2083 231

10

POPULATION F12E

AREA MAR APR MAY JUN JuL AUG SEP’ ocT NOv UM AVE
1 155 130 202 243 197 184 173 191 1709 190
2 47 262 217 1322 394 1193 1469 1258 3414 1046
: s39 734 774 1119 €8 %78 1228 $22 =088 393 n 250
3 53 a0y 44 388 414 247 38§ 292 377
L 1%22 222 2202 3088 2347 2775 3214 2619 22552 2308 REGION & CHANGE CASE
VANSAE CITY DEF RATE = 30 PERCENT
FESION 2 CHANGE CASE AREA MaR AFR MAY SUN NCOY SLIM AVE
HEW YORK OEF RATE = 42 FERCENT 1 a5 54 a4 4% a1 421 47
SAMPLE 3IZE z <7 = 35 s1 41 40 ax 48
AREA MAR MAY  UUN JUL AUG SEP OCT  NOV AavE =9 49 az 51 <0 55 0 43 52
t 53 54 47 78 52 s0 50 50 41 =4 26 St 5 45 sz €4 55 4a% 49
E aa 53 34 7 55 &3 a2 70 44
72 =4 s4 50 57 s2 52 st 50 UM 19s 198 196 19 19% 197 195 197 195 1747 12
=7 83 77 59 5o 71 57 S1 63
57 9 52 50 74 35 =9 57 53
22 o4 74 a0 =2 26 $0 57 a2 . POPULATION $1ZE
45 57 30 4 74 52 45 74 40 MAR  APR MAY  JUN © JUL AUG
5 50 74 71 30 56 50 s8 53 s6 1= 272 195 223 19 214 152
14z 302 283 290 a2l 192 129
20M 497 495 4¥8 499 499 499  S00 499 498 4487 499 215 Ere 232 4s2 308 374 249
3 29 215 2@0 214 223 294 18 202
POPULATION 31ZE 541 1154 1041 1189 948 108 77O
AREA MAR APR MAY JUN i AUS SEP ocT NOV UM AVE
R 264 445 332 336 407 309 240 200 178 2704 200
2 233 420 413 767 447 413 319 344 2856 322 404 RESIIN 7 CHANGE CASE
2 307 s 371 361 92 264 197 182 138 2561 2835 BALLAT DEF RATE = 31 PERCENT
a 274 342 459 S0 419 343 330 221 171 3411 379 SAMPLE SIZE
134 362 437 S26 574 43@ 403 232 195 2301 267 AREA APR MAY  JUN  JUL  AUG  3EP  OLT  NOV UM AVE
= 379 423 432 575 228 230 293 217 210 2026 337 : S 75 N 54 70 59 20 w2 573 54
7 169 S74 377 166 190 336 187 174 193 2286 ZeS £ s1 52 55 57 73 79 53
] 231 322 A% 786 531 a1tz 298 299 297 aseg  Si1 B sz 20 76 a2 74 55 37 54
4 53 B4 &1 71 51 ) 52 a7
M 2543 4087 3517 4147 3005 2801 2239 1879 1431 23627 2843 < sv 72 94 51 o5 2 %7 55
- s L 52 51 7 79 25 pos
N 72 57 R 50 . 7% 29 51 4%
REGION ¥ CHANGE CASE E 71 52 as 57 a3 o 23 S
FHILADELPHIA DEF RATE = S4 PERCENT
SAMPLE 312E s19 Si13 %13 S13 518 Sis  S19 513 51 s1e
AREA MaR APR MAY JUN Jut ALG 3€EP g AVE
i 1 35 =4 s4 s0 25 57 20 59
z To 70 St 80 &3 0 56 St 59
E 20 =1 51 30 26 as &% 65 49 AREA MAR SEP acT NOV SUM AVE
a B 0 57 72 71 54 50 29 59 1 2% 434 42 azs : 234
] 39 =3 50 s2 s2 9 =8 B s 2 77 43t 437 4e7 Sos
P 57 77 57 55 34 56 55 60 56 R e 345 437 400 213
7 24 4 50 2 7% =2 57 53 53 hd 1570 299 130 e33 1017
3 54 45 &1 47 30 a1 &4 77 57 = 428 T09 S1s a2 =481
':- 555 599 574 72e 735
462 451 463 452 451 482 452 as2 442 ? 1115 511 296 472 707
. 1192 290 S1s 45g 720
POFILATION 51Z€ =501 4218 4022 4013 si1e
AREA WHIN SJUL AUG SEP nCT AVE
1 229 2%4 132 189 270
F 7% 131 167 147 255 3 CHANGE TASE
3 112 114 134 131 133 DEF RATE = =) PERCENT
4 4z oS 150 122 292 SAMPLE SIZE
< 172 142 128 192 ~EEA MAR AFR mar JUN pUIT AUG TEP neT NV M AVE
i a%0 09 3ze £33 1 S5 55 55 535 55 ESS 55 55 s a3s 5s
S 171 170 It 253 : =4 <4 < 54 =4 =4 <4 sa a4 ame sa
g 186 2 226 z <1 2 =z s2 52 €2 St st st 454 52
Tum 1851 1823 2149 M 160 151 151 181 161 161 150 140 160 1445 181
REGION & CHANGE CA3E POPLLATION 31ZE
ATLANTA = 4z FERCENT AREA MAR AR Jun UL AUG SEP 0CT . NOV SLM AVE
200 312 271 219 zat 156 15 ° 12s 1vm@ 218
AREA JUN z 134 28 249 201 221 182 143 116 1791 192
I 20 H 157 240 212 171 189 121 122 9 1519 167
z 23
3 ez s41 247 s%7 732 591 581 417 a21 241 3T 532
I 52
= =3
5 57
7 72 REGION 7 CHANGE ©ASE
] a7 ZAN FRANCIST DEF RATE = S PERCENT
5 59
12 i AREA MaR AVE
11 79 i 54 52
12 <7 : az 4z
13 37 B : 54
4 =1
sum 228 230 = 82
M 53
7 54
POPULATION 3126 : 55
JUNG UL AUG acT 3 5%
1180 Soz 287 €40
294 752 o% 588 egx 2uM 54z 42
Sés 357 ses 96 49 i
TS 424 294 345
733 s02 557 a4l
279 951 583 &27 0T NV
259 Aal 483 aze 751 42
10 402 49z 208 73 75
EEN 745 554 Sta 733 sey
386 4s2 2e3 233 57 12
977 a2 409 a2% 211 553
792 44 401 348 s4z 724
202 441 257 366 427 =27
579 1020
2918 7537 7407 5020  F428 65014 7335 241 e

