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1. INTRODUCTION

We describe one part of a two-stage scheme
for sampling a time ordered population in which
there are different levels of interest and back-
ground information for each of the stages.

Yearly telephone call records are accessible
by means of daily computer tapes, each of
which contains the records of all calls made on
the network during that day. Those calls are
generally ordered by the time of day at which a
call was initiated. For

given the following

discussion, interest centers on the measurement
of call intensity--the number of calls initiated
during a unit of time--between pairs of nodes
in the telephone network as a function of the
time of day, say x. For a given node pair and
a given day it was felt that the functional form
of the call intensities within the hours of inter-
est could be well approximated by a polynomial
in x whose degree was known to lie between
and k2.

Note that to estimate call intensities,

two specified integers k1
it is
necessary to select time intervals over which to

record the number of calls initiated. The

sampling task generated by these considera-
tions is then to construct a series of times

Xqr Xor woes Xy and numbers of calls

to be processed after those
N SO that

tion of the call intensity functional form is suf-

times, say

Nys Ny vvny subsequent estima-

ficiently good in a sense to be made clear. |If

the ith

Xi and

time interval is indexed by its start time
its relative sample size Wi, then the

problem is to choose a good set
£ = {xw ), (xyW,), -on, (v

The problem thus becomes one of optimal
experimental design, where the design is given
by E&.
Wolfowitz?!

The classical literature of Kiefer and

is then useful in our
Cook and Nachtsheim?

and both their

and Federov?
situation. Furthermore,
consider a related problem,
paper and the present one benefit from the

work of Tsay.?
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The second phase of the sampling scheme
is the selection of days of the year for which to
select daily tapes. Much less background infor-

formation is available here. No family of func-

tional forms for daily call records was postu-
lated, nor was there any special interest in the
hypothesizing of such forms. One could, how-

ever, identify several factors which were
believed to play some role in determining daily
effects. It seems natural then to use this in-
formation to stratify the population of days and
techniques of classical
say,
That is, although we postulate a superpopulation

the

to use the inferential

sampling theory as given in, Cochran.’

model for the call records within a day,
days themselves constitute a fixed population
which we interpret within the context of finite
population theory.

However, in this paper we concentrate on

the first phase of sampling--within a day.

2. WITHIN DAY DESIGN CONSIDERATIONS

2.1 Classical Optimal Design

Suppose the call intensity at time x is

y(x) and the model
Y(3) = iy 8y

is appropriate, where
Zip = (1o %y

By = (By By,

k
e Xi)'

and &; is a random variable with mean 0 and

variance 02. For the design

€= {(x,w)), -, (mgw)}
where

X, = ith starting time for observing calls,

n, = number of calls observed at ith time,
N

w. = n,/n , and n= 2 n,,

i i77. . i
i=1

the covariance matrix of the ordinary least
squares estimator of gk is given by:

Y o’



-1
v o= (vrs)’ and
N
v, =3 .x§r+s), =0, 1, . k
i=1 s =0, 1, , k.
Let
dk(x,g) =(1x x2 xk) V(1 = %% ... xk) ®
and consider maxxdk(x,g). A design £ is

called called G-optimal if it minimizes this latter

quantity. It is a well known result of Kiefer
and Wolfowitz! that if £ is G-optimal, then
maxxdk(x,g) = k + 1. We will use this fact to
assess the nearness of our designs to the
optimal.

To construct nearly optimal designs, we

use the following basic algorithm, which is in
the spirit of those algorithms given in Tsay?

and Cook and Nachtsheim.?3

(1) Begin with a design at prespecified points
N weights (= 1/N).
In practice these points will be the closest
The

represented by the 1xN

X1 . X and equal

spaced feasible sampling points.

weights can be
vector (1 1 . 1 1) which is just a scalar

multiple of the actual vector of weights.

(2) Find x* a{x1, Xor wney X = S such that

N}
x¥ = maxsdk(x,e).

(3)

Add one to the appropriate component of
the vector (1 1 . 1 1) and normalize so

the new components sum to one.

&)

Continue in this way until maxx(x,g) be-

comes sufficiently close to k + 1.

