Miles Davis and Robert H. Finch, Jr., Social Security Administration #### INTRODUCTION When planning a sample, allocating it to strata is a central problem. One tries to achieve a sample with least possible cost that provides estimates with sampling errors no larger than specified goals. When only one mean or proportion is estimated, with specified sampling error, the problem is a classical one [Cochran (1953), p. 75]. When several upper bounds on sampling errors are specified, the problem is more complex, but it has been solved by non-linear mathematical programming [Kokan (1963), Jagannathan (1965), Schwartz (1978)]. An interesting and powerful method of this kind is geometric programming [Duffin, Peterson and Zener (1967), Beightler and Phillips (1976), Ecker (1980)]. In this paper, it is applied to the allocation of stratified samples when several constraints on sampling errors and sample sizes are imposed. An example from the allocation of integrated samples [Schwartz, (1978)] is used to illustrate the method. Allocations with complex variance constraints and constraints requiring equal workloads over time are also shown. They were prepared for use by the Redetermination Review Svstem for quality control in the Supplemental Security Income program of the Social Security Administration of the United States of America. #### STRATIFIED SAMPLE ALLOCATION Optimum allocation in stratified random sampling is discussed by Cochran (1953). In his notation (p. 66), a population of N items is di-d vided into L strata, indexed by h. The population sizes $N_{\mbox{\scriptsize h}}$ are known. Also known, or estimated externally, are variances $S_{\bf k}^{\bf Z}$ and costs per sampled unit $C_{\bf k}$ in each stratum. A sampling allocation consists of choices of $n_{\bm{h}},$ the sample size in each stratum. Clearly, $0 \leq n_h \leq N_h,$ since the sample cannot be larger than the population. The cost of the entire sample is $C = a + \sum_{n=1}^{\infty}$ $C_h n_h$, where a is an overhead cost. The variance of the estimate of the mean is $V(\vec{q}_{st}) = \frac{1}{N^2} \sum_{k=1}^{N_h} N_h (N_k - n_h) \frac{S_h^2}{n_h}$ An optimal sample allocation is found by minimizing the variance V with respect to the sample sizes n, subject to fixed cost Co. Using a Lagrange multiplier, one minimizes \mathbf{V} + $\boldsymbol{\lambda}$ (C-C_O). An alternative is to minimize the cost C with respect to the $\mathbf{M}_{\mathbf{h}}$, subject to a fixed variance $\mathbf{V}_{\mathbf{O}}.$ Then one minimizes $C + \chi'(V-V_C)$, an equivalent problem. Actually, the constraint on the variance then specified could be found at the same minimal cost. If several variance constraints are imposed, the cost of sampling is minimized. Several constraints imply several terms with Lagrange multipliers in the quantity to be minimized. Some constraints, however, do not actively constrain the problem, even though they are satisfied. Then their Lagrange multipliers are zero. Lagrange multipliers for active constraints are like weights expressing the importance of the constraints. They are also the variables in the dual problem of geometric programming, by means of which we allocate samples. #### GEOMETRIC PROGRAMMING Developed in an engineering context by Duffin, Peterson and Zener (1967), geometric programming is a technique for minimizing a function called a "posynomial" subject to several constraints consisting of "posynomials" being less than or equal to 1. A "posynomial" is a polynomial in several variables with positive coefficients in all terms. The powers to which the variables are raised can be any real numbers. Both the cost function and the variance constraint functions are "posynomials", so geometric programming is applicable to these allocation problems. Geometric programming transforms the primal problem of minimizing a "posynomial" subject to "posynomial" constraints to a dual problem of maximizing a function of the weights on each constraint. Usually, there are fewer constraints than strata, so the transformation simplifies. Exhibit 1, copied from Duffin, Peterson and Zener (1967, pp. 78-81) defines geometric programming concisely. Ecker (1980) reviews the extensive literature. Application of geometric programming to allocation is best described in an example. First, allocation of sampling units to strata in an integrated sample is stated as a problem. Second, the problem is interpreted as a primal problem in geometric programming. Third, the dual problem is found by transforming from the primal problem. Fourth, the dual problem is solved, partly analytically and partly by an iterative numerical calculation. # ALLOCATION IN INTEGRATED SAMPLING Schwartz (1978) designed an integrated sample combining quality control samples from three welfare programs of the U.S. Federal Government: Aid to Families with Dependent Children (AFDC), Food Stamps (FS) and Medicaid (Md). Seven strata were identified, including families with all possible combinations of assistance. Three variance constraints were established, to achieve acceptable estimates of the proportions of errors in each program. Population sizes, costs and variance constraint coefficients were: | Stratum | Population
Size, H _h | Cost
hours | Variance
1
AFDC | constrair
2
FS | t poeff.
3
Md | Cost times
1
AFDC | variano
2
PS | e coeff.
