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I. Introduction 
An integral part of many analyses is the 

assessment of differences between subgroups with 
respect to a population characteristics. When 
estimating such differences it is often neces- 
sary to take into account other factors that may 
not be of interest themseleves but that could 
cloud the effect being studied. An extraneous 
variable that is associated with both the popu- 
lation characteristics being measured and the 
study factor (subgroups being compared) is a 
confounding variable. If its distribution 
varies across levels of the study factor then 
failure to control for the variable will con- 
found the estimate of the study factor effect. 

The most straightforward method of con- 
trolling for a confounding variable is to divide 
the population into separate control groups 
according to values of the confounding variable 
(or variables). The effect of the study factor 
is then determined within each control group. 
Analyses of this type are typically referred to 
as stratified analyses. 

Stratified analyses require separate estima- 
tion of the effects within each control group. 
This may prove impractical if the number of 
control groups becomes large. The sample size 
within individual control groups may become too 
small to be of value. Also, the researcher must 
form his/her conclusions based on a multitude of 
estimates. For these reasons it is often desir- 
able to summarize the relationship between the 
study factor and the outcome. Standardization 
is a common method for summarizing the results 
of a stratified analysis. A standardized esti- 
mate is a weighted average of the control group 
specific estimates. 

The decision to standardize or not depends on 
the question posed. If it is desired to deter- 
mine the actual difference between two study 
group populations as they currently exist, the 
non-standardized difference between the overall 
study group means is appropriate. On the other 
hand, the explanation of the underlying determi- 
nants of a study factor effect may require 

standardization. 
The remainder of this paper will focus on 

estimating standardized or adjusted means. The 
simple arithmetic difference between two study 
group adjusted means will be the effect measure 
of central discussion. Both direct standardi- 
zation and regression standardization will be 

discussed. 
Standardization is not a new topic. This 

paper elucidates some aspects of standardization 
when analyzing sample survey data. The popula- 
tion value of interest is first defined; then a 
method of estimating the population value with 
sample survey data is presented. Inferential 
methods concerning the population values are 
discussed. A general unequally weighted sample 

is assumed. 
2. Methods of Standardization 

2.1 Direct Standardization 

2. I. I General 
As a simple example consider the data for 

the population given in Table I. In this exam- 
ple, the confounding variable has been grouped 
into three control groups, and the study factor 
takes on two levels. Here Y.. is the population 

1j 

mean for the No. individuals in the ith study 
ij 

group and the j th control group. The overall 
differ-ence between the two study groups is 5.18 

(= Y2 - Y1 )' the differences within control 

group are all 3.00 (= YIj - Y2j for all j). This 

indicates that the relationship between the 
study factor and the outcome is confounded with 
the control variable. Direct standardization 
would control for the type of confounding in the 
above example by forming, for each study group, 
the directly standardized population means 

Yi* = ~. Pj ~'lj (2.1) 
J 

where pj > 0 and ~. pj = I. 

J 

The distribution {pj} is the standardizing dis- 

tribution. The choice of a standardizing dis- 
tribution will be discussed later. The directly 
standardized means are the population values of 
interest. 

The difference between the two standardized 
means is 

Y2 - Y1 = ~ Pj (Y2j - YIj )" (2.2) 
J 

Two cases arise which require separate discus- 
sion. The first is when the relationship be- 
tween the study factor and the confounding 
variable is additive (i.e. no interaction is 
present) in the population. The second is when 
the relationship is nonadditive (i.e. inter- 
action is present). 
Additive Case 

The additive case implies that a common dif- 

ference d (= Y2j - YIj for all j) is present in 

in the population for each control group. Thus, 
in the population, 

Y2 - Y1 = ~ Pj (Y2j - YIj ) 
J 

=~pj d .  

