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1 • INTRODUCTION 

We descr ibe one par t  of a two-s tage scheme 

fo r  sampling a time ordered populat ion in which 

there are d i f f e r e n t  levels of i n t e res t  and back-  

g round informat ion fo r  each of the stages. 

Year ly  telephone call records are accessible 

by means of da i ly  computer tapes, each of 

which contains the records of all calls made on 

the network  du r i ng  that  day.  Those calls are 

genera l ly  ordered by the time of day at which a 

given call was in i t ia ted.  For the fo l lowing 

d iscuss ion,  in te res t  centers on the measurement 

of call i n t e n s i t y - - t h e  number of calls in i t ia ted 

du r i ng  a un i t  of t ime--between pairs of nodes 

in the telephone network  as a func t ion  of the 

time of day,  say x.  For a given node pai r  and 

a given day i t  was fe l t  tha t  the funct ional  form 

of the call in tens i t ies wi th in  the hours of i n te r -  

est could be well approximated by a polynomial 

in x whose degree was known to lie between 

two specif ied in tegers k I and k 2. 

Note tha t  to estimate call in tens i t ies ,  i t  is 

necessary to select time in te rva ls  over which to 

record the number of calls in i t ia ted.  The 

sampling task generated by these cons idera-  

t ions is then to cons t ruc t  a series of times 

x1, x2, . . . ,  x N and numbers of calls 

to be processed a f ter  those t imes, say 

n 1, n 2 . . . .  , n N so tha t  subsequent  estima- 

t ion of the call i n tens i t y  funct ional  form is su f -  

f i c i en t l y  good in a sense to be made clear.  If 

the i th time in terva l  is indexed by its s ta r t  time 

x i and its re lat ive sample size w i, then the 

problem is to choose a good set 

= {(x 1,w, 11, (x2,w 21 ..... (XN,W N)}- 

The problem thus becomes one of optimal 

exper imental  des ign,  where the design is g iven 

by ~. The classical l i t e ra tu re  of Kiefer  and 

Wolfowitz 1 and Federov 2 is then useful in our  

s i tuat ion.  Fur thermore ,  Cook and Nachtsheim s 

consider  a related problem, and both the i r  

paper and the present  one benef i t  from the 

work  of Tsay .4  

The second phase of the sampling scheme 

is the selection of days of the year  fo r  which to 

select da i ly  tapes. Much less background i n f o r -  

format ion is available here. No fami ly  of f unc -  

t ional forms fo r  da i ly  call records was postu-  

lated, nor was there any special i n te res t  in the 

hypothes iz ing  of such forms. One could,  how- 

ever ,  i den t i f y  several fac tors  which were 

bel ieved to play some role in determin ing da i ly  

e f fects .  It seems natura l  then to use th is  in -  

format ion to s t r a t i f y  the populat ion of days and 

to use the in ferent ia l  techn iques of classical 

sampling theo ry  as g iven in,  say, Cochran.  S 

That  is, a l though we postulate a superpopu la t ion  

model fo r  the call records w i th in  a day,  the 

days themselves cons t i tu te  a f i xed  populat ion 

which we i n t e r p r e t  w i th in  the con tex t  of f i n i te  

populat ion t heo ry .  

However,  in th is  paper we concent ra te  on 

the f i r s t  phase of samp l i ng - -w i th in  a day.  

2. WITHIN DAY DESIGN CONSIDERATIONS 

2.1 Classical Optimal Design 

Suppose the call intensity at time x is 

y(x) and the model 

Y(Xi) = Xik~k + &i 

is approp r ia te ,  where 

Xik = (l, x i ..... xk), 

~k = (~0' ~ ..... ~k )'' 

and ~. is a random var iab le  wi th mean 0 and 
I 

2 
var iance o . For the design 

= {(xl,w I) ..... (XN,WN)} 

where 
.th 

x. = z starting time for observing calls, 
1 

th 
n. = number of calls observed at i time, 
z N 

W_l = ni/n_ , and n = ~ n. 
• i=l I ' 

the covar iance mat r ix  of the o r d i n a r y  least 

squares est imator of J~k is g iven by" 

2 
V o  
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where 

-1 
V = (Vrs) , and 

N 
V = ~ w.x ~r+s/~~ r = 0 1 k 

, ,e ! i - - - i 

rs i=l i i s = O, 1 .... , k. 