3
Må | |--------------|------------------------------------|---------------|-----------------------|----------------------|---------------------|-------------------------|--------------------|---------------------| | 1 APDC | 9,000 | 9.5 | 67.01 | 0 | 0 | 636.27 | 0 | 0 | | 2 AFDC,PS | 18,000 | 11.5 | 294.55 | 119.83 | 0 | 3387,27 | 1378.01 | 0 | | 3 MPDC,FS,M6 | 2,000 | 13.5 | 2,97 | 2.15 | 0.27 | 40,15 | 29.00 | 3.59 | | 4 AFDC,MG | 1,000 | 11.5 | 0.66 | 0 | 0.10 | 7.56 | ٥ | 1.10 | | 5 PS | 23,000 | 9.5 | 0 | 312.20 | 0 | 0 | 2965.87 | 0 | | 6 PS,Md | 7,000 | 11.5 | 0 | 23.65 | 3.38 | 0 | 271.96 | 38.87 | | 7 MA | 45,000 | 9.5 | 0 | 0 | 193.10 | 0 | 0 | 1834.47 | #### PRIMAL PROBLEM Minimize $g_0(t) = 9.5t_1 + 11.5t_2 + 13.5t_3 + 11.5t_4 + 9.5t_5 + 11.5t_6 + 9.5t_7$ subject to $$g_1(t) = 67.01t_1^{-1} + 294.55t_2^{-1} + 2.97t_3^{-1} + 0.66t_4^{-1}$$ ≤ 1 $$g_2(t) = 119.83t_2^{-1} + 2.15t_3^{-1} + 312.20t_5^{-1} + 23.65t_6^{-1}$$ ≤ 1 $$g_3(t) = 0.27t_3^{-1} + 0.10t_4^{-1} + 3.38t_6^{-1} + 193.10t_7^{-1}$$ ≤ 1 where $t_h = n_h = sample size in stratum h.$ #### DUAL PROBLEM Maximize $$\ln v(s) = \frac{636.27 s_1}{636.27 s_1} + \frac{1378.01 s_2}{1387.27 s_1} + \frac{1378.01 s_2}{1387.27 s_2} + \frac{1378.01 s_3}{1387.27 s_3} + \frac{1387.27 s_2}{13887 s_3} + \frac{1384.47 s_3}{1384.47 s_3} + \Lambda (s_1 + s_2 + s_3 - 1)$$ The \S 's are weights, one for each constraint, which must add to one. Their coefficients are costs multiplied by variance constraint coefficients. This expression is derived analytically in this special case from the general dual expression in Exhibit 1. Computational methods for solving dual problems are described in Rosen (1960) Dinkel, Kochenberger and McCarl (1974) and Dinkel, Elliott and Kochenberger (1977). A slow, but simple and serviceable, method iterates to a solution: $\S_1 = .34232$ $\S_2 = .54582$ $\S_3 = .11186$ In substituting these values of the \$'s into $\ln \ v(\$)$, each term is the quantity used to calculate the optimum sample size and its cost: | Stratum
number | term | c _h (| $t_h = n_h = (14rm)/(2(14rms)/Ch$ | |-------------------|--------|------------------|-----------------------------------| | 1 | 14.76 | 9.5 | 206 | | 2 | 43.73 | 11.5 | 504 | | 3 | 5.47 | 13.5 | 54 | | 4 | 1.65 | 11.5 | 19 | | 5 | 40.23 | 9.5 | 561 | | 6 | 12.36 | 11.5 | 142 | | 7 | 14.32 | 9.5 | 200 | | sum | 132,52 | | 1686 | Optimum sample sizes are calculated by multiplying each $\sqrt{}$ term by their sum and dividing each by C_h ,—its cost. The total sample size is 1686. The total cost is 17,563 hours, equal to ($\sqrt{2}$) terms) except for rounding up the sample sizes to integers. Checking the primal problem, using t_h , $g_0(t) = 17,563$ hours, $g_1(t) = 0.99945$, $g_2(t) = 1.00062$, $g_3(t) = 0.99957$, so the variance constraints are satisfied. Programs written in Basic are available for this special case, which was used as a test case and an expository example. # ALLOCATION OF REDETERMINATION REVIEW SYSTEM SAMPLES Exhibit 2 shows allocations of samples developed by geometric programming. The sample size per month and region is minimized subject to several constraints on variances of proportions of defective cases taken over several months. In addition to variance constraints, sample sizes per region per month are required to be equal over months, to stabilize workloads. To achieve this, a common upper bound t* on the monthly sample sizes for each region is minimized. The monthly sample sizes for areas within a region are the variables t_h in the primal problem. They are not necessarily equal over months, but they are constrained by "posynomial" constraints to add to a sum less than or equal to t*. The constraints are: $t_1t^{*-1} + t_2t^{*-1} + \ldots + t_9t^{*-1} \stackrel{<}{\sim} 1$ The resulting primal geometric program is more intricate and larger than the expository problem drawn from Schwartz (1978), but the same methods are used to solve it. In Exhibit 2, allocated sample sizes are shown. Total sample sizes per region are nearly equal, for each month, as specified. At the end of Exhibit 2, expected sampling errors are shown for each area over nine months and also over the six sets of four consecutive month "rolls". The samples were designed to produce 4% expected sampling errors over nine months. Those calculated from the allocations range from 3.96% to 3.99%. #### COMPUTER PROGRAMS Several programs have been written in APL to produce these allocations and similar ones. Write for details to Dr. Miles Davis, 1214 Bolton Street, Baltimore, Maryland 21217, U.S.A. ### REFERENCES