HANGE CASE

o = 4783 S132
DEF RATE = 4% PERCENT

SAMPLE SIIE

JUN JuL 3EP acT NOV AVE CHANGE CASE
72 56 So 55 =2 52 DEF RATE = =% PERCENT
as 3 70 20 52 SAMPLE
72 50 a8 50 57 Ma JUL IEP NOV UM AVE
52 53 43 a3 o2 3 50 <& 57 495 s
Se 32 86 52 &% 7 2 44 0 456 S1
7% 24 45 4y 0 47 S5 s4 49 457 51
aa ag 52 52 50
%2 24 70 £1 21 156 158 157 157 157 157 158 156 156 1808 136
a4 30 43 51 61
e 53 29 47 a2 53
i 24 54 54 as 54 POPLULATION 312€
B2 0 24 123 3 MAR APR MAY JUN Jut AUG SEP T NOV LM AVE
51 20 75 49 s a5 354 229 398 252 372 237 200 208 2892 277
1 33 22 & S 279 252 275 174 170 131 109 123 1734 192
224 17 210 211 192 166 170 128 1727 192
241 343 A4 1 244 242 243 342 344 7554 243
M S70 317 208 383 <57 534 534 479 471 5953 541
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EXHIBIT 2 (Continued)

10N CHANGE CASE
) DEF RATE = S1 PERCENT

SAMPLE SI11E

REGION MAR JUN JuL SEP ner
1 230 232 232 23T 2%2
3z 257 439 499 00 459
42 as2 4st 452
320 ey 22 30 ey
244 342 2432 z44
195 195 195 197
518 S13 19 515
181 141 150 140
S4z 542 S43 545
157 157 157 154 156
NATION 4439 4436 4440 4481 4442
PAPULATION 3I1ZE
RESTON JUN JUL AUG 3EP oCT NV UM AVE
1 3048 2347 2774 2214 2592 2617 22553 2506
2 200% 2301 2237 1579 1631 29427 2848
2 2329
3 7527
= 2020
H 742
7 5401
% 591
> 4822
10 557
HATION

7 MANTH ROLL SAMFLING ERRORS 4 MONTH ROLL TAMFLING EXRQRS
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