Let 

2 k) 2 k) , ,  
dk(X,~) = (1 x x .... x V(1 x x . . .  x , 

and consider  m a x x d k ( X , ~ ) .  A design ~ is 

called called G-optimal i f  i t  minimizes th is  la t ter  

q u a n t i t y .  I t  is a well known resu l t  of Kiefer  

and Wolfowitz 1 tha t  i f  ~ is G-opt imal ,  then 

maxxdk (X ,  ~) = k + 1. We will use th is  fact  to 

assess the nearness of our  designs to the 

optimal.  

To cons t ruc t  near ly  optimal designs,  we 

use the fo l lowing basic a lgor i thm,  which is in 

the sp i r i t  of those algor i thms given in Tsay 4 

and Cook and Nachtsheim. S 

(1)  Begin wi th a design at prespeci f ied points 

X l ,  . . . ,  XN, and equal weights (= l / N ) .  

In pract ice these points will be the closest 

spaced feasible sampling points.  The 

weights can be represented by the lxN 

vec tor  (1 1 . . .  1 1) which is jus t  a scalar 

mult ip le of the actual vec tor  of we ights .  

(2)  Find x *  C{X l ,  x2, . . . ,  XN} = S such tha t  

x *  = maxSdk (X ,~ ) .  

(3)  Add one to the appropr ia te  component of 

the vec tor  (1 1 . . .  1 1) and normalize so 

the new components sum to one. 

(4)  Cont inue in th is  way unt i l  maXx(X,~)  be- 

comes su f f i c i en t l y  close to k + 1. 

Note tha t  i f  we were using the exact 

r o u n d - o f f  scheme of Federov,2 the work  of 

Tsay  4 implies convergence of th is  sequence of 

designs to the optimum. 

Serious complaint might  be lodged against  

the f ixedness of the design points ,  pa r t i cu l a r l y  

i f  the points were so sparse as to obs t ruc t  

convergence to the opt imum. Designs wi th an 

excessive number of ini t ia l  points need not 

concern us, since in the l imit i t  wil l happen 

tha t  super f luous  points are assigned zero 

we ight .  Exper iments we have done indicate 

tha t  i f  the number of equal ly  spaced design 

points is somewhat more than twice the h ighest  

degree of the polynomials cons idered,  then the 

a lgor i thm converges to w i th in  a few tenths  of a 

percent  of the optimum. The a lgor i thm has 

converged in all of our  exper iments .  

2.2 Robustness 

In our  problem we were unwi l l ing  to speci fy  

the degree of the polynomial in the model for  

call in tens i t ies .  Instead, k was specif ied to lie 

between k I and k 2. It  was necessary,  then to 

search for  a design ~ which would be near ly  

optimal for  th is  range of polynomial models. 

F i rs t ,  i t is necessary to rescale our  mea- 

sure of design goodness so d i f f e ren t  polynomial 

degrees can be compared. Since the maximum 
k th var iance of a pred ic ted value x from a de- 

gree polynomial is k + 1, the values of dk (X ,  %) 

below have been t ransformed by subs t rac t ing  

k + 1, and then d iv id ing  by k + 1. The t rans -  

formed values are then the percentages (d iv ided  

by 100) the realized dk (X ,  ~) achieve in excess 

of the opt imum. 

The procedure we have adopted is easi ly 

descr ibed by its a lgor i thm.  Recall in the 

classical a lgor i thm,  one searches fo r  x *  such 

tha t  maxxdk(X, /~)  = d k ( X * , ~ ) .  Now, fo r  S = 

{k  1, k I + 1 . . . .  , k2} we search fo r  x *  mini-  

mizing 

max S max x d k(x,~) 

Thus we generate a mat r ix  of var iances of 

pred ic ted values (sca led) ,  each row cor respond-  

ing to the var iances generated from a pa r t i cu la r  

polynomial degree under  considerat ion.  The 

next  design point  puts its weight  where the 

p red ic to r  var iance is h ighest  among all rows 

and columns of the mat r ix .  

I t  is of in te res t  to know what d k ( X , ~ )  

values will be produced by the converged algo- 

r i thm,  or whether  the a lgor i thm converges at 

all. I t  is easi ly shown tha t  i f  the a lgor i thm 

converges,  then the realized (dkX ,  ~) values fo r  

the selected set of k's will all be equal. They  

will not all be zero for  the simple reason tha t  

zero cor responds to the optimal design,  and not 

all polynomials have the same optimal design.  

It  is hear ten ing to note tha t  in our  exper iments ,  

a few resul ts  of which are reproduced below, 
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we do achieve near equal i ty  of the re levant  

d k ( X , ~ )  values. 