Beightler, C.S. and Phillips, D.T. (1976). Applied Geometric Programming, John Wiley & Sons, New York. Cochran, William G. (1953). <u>Sampling Techniques</u>, John Wiley & Sons, New York. Dinkel, John J., Elliott, William H. and Kochenberger, Gary A. (1977). Computational aspects of cutting-plane algorithms for geometric programming problems, <u>Mathematical</u> <u>Programming</u>, 13, 200-220. Dinkel, John J., Kochenberger, Gary A., and Mc-Carl, Bruce. (1974). An approach to the numeric solutions of geometric programs, Mathematical Programming, 7, 181-190. Duffin, Richard J., Peterson, Elmar L., and Zener, Clarence M. (1967). Geometric Programming, John Wiley & Sons, New York. Ecker, J.G. (1980). Geometric programming: methods, computations and applications, <u>SIAM Review</u>, 22, 338-362. Jagannathan, R. (1965). The programming approach in multiple character studies. <u>Econometrica</u>, 33, 236-237. Kokan, A.R. (1963). Optimum allocation in multivariable surveys, <u>J. Royal Statist. Soc. A</u>, 126, 557-565. Rosen, J.B. (1960). The gradient projection method for nonlinear programming. Part I., Linear constraints. <u>J. Soc. Industrial Appl.</u> Math., 8, 181-217. Schwartz, Rudolph E. (1978). Designing optimal integrated samples using nonlinear programming, Proc. Section Survey Research Methods, Am. Statist. Assoc., 638-640. ## EXHIBIT 1 from Duffin, Peterson & Zener (1967) pp. 78-81. #### 1. PRIMAL PROGRAMS AND DUAL PROGRAMS We begin this section by presenting the most general primal program. Primal Program A. Find the minimum value of a function g₀(t) subject to the constraints $$t_1 > 0, \quad t_2 > 0, \quad \dots, \quad t_m > 0$$ (1) and $$g_1(t) \le 1, \quad g_2(t) \le 1, \quad \dots, \quad g_p(t) \le 1.$$ (2) Here $$g_k(t) = \sum_{i \in H_{k1}} c_i t_1^{a_{11}} t_2^{a_{12}} \cdots t_n^{a_{in}}, \quad k = 0, 1, ..., p,$$ (3) where $$J[k] = \{m_k, m_k + 1, m_k + 2, \dots, n_k\}, \qquad k = 0, 1, \dots, p, \quad (4)$$ and $$m_0 = 1$$, $m_1 = n_0 + 1$, $m_2 = n_1 + 1$, ..., $m_p = n_{p-1} + 1$, $n_p = n$. The exponents a_{ij} are arbitrary real numbers, but the coefficients c_{ij} are assumed to be positive. Thus the functions $g_{ij}(t)$ are posynomials. The posynomial to be minimized, namely $g_0(t)$, is termed the *primal function*, and the variables t_1, t_2, \ldots, t_n are called *primal variables*. The constraints imposed by (1) are termed manual constraints, whereas those imposed by (2) are called *forced constraints*. Collectively, these constraints are referred to as *primal constraints*. The matrix (a_{ij}) is termed the exponent matrix. It has n rows and m columns. The dual program corresponding to primal program A is the following: Dual Program B. Find the maximum value of a product function $$v(\delta) = \left[\prod_{i=1}^{n} \left(\frac{c_i}{\delta_i}\right)^{\delta_i}\right] \prod_{k=1}^{p} \lambda_k(\delta)^{\lambda_k(\delta)}, \quad (6)$$ where $$\lambda_{\mathbf{n}}(\mathbf{\delta}) = \sum_{i \in I(k)} \delta_{i}, \qquad k = 1, 2, \dots, p. \tag{7}$$ Here $$J[k] = \{m_k, m_k + 1, m_k + 2, \ldots, n_k\}, \quad k = 0, 1, \ldots, p, (8)$$ where $$m_0 = 1$$, $m_1 = n_0 + 1$, $m_2 = n_1 + 1$, ..., $m_p = n_{p-1} + 1$, $n_p = n$. (9) The factors c_i are assumed to be positive and the vector variable $\delta = (\delta_1, \ldots, \delta_n)$ is subject to the linear constraints: $$\delta_1 \geqslant 0, \quad \delta_2 \geqslant 0, \quad \dots, \quad \delta_n \geqslant 0,$$ (10) $$\sum_{i=1}^{\infty} \delta_i = 1, \tag{11}$$ and $$\sum_{i=1}^{n} a_{ij} \delta_{i} = 0, \qquad j = 1, 2, \dots, m.$$ (12) Here the coefficients an are real numbers. In evaluating the product function $o(\delta)$, it is to be understood that $x^x = x^{-x} = 1$ for x = 0. This will make $o(\delta)$ continuous over its domain of definition. The product function $v(\delta)$ is termed the dual function, and the variables $\delta_1, \delta_2, \dots, \delta_n$ are called dual sariables. Relation (10) is termed the positivity condition, (11) is called the normality condition, and (12) constitutes the orthogonality condition. Collectively, these conditions are referred to as dual constraints. Notice how dual program B is obtained from its corresponding primal program A. The factors c_1 appearing in the dual function o(8) are the coefficients of the posynomials $g_2(t)$, $k=0,1,2,\ldots,p$. We say that δ_1 is associated with the th term c_1t_1,\ldots,t_n of primal program A, so that each term of $g_n(t)$, $k=0,1,2,\ldots,p$, is associated with one and only one of the dual variables δ_1 , δ_2 , ..., δ_n . Each factor $\lambda_k(\delta)^{\lambda_k(\delta)}$ of $v(\delta)$ comes from a forced constraint $g_k(t) \leqslant 1$. Notice that no such factor appears from the primal function because the normality condition forces $\lambda_0(\delta)$ to be one. The normality condition is the only part of dual program B that distinguishes between the primal function $g_0(t)$ and those posynomials $g_2(t)$, $k=1,2,\ldots,p$, that appear in the forced constraints. Finally, it should be noted that the coefficient matrix (a_{ij}) appearing in the orthogonality condition is simply the exponent matrix of primal program A. #### 2. THE DUALITY THEORY We say that a program (either primal or dual) is consistent if there is at least one point (vector) that satisfies its constraints. Primal program A is said to be superconsistent if there is at least one vector t^a that has positive components and the property $$g_k(t^a) < 1, \quad k = 1, 2, ..., p.$$ (1) It should be noted that primal program A can be consistent without being superconsistent but that each superconsistent program is consistent. In terms of the preceding concepts we state Theorem 1, which is called the first duality theorem of geometric programming and is the main theorem of the present formulation of geometric programming. **Theorem 1.** Suppose that primal program A is superconsistent and that the primal function $g_0(t)$ attains its constrained minimum value at a point that satisfies the primal constraints. Then - (i) The corresponding dual program B is consistent and the dual function v(8) attains its constrained maximum value at a point which satisfies the dual constraints. - (ii) The constrained maximum value of the dual function is equal to the constrained minimum value of the primal function. - (iii) If t is a minimizing point for primal program A, there are non-negative Lagrange multipliers μ_k, k = 1, 2, ..., p, such that the Lagrange function $$L(t, \mu) = g_0(t) + \sum_{k=1}^{p} \mu_k[g_k(t) - 1]$$ (2) has the property $$L(t',\mu) \leq g_0(t') = L(t',\mu') \leq L(t,\mu') \tag{3}$$ for arbitrary $t_i > 0$ and arbitrary $\mu_k \geqslant 0$. Moreover, there is a maximizing vector δ' for dual program B whose components are $$\delta_{i}' = \begin{cases} \frac{c_{i}t_{i+1}^{n_{i+1}} \cdots t_{i+m}^{n_{i+m}}}{g_{0}(t)}, & i \in J[0], \\ \frac{\mu_{k}c_{i}t_{i+1}^{n_{i+1}} \cdots t_{i+m}^{n_{i+m}}}{g_{0}(t)}, & i \in J[k], & k = 1, \dots, p, \end{cases}$$ (4) where t = t' and $\mu = \mu'$. Furthermore, $$\lambda_{k}(\delta') = \frac{\mu_{k}'}{g_{O}(t')}, \quad k = 1, 2, ..., p.$$ (5) (iv) If 8' is a maximizing point for dual program B, each minimizing point t' for primal program A satisfies the system of equations $$c_{i}I_{1}^{a_{1}}\cdots I_{m}^{a_{m}} \approx \begin{cases} \delta_{i}^{i} v(\delta^{i}), & i \in J[0], \\ \frac{\delta_{i}^{i}}{\lambda_{k}(\delta^{i})}, & i \in J[k], \end{cases}$$ $$(6)$$ where k ranges over all positive integers for which $\lambda_k(\delta') > 0$. Relation (4) provides a formula for computing a maximizing vector δ' from the knowledge of a minimizing vector t' and appropriate Lagrange multipliers $\mu_{k'}$, $k = 1, 2, \ldots, p$. On the other hand, (6) gives a method for finding a minimizing vector t' from the knowledge of a maximizing vector δ' . It should be mentioned that (6) is easily reduced to a system of linear equations in the variables $\log t_i, j = 1, 2, \ldots, m$, by taking the logarithm of both sides of each equation. Thus a minimizing point t' is easily found from a maximizing point δ' . Finally, it should be noted from (5) that the numbers $\lambda_k(\delta')$, saide from a constant factor, are the Lagrange multipliers for primal program A. | REGION
BOSTON | 1 | | | EX | HIBI. | | | DE | EF RATE | | | AREA
1
2 | MAR
90
690 | APR
138
204 | MAY
234
317 | JUN
290
369 | PULATIO
JUL
150
285 | AUG
142
362 | SEP
122
346 | 0CT
115
346 | NOV
110
282 | SUM
1391
3201
1873 | 1 3 2 | |---------------------------------|------------------------------------|------------------------------------|--|--|--|--|--|--|--|---|----------------------------------|---------------------------------------|--|--|--|--|---|--|--|--|--|--|-----------------| | AREA
1
2
3
4
SUM | MAR
59
43
55
73
230 | APR
50
58
60
63
231 | MAY
56
53
58
65
232 | JUN
52
60
63
57
232 | JUL
53
56
63
60
232 | AUG
45
66
63
57
231 | SEP
39
75
73
45
232 | 00T
46
75
67
44
232 | NOV
48
77
57
49
231 | SUM
448
5-3
559
513
2083 | 50
63
62
57
231 | 3
4
5
0
7
8
6
10 | 203
597
802
299
298
207
732
286 | 318
518
914
448
329
331
472
219 | 244
292
503
366
525
402
398