Note that

round-off scheme of Federov,?2 the work of

if we were using the exact
Tsay? implies convergence of this sequence of
designs to the optimum.

Serious complaint might be lodged against
the fixedness of the design points, particularly
if the points were so sparse as to obstruct
convergence to the optimum. Designs with an
initial
in the

excessive number of points need not

concern us, since limit it will
that
weight.
that

points is somewhat more than twice the highest

happen

superfluous points are assigned zero

Experiments we have done indicate

if the number of equally spaced design

729

degree of the polynomials considered, then the
algorithm converges to within a few tenths of a
percent of the optimum. The algorithm has

converged in all of our experiments.

2.2 Robustness

In our problem we were unwilling to specify

the degree of the polynomial in the model for
intensities.
1 and k2'
search for a design £ which would be nearly
optimal for this

First,

sure of design goodness so different polynomial

call Instead, k was specified to lie

between k It was necessary, then to
range of polynomial models.
it is necessary to rescale our mea-
degrees can be compared. Since the maximum
variance of a predicted value x from a kth de-
gree polynomial is k + 1, the values of dk(x,g)
below have been transformed by substracting
k+1,

formed values are then the percentages (divided

and then dividing by k + 1. The trans-
by 100) the realized dk(x,é) achieve in excess
of the optimum.

The procedure we have adopted is easily
described by its algorithm. Recall in the
x* such

for S =

classical one searches for
= k3

that maxxdk(x,g) dk(x €.

fky, kg *+ 1,

mizing

algorithm,
Now,

1 . k2} we search for x* mini-

max

g max, dk(x,g)

Thus we generate a matrix of variances of
predicted values (scaled), each row correspond-
ing to the variances generated from a particular
under consideration. The

polynomial degree

next design point puts its weight where the

predictor variance is highest among all rows
and columns of the matrix.

It is of interest to know what dk(x,g)
values will be produced by the converged algo-
rithm, or whether the algorithm converges at

all. It is easily shown that if the algorithm
converges, then the realized (dkx,g) values for
They

be zero for the simple reason that

the selected set of k's will all be equal.
will not all
zero corresponds to the optimal design, and not
all polynomials have the same optimal design.
it is heartening to note that in our experiments,

a few results of which are reproduced below,



we do achieve near equality of the relevant
dk(x,g) values.

Figure 1 shows the values of maxxdk(x,g)
for k, < k < k

1 2
generated by the scheme just described.

associated with several designs
These
designs are supported by the X; values 0.5,
1.0, 1.5, ..., 9.5, 10.0.
maxxdk(x,g) have been rescaled by subtracting
k + 1, and then dividing by (k + 1)/100. The

displayed values therefore represent the per-

The wvalues of

centage by which the maxxdk(x,g) value ex-
ceeds its theoretical minimum.
labeled MV in Figure 1.

This quantity is
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Figure 1. MV for Three Designs
We note in passing that the scaling of

dk(x,g) can be modified to deal with certain

other design specifications. For example, one
in the function for

and this

might be less interested
some values of x than for others,
interest might be translated into upper bounds
le on the predictor variance for certain inter~

vals of x. It would then be reasonable to apply

the algorithm with dk(x,f,) replaced by
[4,(x-£) - B 1/,
in interpreting these graphs, one may ask

the k +1

maxxdk(x,g) may be and still be reasonably

how far above optimal wvalue of

good. Some heuristic insight is gained by

noting that the equal spacing, equal weight

design for N points with k = 1 is associated
with a value of 4 (twice the theoretical mini-
mum) when N becomes large. Since this design
the

scaled version of maxxdk(x,g) even as high as

has some intuitive appeal, a value of MV,

1.00 may not be excessive.
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Given the genesis of the designs gv, it is
not surprising that each design performs well
for the Kk values for which it was generated.

In addition we note that, in general, designs
generated for high degree polynomials tend to
perform better for a wide range of k values,
presumably because they put weight on many
different x-values. However, it is an artifact
of fitting polynomial models that a good design
must put relatively heavy weight near the end
points of the interval supporting the x-values.
Unlike certain special trigonometric models that
afford optimal designs which are equally spaced
and weighted, near optimal and robust designs
for polynomial models do not have equal weight-
ings for equal spacings.