Figure 1 shows the values of maxxdk(X ,  ~) 

fo r  k I < k < k 2 associated with several designs 

generated by the scheme jus t  descr ibed.  These 

designs are suppor ted by the x. values 0.5,  t 
1.0, 1.5, . . . .  9.5,  10.0. The values of 

maxxdk(X ,  ~j) have been rescaled by subt rac t ing  

k + 1, and then d iv id ing  by (k  + 1)/100. The 

displayed values there fore  represent  the per-  

centage by which the maxxdk (X ,~ )  value ex-  

ceeds its theoret ical  minimum. This quan t i t y  is 

labeled MV in Figure 1. 
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Figure 1. MV for  Three Designs 

We note in passing that  the scaling of 

dk (X ,  ~) can be modified to deal with certain 

other  design speci f icat ions. For example, one 

might be less interested in the funct ion for  

some values of x than for  o thers,  and th is 

in teres t  might be t ranslated into upper  bounds 

B ix  on the p red ic to r  var iance for  certain in te r -  

vals of x.  It would then be reasonable to apply 

the algor i thm with dk (X ,~  ) replaced by 

[d k(x.~) - BIx ]/BIx 

In i n te rp re t i ng  these graphs,  one may ask 

how far  above the optimal value of k + 1 

maxxdk(X ,  %) may be and sti l l  be reasonably 

good. Some heur is t ic  ins ight  is gained by 

not ing that  the equal spacing, equal weight  

design for  N points wi th k : 1 is associated 

with a value of 4 ( twice the theoret ical  mini- 

mum) when N becomes large. Since this design 

has some in tu i t i ve  appeal, a value of MV, the 

scaled version of maxxdk (X ,~ )  even as high as 

1.00 may not be excessive. 

Given the genesis of the designs ~v '  i t  is 

not su rp r i s i ng  that  each design performs well 

fo r  the k values fo r  which i t  was generated.  

In addi t ion we note tha t ,  in general ,  designs 

generated fo r  high degree polynomials tend to 

perform bet ter  fo r  a wide range of k values,  

presumably because they  pu t  weight  on many 

d i f f e ren t  x -va lues .  However,  i t  is an ar t i fac t  

of f i t t i ng  polynomial models tha t  a good design 

must put  re la t ive ly  heavy weight  near the end 

points of the in terva l  suppor t ing  the x -va lues .  

Unl ike certain special t r igonometr ic  models tha t  

a f ford optimal designs which are equal ly  spaced 

and weighted,  near optimal and robust  designs 

for  polynomial models do not have equal we ight  ° 

ings for  equal spacings. 

These points are i l lus t ra ted by a plot of 

the design weights against the associated design 

points,  shown fo r  the design in Figure 2. 

0 . 2 0  - 

o ls l 
~ o . lo  

c~ 0 .05  

0 .00  
0 1 2 3 4 5 6 7 8 9 10 

DESIGN P O I N T  

Figure 2. Design fo r  k = 3 4 5 

The algor i thm can be modified to incorpo-  

rate ini t ial  beliefs about the possible values k 

may actual ly  be. Operat iona l ly ,  g iven re lat ive 

weights {Pki } for  the polynomial degrees {k i }  

we consider each of the degrees k l ,  . . . ,  k 2 

selecting polynomials of degree k. wi th proba-  t 
b i l i t y  Pi to use in the a lgor i thm descr ibed 

above. The selection process is repeated for  a 

large number of i terat ions of the a lgor i thm. 

This selection process ensures tha t  degrees 

appear with the requ i red  probab i l i t ies ,  and the 

same degree will appear at most once in any one 

i tera t ion.  Each set of polynomials is of a sto- 

chastic size, however.  Some exper iments sug-  

gest that  the generat ion of many polynomial 

degrees for  use in a single i terat ion produces 

7 3 0  



convergence s l i g h t l y  fas te r  than the use of a 

small number of p61ynomial degrees per i te ra t ion .  

2.3 Cons t ra in ts  on the Design 

Each time in te rva l  over  which call records 

are processed contains calls between var ious  

node pai rs  in the ne twork .  I t  is the func t iona l  

form of the call in tens i t ies  fo r  the calls between 

speci f ied node pairs which are of i n te res t .  