399 | 342
434
505
449
272
409
267
305 | 190
319
529
136
199
365
90
386 | 177
297
173
335
295
255
150
226 | 119
164
927
145
195
248
158
148 | 154
193
256
157
173
216
198
151 | 126
250
211
203
246
219
161
181 | 3044
4220
2533
2533
2652
2626
2501 | 3 4 2 2 2 2 2 2 | | AREA
1
2
3
4 | MAR
165
475
539
353 | APR
180
862
784
397 | MAY
202
317
774
409 | JUN
243
1222
1119
464 | 0PULATI
JUL
197
394
868
388 | ON SIZE
AUG
186
1198
978
414 | SEP
173
1469
1225
347 | 90T
172
1209
929
282 | NOV
191
1268
922
338 | SUM
1709
9414
8088
3892 | AVE
190
1046
893
377 | 11
12
13
14 | 344
114
200
201
5063 | 915
928
225
204
6163 | 428
515
287
149
5044 | 579
537
270
297
5425 | 292
287
59
348
5690 | 226
357
302
107
108
3500 | 282
808
181
250
2998 | 197
583
117
200
804s | 240
223
131
190
2779 | 3784
3792
1687
2112
37854 | 41 | | 3UM | 1532 | 2223 | 2202 | 3048 | 2347 | 2776 | 3214 | 2592 | 2619 | 22553 | 2504 | REGIO | | | | | SAMPLE | SIZE | | DE | F RATE | CHANGE
30 PE | CA
ERCE | | REGION
NEW YOR | | | | | SAMPL | | | - | EF RATE | = 42 P | | AREA
1
2 | MAR
45
38 | APR
56
57 | MAY
44
59 | JUN
45
55 | JUL
49
51 | AUG
49
41 | SEP
52
40 | 00 T
40
44 | NOV
41
49 | 9UM
421
433 | 4 | | AREA
!
2 | MAR
63
44
78 | APR
62
46 | MAY
54
53 | JUN
47
34
54 | JUL
78
71
60 | AUG
62
65 | SEP
60
63
53 | 0CT
60
32
58 | NOV
60
70
51 | SUM
546
579
541 | 61
64
60 | 3
4
SUM | 59
54
196 | 49
36
198 | 42
51
196 | 61
35
196 | 50
45
195 | 55
52
197 | 50
54
196 | 53
50
197 | 49
58 | 468
445 | | | 5
5 | 57
57
53 | 66
64
42
55 | 63
59 | 77
62
74 | 69
50
40 | 59
74
52 | 71
85 | 57
59
60 | 51
57
57 | 568
565
561 | 63
63 | SUM | 176 | 198 | 176 | | PULATIO | | 140 | 147 | 194 | 1767 | | | 7 | 45
60 | 88
75 | 67
74 | 30
71 | 41
90 | 74
56 | 52
50 | 65
58 | 74
68 | 536
592 | 60
66 | AREA
1
2 | MAR
155
142 | APR [*]
273
302 | MAY
196
283 | JUN
223
290 | 196
221 | AUG
214
193 | 3EP
168
139 | 00T
108
129 | NOV
106
135 | \$UM
1689
1834 | | | SUM | 497 | 498 | 498 | 499 | 499 | 499 | 500 | 499 | 498 | 4487 | 499 | 5
4 | 315
229 | 366
215 | 282
280 | 462
214 | 308
223 | 374
284 | 249
214 | 220
202 | 198
139 | 2774
2050 | | | AREA | MAR
264
233 | APR
445
420 | MAY
332
413 | JIJN
336
767 | OPULATII
JUL
407
467 | ON 31ZE
AUG
309
413 | SEP
240
319 | 0CT
200
344 | NOV
171
256 | SUM
2704
3632 | 300
404 | 50M
8 6 6100 | 841 | 1156 | 1041 | 1189 | 948 | 1065 | 770 | ್ | 628 | 8297
CHANGE | | | 3
4
5 | 307
276
33 4 | 449
542
362 | 371
459
437 | 361
650
526 | 292
419
374 | 264
343
438 | 197
330
403 | 182
221
232 | 138
171
195 | 2561
3411
3301 | 285
379
367 | DALLA: | MAR | APR | MAY | JUN | SAMPLE
JUL | AUG | SEP | DEI
OCT | F RATE | ≈ 41 PE | | | 7 | 379
169
381 | 493
574
322 | 432
377
576 | 575
166
766 | 225
190
631 | 280
336
418 | 295
187
298 | 217
194
289 | 210
193
297 | 3036
2396
4598 | 337
265
511 | 2 3 | 49
52
49 | 59
65
52 | 75
54
81 | 81
51
60 | 64
59
76 | 70
66
62 | 59
69
74 | e0
73
6 5 | 52
79
57 | 579
568
576 | | | SUM | 2848 | 4047 | 3517 | 4147 | 3005 | 2301 | 2259 | 1879 | 1631 | 25629 | 2948 | = | 92
37
50
92 | 63
69
66 | 62
56
66 | 64
72
54 | 61
94
63 | 71
61
61 | 61
66
67 | 57
59
79 | 58
57
85 | 599
581
591 | | | REGION
PHILADE | PHIA | | | | SAMPL | E 312E | | DE | EF RATE | CHANG | E CASE
ERCENT | 3
80 M | 98
98
519 | 73
71
518 | o1
o3
518 | 67
69
518 | 56
45
518 | 60
67
518 | - 75
48
519 | 39
00
516 | 61
59
518 | 584
586
4664 | | | AREA
1
2 | MAR
71
56 | APR
55
70 | MAY
56
51 | JUN
54
80 | JUL
50
63 | AUG
65
50 | 3EF
57
56 | 9CT
60
51 | 05
50 | SUM
533
527 | AVE
59 | | ••• | | | | PULATIO | | ••• | 0.0 | | | | | 3
4
5 | 30
59
39 | 51
60
54 | 51
67
60 | 30
72
62 | 36
71
52 | 45
64
59 | 65
50
58 | 65
39
57 | 71
50
51 | 444
532
492 | 49
59
55 | 45EA
1
2 | MAR
535
477 | APR
753
701 | MAY
340
511 | JUN
1052
553
768 | JUL
605
475 | AUG
>24
499 | 3EP
434
431 | 0CT
427
437 | NOV
435
467 | 5705
4551 | | | 9 | 67
86
54 | 77
48
46 | 57
60
61 | 65
52
47 | 84
75
30 | 66
52
61 | 55
57
64 | 60
53
77 | 61
39
76 | 592
522
516 | 58
57 | 3
4
5 | 528
1570
428 | 656
1264
928 | 901
1071
655 | 1294 | 716
905
933 | 549
993
577 | 545
699
509 | 457
739
516 | 400
633
422 | 5520
9168
5951 | 1 | | SUM | 462 | 461 | 463 | 462 | 461 | 462 | 462 | ⁴⁶² . | 463 | 4158 | 462 | %
7
8 | 656
1115
1192 | 1025
1025
1010 | 983
7 4 0
779 | 848
951
991 | 718
577
472 | 663
593
663 | 599
611
390 | 674
296
516 | 726
472
458 | 6792
6330
6476 | | | AREA
1 | MAR
365 | APR
368 | MAY
303 | JUN
316 | OPULATI
JUL
239 | ON SIZE
AUG
254 | SEP
182 | 0CT
189 | NOV
212 | SUM
2428 | AVE
270 | BUM! | e501 | 7362 | 6380 | 7440 | 5401 | 5166 | 4218 | 4062 | 4013 | 50543 | 5 | | 3 4 | 263
36
305 | 428
219
399 | 256
177