J 

= d . (2.3) 

For the data in Table I, d = 3. Notice that 
(2.3) shows that in the additive case the con- 
trast between the two adjusted means is indepen- 

dent of the standardizing distribution {p j}. 
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Thus, the effect of the study factor, as mea- 
sured by the difference between the two adjusted 
means, is free of the effect of the confounding 
variable. This situation was discussed in 
detail by Kalton (1968). 
Non-Additive Case 

On the other hand, in the non-additive case, 
the study effect or difference varies across the 
control groups. In this case, 

_, _, 

Y2 - Y1 = ~ Pj (Y2j - YIj ) 

= ~ p.d. (2.4) 
j J J 

where d. is the control group specific differ- 
J 

ence between the two study groups. The differ- 
ence between the two standardized means is 
equivalent to a weighted average of the control 
group specific effects. This is the case for 
the population shown in Table 2. The difference 
between the two study group means increases 
across the control groups. (I.0 vs. 2.0 vs. 
6.0). The non-additivity between the study 
factors and the confounding variable prevents 
the estimation of a study factor effect free of 
the influence of the confounder. 

As noted by Kitagawa (1964) and Little (1982) 
it may still be desirable to summarize the 
control group specific study factor effects 
through standardization. When the interactions 
are not severe, a standardized measure of effect 
may provide a meaningful summary which is more 
readily interpretable than the results of a 
stratified analysis. Some information is sacri- 
ficed in such a summary. When summarizing over 
nuisance variables, the loss in information may 
be unimportant. However, if the interactions 
are severe, the loss of information through 
standardization may be unacceptable. In fact, 
contradictory conclusions may be obtained by 
choosing two different standardizing popula- 
tions. 

For the second example, the unadjusted dif- 
ference between the two study groups is 6.18 

(= Y2 - Y1 )" The difference adjusting to the 

marginal distribution of the confounding vari- 

able for the combined study groups is 

-- ,, -- ,, 

3.09 (= Y2 - Y1 )" The s t a n d a r d i z e d  e f f e c t  m i t i -  

gates the influence of the differential popula- 
tion distributions. 
2.1.2 Standardizing Distribution 

As shown in equation 2.1., the directly 
standardized mean for a particular study group 
is a weighted average of the control group 

specific means. The w~ights, {pj}, represent 

the proportion of the hypothetical population in 
each control group. 

It was also shown (see equation 2.3) that in 
the case of additive control group and study 
factor effects, the standardized difference is 
independent of the standardizing distribution. 
In this case, the standardizing distribution 
should generally be taken to maximize the preci- 

sion of the study factor effect. Optimal selec- 
tions for the standardizing distribution are 
presented by Kalton (1968) for the additive 
case. 

When the control group and study factor 
effects are not additive, the choice of a stan- 
dardizing distribution becomes more critical 
since the exact conclusions drawn depend upon 
this distribution. In this situation, we have 
found that the marginal distribution obtained by 
combining the study groups usually performs 
well. Using the marginal distribution insures 
that the standardized difference is interpolated 
at the "center" of the data rather than extrapo- 
lated from an extreme point. 
2.2 Regression Standardization 

2.2.1 General 
Regression analysis is another method that 

can be used to estimate the effect of the study 
factor while controlling for extraneous vari- 
ables. The direct standardization approach is a 
special case of regression standardization. The 
regression approach is analogous to the analysis 
of covariance (e.g. Snedecor and Cochran, 1967). 

Regression standardization assumes that the 
response can be predicted by a linear model 
involving the study factor and the confounding 
variables. The model is used to predict adjust- 
ed or standardized means for the study groups by 
assuming each group has the same values of the 
confounding variables. Comparison of the ad- 
justed means partially removes the effect of the 
confounding variables. 

In order to formulate the regression model 
for the population, the following definitions 
are made: 

Y = population vector of the outcome measure, 
N 

= vector of model parameters corresponding 
to the study factor, 

= population design matrix for the study 
factor, 

= vector of model parameters corresponding 
to the confounding variables and their 
interactions with the study factor, 

= population design matrix corresponding. 
to ~. 

The vectors ~ and ~ are futher defined by the 
relationship 

= { [ z , x ] '  [ z , x ] } - I  [ z , x ] '  [ . 

The regression model is then given by 

i s  

E(Y) :E~+X~. 