Hence each set of node pairs ident i f ies  a s t udy  

domain of the popu la t ion .  In o rde r  to insure  

the precise measurement of call in tens i t ies  fo r  

each of the node pa i rs ,  we would l ike to ensure 

wi th  a speci f ied p r o b a b i l i t y  1 -  ~ tha t  at least 
.th 

c.. call records fo r  the j node pai r  are 
ij 

observed in the i th time i n te rva l .  I t  seems 

reasonable to suppose tha t  { n i j } ,  the number of 

records observed from the j 'th node pai r  in the 
.th i t ime in te rva l  ( i . e . ,  t ha t  one beg inn ing  at 

t ime x . ) ,  is d i s t r i b u t e d  as a mult inomial wi th  
i 

. and Pi j '  where C. is the total parameters C l i 

number  of call records observed in the i th time 

in te rva l  and Pij is the p r o b a b i l i t y  t ha t  an 

observa t ion  in the i th time in te rva l  is from the 
.th j node pa i r .  We then requ i re  tha t  C i be 

chosen so tha t  

P(nij > cij Ici,pijl > 1 - ~i- 

The a lgor i thm g iven in the p rev ious  sec- 

t ion lends i tse l f  to the imposi t ion of cons t ra in ts  

on the values {n i } .  Let the cons t ra ined values 

of {n i }  be cal led {Ci }  and cons ider  the a lgor i thm 

descr ibed above. Replace step (1 ) ,  in which an 

a r b i t r a r y  design was chosen to begin the design 

genera t ion ,  by  the vec to r  (C 1 C 2, . . . ,  CN) ,  

scaled so the sum of the components is u n i t y .  

Then the subsequent  steps of the a lgor i thm 

e f f ec t i ve l y  add observa t ions  to those x -va lues  

fo r  which d(x ,~ ] )  is large.  As before ,  Tsay 's  

wo rk  4 shows tha t  th is  p rocedure  leads to op t i -  

mal designs fo r  speci f ied k. 

Using th is  p rocedure ,  we create a se- 

quence of des igns which span the gap between 

those which merely sa t i s fy  the cons t ra in ts  on 

the number  of calls per time i n t e r va l ,  and those 

which are a r b i t r a r i l y  close to the opt imum. In 

t ha t  rega rd ,  note tha t  fo r  a g iven design wi th  

. at time x i, the we igh t  w i and cons t ra i n t  C 

cons t ra in ts  can be sat is f ied by  choosing the 

total sample size n. so tha t  

n. = maxi(Ci/wi). 

The sampler can then choose among designs 

which have a speci f ied closeness to the optimal 

and which also sa t i s fy  the sample size con- 

s t ra in t s .  

The speed at which designs wi th  var ious  

cons t ra in ts  approach the optimal is i l l us t ra ted  in 

the fo l lowing f i g u r e ,  in which the scaled values 

of maxxdk(X,%)  are g iven fo r  the above algo- 

r i thm wi th  the stated cons t ra in t  and the g iven 

polynomial  degree.  

K = 6  

CONSTRAINT = (1 2 3 4 5 5 4 3 2 1 1 2 3 4 5 5 4 3 2 1) 
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Figure 3. Const ra ined Design Toward  Optimum 

In these f i g u r e s ,  NTOT is n . ,  computed as 

g iven above. For a g iven cons t ra i n t ,  i t  is 

h a r d l y  s u r p r i s i n g  tha t  a reasonable value of MV 

(say 20) is reached f a i r l y  q u i c k l y  when the 

const ra ined weights  are not too d i f f e r e n t  f rom 

the optimal we igh ts .  I t  also appears tha t  these 

g raphs  are about  the same whatever  the pre-  

sumed degree of the polynomial  model. 

2.4 Equal Spacing and Weighting 

It is of interest to note that designs with 

equal spacing and equal weights are not very 

good, in the sense that they have large 

maxxdk(X,~ j) values for polynomial models. In 

fact, in the spacing of the designs considered 

above, wi th  x. = i /2 ,  we note tha t  wi th  equal 
i 

we igh ts ,  namely w. = 0.05 fo r  N = 20, we 
i 

calculate 

maxxd I (x, ~ ) = 3.71 

maxxd 2 (x, ~) = 7.41 
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maxxd 3(x,~) = ii.25, 

maxxd4(x,~) = 14.52 

maxxd 5(x,~) = 16.94 

maxxd6(x,~) = 18.74 

These are, of course, well above the theo- 

retical minima for maxxdk(X, ~) and suggest that 

when polynomials appear to be reasonable models 

for the variable of interest,  equal spacing and 

equal weighting designs are not as at t ract ive as 

intui t ion suggests. 
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