368 | 434
75
423 | 279
112
342 | 191
114
252 | 167
134
160 | 147
131
123 | 149
148
162 | 2304
1196
2534 | 256
133
292 | 859100
350V50 | ì | | | | SAMPLE | | | DEI | FRATE | CHANGE
= 50 PE | | | 5
6
7 | 152
597
415 | 274
891
297 | 250
539
305 | 278
672
286 | 192
708
339 | 178
450
191 | 143
309
170 | 135
326
154 | 125
346
117 | 1727
4838
2274
2037 | 192
538
253
226 | R EA
1
2
8 | MAR
55
54
51 | APR
55
54
52 | MA 7
55
54
52 | JUN
55
54
52 | JUL
55
54 | AUG
55
54
52 | SEP
55
54 | 9CT
55
54 | 95
54 | 3UM
495
486 | | | S
SUM | 248
2481 | 278
3154 | 301
2499 | 247
2791 | 113 | 218
1838 | 186
1451 | 218
1423 | 1482 | 19338 | 2149 | SUM . | 160 | 161 | 161 | 161 | 52
161 | 161 | 51
160 | 51
160 | 51
160 | 464
1445 | | | REGION
ATLANTA | 4 | | | | | | | DE | F RATE | CHANGE
= 48 PE | | AFEA | MAR | APR | MAY | JUN | PULATIO
JUL | AUG | SEP | DCT . | NOV | SUM | | | AREA
I | MAR
76 | APR
79 | MAY
78 | JUN
30 | SAMPLE
JUL
44 | AUG
58 | SEP
⊕8 | 0CT
60 | NGV
50 | SUM
598 | AVE
66 | 1
2
3 | 200
184
157 | 313
288
246 | 258
237
2 02 | 271
249
212 | 219
201
171 | 241
221
189 | 154
142
121 | 156
143
122 | 126
116
99 | 1938
1731
1519 | | | 2
4
5 | 69
57
61
60 | 94
65
49 | 45
40
69
59 | 63
62
58
58 | 68
50
57
61 | 64
93
63
60 | 60
61
74
69 | 75
53
64
73 | 62
84
63 | 590
561
563
583 | 66
62
63
65 | SUM | 541 | 847 | 697 | 732 | 591 | 651 | 417 | 421 | 341 | 5298 | | | 5
7
8 | 60
45
64 | 81
75
68
62 | 65
58
67 | 57
72
87 | 73
70
49 | 52
75
65 | 57
69
52 | 72
61
76 | 62
79
63
51 | 595
581
573 | 66
65
64 | REGIO | N 9
RANCISCO | | | | | | | ne | F RATE | CHANG
= 58 P | | | 10
11 | 60
62
75 | 55
31₃
53 | 61
61
75
80 | 59
50 | 67
88
59
69 | 62
59 | 70
49 | 76
60
53 | 65
61
50 | 591
521
583 | 56
58
45 | AREA | MAR
64 | APR | MAY
77 | JUN | SAMPLE
JUL
64 | | SEP
52 | | | | En | | 12 | 69 | 52
56 | 43 | 78
67
37 | 68 | 65
49
69 | 65
79
57 | 55
51 | 52
78 | 579
548 | 64
91 | 2 3 | 42
68
48 | 57
53
59
49
59
85 | 31
69
50 | 68
49
58
49
65
71 | 64
57
88
52
89
49 | 30
55
99 | 62
67
74
48 | 31
65
49 | 32
52
66 | 30M
564
376
577
550
561
571
576 | | | SUM | \$30 | \$30 | 827 | 828 | 329 | 829 | 830 | 329 | 330 | 7401 | 829 | 5

7 | 42
48
48
92
48
75 | 49
58
85 | 31
69
50
57
68
89
53 | 55 | 39
49
72
58 | 87
30
55
99
84
60
96
74 | 48
67
61
84
79 | 00T
82
81
65
49
105
62
41
54 | NOV
58
32
52
66
63
94
49
73 | 561
571
576 | | | AREA
I | MAR
778
670 | APR
1051
1057 | MAY
958
525 | JUN
1180
384 |)PULATIO
JUL
502
752 | AUG
o67 | SEP
617
519 | 00T
540
644 | NOV
412
488 | 5UM
5705
5235 | AVE
745
673 | 3 | 63
53 | 61
54 | 59 | 63
74 | 64 | 58 | 79
51
543 | 54
56
545 | 73
51
54\$ | 583
530
4888 | | | 8
4
5 | 362
415
521 | 539
428
919 | 349
559 | 565
565
733
879 | 357
434 | 596
588
515
584 | 341
443 | 296
284 | 439
346
441 | 3836
4088
5516 | 426
454 | SUM | 548 | 548 | 543 | 542 | 548
OPULATIO | 548
ON SIZE | 743 | 545 | 745 | 4000 | | | 0 7 8 6 | 947
372
492 | 1036 | 614
335
575
579
710 | 959
910 | 602
951
661
402
745 | 584
627
692
525
680
809 | 535
538
506
330
503 | 507
683
445
492 | 687
426 | 6983
5271
4586 | 613
765
596
510 | AREA
I | MAR
445
82 | AFR
494
39 | MAY
672
63
726 | JUN
667
144 | JPULATTI
JUL
578
146 | AUG
∌58
61 | SEP
534
161 | 00T
761
73 | NOV
542
78 | SUM
5051
897 | | | 10
11
12 | 645
291
550 | 785
582
822
170
593 | 710
341
779
789 | 336
336
977 | 463
583 | 2.5 | 200
502 | 654
248
409 | 304
516
233
425
345 | 5211
2591
5550 | 590
238
617
577 | 3
4
5 | 974
276 | 558
644
393 | 726
363
458 | 688
427
648 | 982
392
329 | 648
802
306 | 781
343
540 | 733
375
911 | 589
513
553 | 6274
418 5
4669 | | | 1.3 | 541
396 | 508
419 | 435 | 792
302 | 441 | 446
446 | 571
283 | 401
257 | 366 | 5192
3350 | 372 | ં
7
ઉ | 531
373
414
414 | 563
370
737 | 363
458
661
711
645 | 847
690
937 | 500
7 74
738 | 044
1095
999 | 587
334
951 | 643
447
699 | 984
537
1020 | 5802
5072
7340 | | | SUM
SEGION
CHICAGO | 6750
5 | 9014 | 3047 | 7818 | 7537 | 7407 | 5993 | 6020
DE | | CHANGE | 73 35
CASE | S
SUM | 245
37 54 | 306
46 54 | 396
4695 | 522
5570 | 383
4 822 | 374
5282 | 292
4523 | 341
49 9 3 | 316
5132 | \$175
43415 | | | AREA
1 | MAR
30 | APR
32 | MAY
62 | JUN
72 | SAMPLE
JUL
56 | SIZE
AUG
54 | SEP
56 | OCT | F RATE
NOV
53 | * 48 PE
SUM
468 | AVE
52 | REGIO
SEATT | N 10 | | | | | | | ne | F RATE | CHANG
= 55 P | | | 2 3 | 93
46
92
95 | 32
30
52
69
94 | 62
42
54
43 | 46
72 | JUL
56
53
60
68 | 57
55 | 56
79
46
43 | 53
30
60
48
52
49
52 | 69
52
70
46 | 561
509 | 6≩
57 | AREA | MAR
57 | APR
50 | MAY
52 | JUN
59 | SAMPLI
JUL
50 | E SIZE
AUG
56 | SEP
58 | ост | NOV
57
50
49 | | | | 4
5
7 | 95
54
52
34 | 94
9
49 | 59
65
90 | 56
75
44 | 98
34
49 | 31
36
73 | 66
45