These points are illustrated by a plot of
the design weights against the associated design

points, shown for the design in Figure 2.
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Figure 2. Design for k = 3 45
The algorithm can be modified to incorpo-
rate initial beliefs about the possible values k

may actually be. Operationally, given relative

weights {pki} for the polynomial degrees {ki}

1o Ky

selecting polynomials of degree ki with proba-

we consider each of the degrees k
bility P; to use in the algorithm described
above. The selection process is repeated for a
large number of
This
appear with the required probabilities, and the

iterations of the algorithm.

selection process ensures that degrees

same degree will appear at most once in any one

iteration. Each set of polynomials is of a sto-

chastic size, however. Some experiments sug-

gest that the generation of many polynomial

degrees for use in a single iteration produces



convergence slightly faster than the use of a

small number of p8lynomial degrees per iteration.

2.3 Constraints on the Design

Each time interval over which call records

are processed contains calls between various
node pairs in the network. It is the functional
form of the call intensities for the calls between
specified node pairs which are of interest.
Hence each set of node pairs identifies a study
insure

domain of the population. In order to

the precise measurement of call intensities for
each of the node pairs, we would like to ensure
with a specified probability 1 - a that at least
.th
the j

interval.

records for
in the ith

c.. call
1

observed

node pair are
time It seems
reasonable to suppose that {nij}’ the number of
records observed from the jt
.th .

i (i.e.,

time xi), is distributed as a multinomial with

node pair in the

time interval that one beginning at

parameters Ci and pij’ where Ci is t:hteh total
number of call records observed in the i~ time
interval and pij ii the probability that an
in the i is from the

observation time interval

.th

j node pair. We then require that Ci be

chosen so that

P(n,. > ¢

45 i3 ICi,pijI >1 - a..

1

The algorithm given in the previous sec-
tion lends itself to the imposition of constraints
on the values {ni}. Let the constrained values
of {ni} be called {Ci} and consider the algorithm
described above. Replace step (1), in which an
arbitrary design was chosen to begin the design
1 Car e O
scaled so the sum of the components is unity.

generation, by the vector (C

Then the subsequent steps of the algorithm
effectively add observations to those x-values
for which d(x,£) is large. As before, Tsay's
work? shows that this procedure leads to opti-
mal designs for specified K.

Using this procedure, we create a se-
quence of designs which span the gap between
those which merely satisfy the constraints on
the number of calls per time interval, and those
which are arbitrarily close to the optimum. In
that regard, note that for a given design with

weight w; and constraint Ci at time X the
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constraints can be satisfied by choosing the

total sample size n  so that

n = maxi(ci/wi) .

The

which have a specified closeness to the optimal

sampler can then choose among designs

and which also satisfy the sample size con-
straints.

The speed at which designs with various
constraints approach the optimal is illustrated in
the following figure, in which the scaled values
of maxxdk(x,g) are given for the above algo-
rithm with the stated constraint and the given
polynomial degree.

K=86
CONSTRAINT = (12345543211234554321)
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Figure 3. Constrained Design Toward Optimum

In these figures, NTOT is n_, computed as
given above. For a given constraint, it is
hardly surprising that a reasonable value of MV
(say 20) is

constrained weights are not too different from

reached fairly quickly when the

the optimal weights. It also appears that these
graphs are about the same whatever the pre-

sumed degree of the polynomial model.

2.4 Equal Spacing and Weighting

It is of interest to note that designs with

equal spacing and equal weights are not very

good, in the sense that they have large
maxxdk(x,g) values for polynomial models. 1In
fact, in the spacing of the designs considered
above, with x; = i/2, we note that with equal
weights, namely w, = 0.05 for N =20, we
calculate

maxxdl(x,‘c_’,) = 3.71

maxxdz(x,g) = 7.41



maxxd3(x,£) = 11.25,

maxxd4(x,§) = 14.52

fl

maxxds(x,{f,) 16.94

18.74

maxxdG(x E)

These are, of course, well above the theo-
retical minima for maxxdk(x,g') and suggest that
when polynomials appear to be reasonable models
for the variable of interest, equal spacing and
equal weighting designs are not as attractive as

intuition suggests.
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