59 | 52
49
52 | 46
66
77 | 560
587
543
548
548
545 | 65
60
60 | 3 | 50
49 | 50
53
53 | MAY
58
57
47 | 56
42 | 52
55 | 48
53 | 58
44
54 | 55
40
61 | | | | | 8
0
10
11 | 130 | 49
47
72
35
105 | 54
43
59
65
90
65
70
73
56
63
69 | 62
56
75
44
62
44
53
84
62 | 93
93
34
49
34
30
99
54
50 | 60
38
60 | 66
45
58
70
48
47
64 | 61
61
48
45 | 66
77
65
52
61
58
50
58 | 548
545
529
580 | 61
59
64 | SUM | 156 | 156 | 157 | 157 | 157 | 157 | 156 | 156 | 156 | 1408 | | | 11
12
18
14 | 46
30
49 | 47 | 56
63
69 | 34
62
61
51 | 54
50
30 | 69
57
65
31
86
73
60
88
60
68
53
57 | 9.4
75 | 123
49 | 58
50
58 | 594
496 | 56
55 | AREA | MAR
246 | APR
354 | MAY
329 | JUN
398 | OPULATIO
JUL
252 | 272 | SEP
237 | 00T
200 | NOV
204 | SUM
2492 | | | :4 | 37
341 | 3 3
3 4 3 | 30
941 | 51
344 | 38
942 | 71
848 | 82
843 | 63
344 | 943 | 521
7584 | 58
843 | 2
3
4194 | 131
143 | 279
284 | 262
217 | 275
210 | 194
211 | 170
192
634 | 131
166
534 | 109
170
479 | 133
134
471 | 1734
1727
5953 | | | | | | | | | | | | | | | SUM | . 570 | 717 | 308 | 383 | 657 | 534 | 334 | 4/4 | 4/1 | 24.23 | | # EXHIBIT 2 (Continued) | MATION | | | | | | | | | | | E CASE | |----------|-------|-------|-------|-------|---------|---------|-------|-------|---------|--------|--------| | 141.1014 | | | | | | | | D | EF RATE | = 51 8 | ERCENT | | | | | | | SAMPLI | E SIZE | | | | | | | REGION | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NQV | SUM | AVE | | 1 | 230 | 231 | 232 | 232 | 232 | 231 | 232 | 232 | 231 | 2083 | 231 | | 2 | 497 | 498 | 498 | 499 | 499 | 499 | 500 | 499 | 493 | 4487 | 499 | | 2 | 462 | 4-01 | 468 | 462 | 461 | 452 | 462 | 462 | 463 | 4158 | 4.62 | | 4 | 830 | 830 | 327 | 828 | 928 | 329 | 830 | 829 | 330 | 7461 | 329 | | 5 | 341 | 343 | 341 | 344 | 342 | 343 | 343 | 344 | 343 | 7584 | 848 | | | 196 | 198 | 196 | 190 | 195 | 197 | 196 | 197 | 196 | 1767 | 196 | | ÷ | 519 | 518 | 518 | 518 | 513 | 518 | 519 | 513 | 518 | 4664 | 518 | | 8 | 160 | 161 | 161 | 161 | 161 | 161 | 160 | 160 | 160 | 1445 | 161 | | ė | 543 | 543 | 543 | 542 | 543 | 543 | 543 | 545 | 543 | 4893 | 543 | | 10 | 15é | 156 | 157 | 157 | 157 | 157 | 156 | 156 | 156 | 1408 | 156 | | NATION | 4434 | 4439 | 4436 | 4439 | 4436 | 4440 | 4441 | 4442 | 4438 | 39945 | 4438 | | | | | | P | OPULATI | ON SIZE | | | | | | | REGION | MAR | APR | MAY | JUN | JUL | AUG | 3EP | OCT | NOV | SUM | AVE | | 1 | 1532 | 2223 | 2202 | 3048 | 2347 | 2776 | 3214 | 2592 | 2619 | 22553 | 2506 | | ż | 2343 | 4047 | 3517 | 4147 | 3005 | 2801 | 2259 | 1879 | 1631 | 25629 | 2846 | | 3 | 24.81 | 3154 | 2499 | 2731 | 2329 | 1838 | 1451 | 1423 | 1482 | 19338 | 2149 | | 3 | 6750 | 9014 | 3047 | 9818 | 7537 | 7407 | 5993 | 6020 | 5428 | 56014 | 7335 | | 5 | 50⊲3 | 6163 | 5044 | 5425 | 3630 | 3506 | 2998 | 3046 | 2779 | 37654 | 4184 | | ق ا | 341 | 1156 | 1041 | 1189 | 948 | 1065 | 770 | 659 | 623 | 8297 | 922 | | 7 | 6501 | 7862 | 6330 | 7440 | 5401 | 5166 | 4218 | 4062 | 4013 | 50543 | 5614 | | 8 | 541 | 347 | 397 | 782 | 591 | 651 | 417 | 421 | 341 | 5238 | 582 | | - 5 | 3754 | 4654 | 4695 | 5570 | 4822 | 5282 | 4523 | 4983 | 5132 | 43415 | 4824 | | 10 | 570 | 917 | 908 | 883 | 657 | 5.34 | 534 | 479 | 471 | 5953 | 001 | | NATION | 30325 | 29537 | 34990 | 40983 | 31267 | 31126 | 26377 | 25564 | 24524 | 284634 | 31026 | 9 MONTH ROLL SAMPLING ERRORS 4 MONTH ROLL SAMPLING ERRORS CHANGE CASE CHANGE CASE | CHANGE CASE | | CHANGE | | | | | | | | |--|--------------|--------------|--------------------------|--------------|--------------|--------------|--------------|--------------|--------------| | DEF RATE = 51 PERCENT | MAR- | | TE = 51 PERCENT | MAR- | APR- | MAY- | JUN- | JUL- | AUG- | | REGION AND AREA | NOV | REGION | AND AREA | JUN | JUL | AUG | SEP | OCT | NOV | | 1 1 BOSTON | 3.97 | 1 1 | BOSTON | 5.71 | 5.79 | 5.87 | 0.16 | 6.19 | 6.29 | | 1 2 BOSTON | 3.99 | i î | | 0.53 | 0.27 | 6.15 | 5.88 | 5.70 | 5.49 | | 1 B BOSTON | 3.98 | i ē | | 6.19 | 6.02 | 5.98 | 5.80 | 5.74 | 5,30 | | 1 4 BOSTON | 3.97 | 1 4 | | 5.62 | 5.73 | 5.82 | 6.09 | 0.24 | 6.42 | | | 3.98 | 2 1 | | 5.17 | 5.91 | 5.36 | 5.30 | 5.50 | 5.52 | | 2 1 NEW YORK
2 2 NEW YORK | 3.98 | 2 2 | | 4.26 | 5.38 | 5.65 | 5.59 | 5.45 | 5.40 | | 2 3 NEW YORK | 3.98 | 2 3 | | 5.70 | 5.84 | 5.91 | €.07 | 5.81 | 5.89 | | 2 4 NEW YORK | 3.98 | 2 4 | | 5.32 | 5.64 | 5.67 | 5.63 | 5.65 | 5.30 | | 2 5 NEW YORK | 3.76 | 2 5 | | 6.21 | 6.23 | 5.31 | 5.56 | 5.43 | 5.42 | | 2 5 NEW YORK
2 7 NEW YORK | 9.98
3.98 | 2 6 | | 5.63 | 6.06 | 6.09 | 6.11 | 5.72 | 5.68 | | | 3.98 | | | 6.03 | 6.04
5.46 | 5.63 | 5.93 | 5.95 | 5.05 | | 2 9 NEW YORK
3 1 PHILADELPHIA | 3.78 | | NEW YORK
PHILADELPHIA | 5.70
5.93 | 6.23 | 0.02 | 6.01 | 5.71 | 5.34 | | 3 2 PHILADELPHIA | 3.97 | 3 1 | | 5.64 | 5.57 | 5.73 | 5.70 | 5.81 | 5.74 | | 3 S PHILADELPHIA | 2.72 | 3 3 | | 6.77 | 5.54 | 6.46 | 5.91 | 5.32 | 4.67 | | 4 PHILADELPHIA | 3.98 | 3 4 | | 5.67 | 5.55 | 5.46 | 5.65 | 5.36 | 5.93 | | 5 PHILADELPHIA | 3.98 | | PHILADELPHIA | 6.02 | 5.34 | 5.70 | 5.71 | 5.48 | 5.24 | | D PHILADELPHIA | 3.93 | 3 6 | PHILADELPHIA | 5.83 | 5.00 | 5.75 | 5.31 | 5.76 | 5.37 | | 3 7 PHILADELPHIA | 3.78 | 3 7 | | 5.75 | 5.89 | 5.79 | 5.83 | 5.64 | 5.35 | | 3 8 PHILADELPHIA | 3.98 | | PHILADELPHIA | 6.24 | 5.56 | 6.32 | 6.23 | 5,49 | 4.93 | | 4 1 ATLANTA | 3,99 | 4 1 | | 5.47 | 5.76 | 5.99 | 6.16 | 6.31 | 6.21 | | 4 2 ATLANTA | 3.99 | 4 2 | | 5.98 | 5.97 | 6.22 | 6.07 | 5.84 | 5.38 | | 4 3 ATLANTA | 3.98 | 4 3 | | 6.22 | 6.30 | 0.05 | 5.90 | 5.39 | 5.49 | | 4 4 ATLANTA | 3.98 | 4 4 | | 6.15 | 6.18 | 5.94 | 5.91 | 5.74 | 5.54 | | 4 5 ATLANTA
4 o ATLANTA | 3.99 | 4 5 | | 5.98 | 5.95 | 6.21 | 6.12 | 5.94 | 5,30 | | 4 5 ATLANTA
4 7 ATLANTA | 3.99 | 4 6 | | 6.15 | 5.84 | 5.76 | 5.68 | 5.70 | 5.75 | | 4 8 ATLANTA | 3.98 | 4 9 | | 5.69 | 5.83 | 5.30 | 6.01 | 6.01 | 5.96 | | 4 PATLANTA | 3.98 | 4 9 | | 6.10 | 6.06 | 6.10 | 6.04 | 5.76 | 5.75 | | 4 :0 ATLANTA | 3.98 | 4 10 | | 6.41 | 6.02 | 5.68 | 5.33 | 5.80 | 5.87 | | 4 11 ATLANTA | 3.99 | 4 11 | ATLANTA | 5.73 | 5.33 | 5.76 | 5.90 | 0.10 | 6.06 | | 4 12 ATLANTA | 3.99 | 4 12 | | 5.77 | 5.72 | 5.36 | 5.92 | 5.95 | 6.12 | | 4 13 ATLANTA | 3.97 | 4 13 | | 6.22 | 6.22 | 6.03 | 6.12 | 5.87 | 5.70 | | 5 1 CHICAGO | 3.96 | 5 1 | | 6.18 | 5.82 | 5.49 | 5.51 | 5.21 | 5.12 | | 5 2 CHICAGO
5 8 CHICAGO | 3.98 | 5 2 | | 5.31 | 7.17 | 5.67 | 5.94
5.73 | 5.33 | 5,14 | | 5 4 CHICAGO | 3.98 | 5 4 | | 5.68 | 6.01 | 6.01 | 5.00 | 5.86 | 5.79 | | 5 5 CHICAGO | 3.98 | | CHICAGO | 5.41 | 5.54 | 6.21 | 6.11 | 5.89 | 0.41 | | 5 6 CHICAGO | 3.98 | 5 6 | | 5.63 | 5.29 | 5.06 | 5.39 | 5.35 | 5.40 | | 5 7 CHICAGO | 3.98 | 5 7 | | 5.97 | 6.06 | 5.73 | 5.00 | 5.00 | 5.27 | | 5 8 CHICAGO | 3.98 | 5 9 | CHICAGO | 6.39 | 5.78 | 5.00 | 5.52 | 5.24 | 5.36 | | 5 9 CHICAGO | 3.99 | 5 9 | | 5.14 | 6.32 | 6.34 | 7,27 | 6.34 | 5,97 | | 5 10 CHICAGO | 3,98 | | CHICAGO | 6.21 | 5.66 | 5.36 | 5.56 | 5.35 | 5.70 | | 5 11 CHICAGO
5 12 CHICAGO | 3.98 | 5 11 | | 5.50 | 5.40 | 5.82 | 5.75 | 5.90 | 5.30 | | | 3.98 | | CHICAGO | 6.02 | 5.74 | 6.27
5.99 | 6.27
5.82 | 5.29
5.30 | 5.25 | | 5 13 CHICAGO
5 14 CHICAGO | 3,97 | 5 13
5 14 | CHICAGO
CHICAGO | 5.85
7.41 | 6.42 | 5.79 | 5.23 | 4.88 | 4.99 | | : PANSAS CITY | 3,98 | 6 1 | | 5.94 | 5.36 | 5,94 | 5.31 | 5.79 | 5.37 | | 2 MANSAS CITY | 3.97 | š 2 | | 5.72 | 5.53 | 5.71 | 6.01 | 6.09 | 6.08 | | B YANSAS CITY | 3.98 | 6 3 | | 5.91 | 0.01 | 5.91 | 5.82 | 5.89 | 5.89 | | 4 HANSAS CITY | 3.97 | 6 4 | KANSAS CITY | 5.32 | 6.47 | 6.16 | 5.12 | 5.69 | 5.48 | | 1 DALLAS | 3.98 | 7 1 | | 5.82 | 5.67 | 5.57 | 5.73 | 5.85 | 5.32 | | 7 2 DALLAS | 3.98 | 7 2 | | 5.29 | 6.21 | 6.18 | 6.01 | 5.62 | 5.37 | | 5 DALLAS | 3,98 | 7 3 | | 6.07 | 5.77 | 5.66 | 5.77 | 5.58
5.91 | 5.74 | | | 3.99 | 7 4 | DALLAS | 5.73 | 6.09
5.57 | 6.00
5.65 | 6.07
5.59 | 5.48 | 5.32 | | 7 5 DALLAS
7 6 DALLAS | 3.78 | 7 5 | | 6.19 | 6.06 | 6.11 | 6.15 | 5.72 | 5.46 | | 7 7 DALLAS | 3.98 | 7 7 | | 5.54 | 5.94 | 6.09 | 5.98 | 6.17 | 6.06 | | 7 8 DALLAS | 3.98 | 7 8 | | 5.47 | 6.04 | 6.10 | 6.35 | 5.23 | 6.00 | | 3 1 DENVER | 3.98 | 8 1 | | 5.95 | 5.93 | 5.84 | 5.86 | 5.73 | 5.67 | | 8 2 DENVER | 3.97 | 8 2 | DENVER | 5,95 | 5.93. | 5.33 | 5.35 | 5.70 | 5.03 | | 8 3 DENVER | 3.97 | 8 3 | | 5.96 | 5.94 | 5.32 | 5.83 | 5.68 | 5.61 | | 9 1 SAN FRANCISCO | 3.98 | 9 1 | | 5.88 | 5.36 | 6.10 | 5.30 | 6.02 | 6.10 | | 9 2 SAN FRANCISCO
9 8 SAN FRANCISCO | 3.97 | 9 3 | | 0.18 | 5.96 | 6.08 | 5.50
5.82 | 5.62 | 5.98
6.08 | | 9 8 SAN FRANCISCO
9 4 SAN FRANCISCO | 3.98 | 9 3 | | 6.17 | 5.89
6.02 | 5.91 | 5.94 | 5.92 | 5.76 | | 9 5 SAN FRANCISCO | 9.98 | 3 9 | | 6.09
5.96 | 6.51 | 6.76 | 6.60 | 5.99 | 5,72 | | 9 - SAN FRANCISCO | 3.99 | 9 6 | | 6.12 | 2.03 | 6.06 | 0.14 | 6.23 | 5.70 | | 9 7 SAN FRANCISCO | 3.98 | 9 7 | | 5.69 | 5.69 | 5.59 | 5.96 | 0.11 | 0.42 | | 9 8 SAN FRANCISCO | રૂ.જજ | 9 8 | SAN FRANCISCO | 6.25 | 6.28 | 0.11 | 5.32 | 5.39 | 5.08 | | 9 9 SAN FRANCISCO | 3.98 | 9 9 | | 5.33 | 5.03 | 5.55 | 5.85 | 5.03 | 0.22 | | 1) : EATTLE | 5.98 | | SEATTLE | 0.00 | 0.06 | 5.94 | 5.87 | 5.72 | 5.56
5.33 | | 10 I SEATTLE | 3.78 | | SEATTLE
SEATTLE | 5.75
6.31 | 5.77 | 5.78 | 5.94 | 5.40 | 5.36 | | 10 3 SEATTLE | 3.97 | 10 3 | DEATTLE | 0.01 | 9.09 | 3.00 | 2.00 | 3.40 | 0.00 | | | | | | | | | | | |