The a d j u s t e d  p o p u l a t i o n  mean f o r  s t u d y  g r o u p - i  

Y i = Zi ~ + Xi ~" 

The vector Z. contains the linear transformation 
of ~ that y~ids the intercept for study 
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group-i. Usually, Z. will have a one in the ith 
position and zeros elsewhere. The vector X~ 
contains the standardizing values of the con- 
founding variables used in common across the 
study groups. The structure of X~, but not the 
standardizing values, will vary from subgroup to 
subgroup if the model contains interactions 
between the study factor and any of the con- 
founding variables. Regression standardization 
is equivalent to direct standardization when a 
fully interactive regression model is assumed 
and all the variables are categorical. 

With the interactions between the study 
factor and the confounding variables in the 
model, care must be taken in interpreting the 
difference between two adjusted means. The 
adjusted difference is a function of the stand- 
ardizing population vector (X~). This may 

produce a useful condensation of the data if the 
interactions are not too severe and the stan- 
dardizing distribution is chosen appropriately. 
As was the case for direct standardization, it 
is our experience that standardizing to the mean 
of the confounding variables over all of the 
study groups is usually suitable. This insures 
that the standardized difference is taken at the 
center of the data rather than at some extreme 
point. 

When the interactions between the study 
factor and the confounding variables are not 
present, the selection of the standardizing 
distribution is less crucial since the standard- 
ized difference is independent of the distribu- 
tion. However, it is useful to make sure that 
the adjusted means are interpretable and are 
reasonable values. Using the marginal mean of 
the confounding variables over all the study 
groups as the standardizing distribution, X~, 
will usually satisfy this requirement. 

2.2.2 Estimation 
The estimation of regression standardized 

means from sample survey data is presented in 
this section. The following definitions are 

needed: 

= outcome measurement vector for the sample 
subjects, 

z = study factor design matrix for the sample, 

x = design matrix of the confounding vari- 
ables and their interactions with the 
study factor for the sample subjects, 

w = diagonal matrix of the sampling weights. 

With these definitions, the population para- 
meter vectors can be estimated with 

= { }=I [z,xl'w Z [Z,X] rE[E, E ] 

For most sample designs the variance covariance 
^ 

matrix of [~, ~]' can be estimated using the 
Taylor series linearization, balance repeated 

^ 

replication or the jackknife method. Let V be 

the estimated covariance matrix of [~, ~]'. At 
this point hypothesis concerning the model para- 
meters can be tested via large sample Wald sta- 
tistics. The model may be reduced to remove any 
non-significant terms. 

The estimated standardized mean for study 

group-i is 

^ 

~ = ~i  ~ + x* ~i ~ 

= ~i ~ 
^ ^ 

where ~i is the linear transformation of [~, ~]' 

that yields y~. Further letting ~* be the column 

vector of the estimated regression adjusted means 
and assuming that there are s study groups yields 

Z = 

where ~G = [~£, . . . ,  ~ £ ] ' .  Hence,  t he  e s t i m a t e d  

c o v a r i a n c e  m a t r i x  of  ~'¢is 

^ 

= G V G ' .  

As noted earlier, direct standardization is a 
special case of regression standardization. 
Hence, by estimating the appropriate fully 
interactive model directly standardized mean 

estimates can be produced. 
Hypotheses concerning the previously defined 

population values can be tested using their 
sample design based estimates. For example, 

= [Y~,...,Y~]" be the vector of poem- letting 
. L  

lation values for the adjusted means, a linear 
hypothesis concerning these means may be stated 

as 

H 0" C Y * = O  
V S .  

HA: C Y,,* ~: O. 

where C is a matrix of contrasts and O is a null 
N 

vector. A large sample Wald test of this hypo- 
thesis would use the quadratic form 

^ 

Q = [c 9."]" [c v* c ' ]  -~ [c 9."]" 

Under the null hypothesis, Q is asymptotically 
distributed as a chi-square random variable with 

rank (C) degress of freedom. 
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2.3 Discussion 
The regression standardization approach 

offers several advantages over the direct 
method. One of these is that the potential 
confounders can be tested for significant associ- 
ation with the outcome measure. Non-significant 
terms can be dropped from the model so that more 
precise estimates of the adjusted means can be 
obtained. In addition, regression standardiza- 
tion does not require continuous confounding 
variables to be categorized. They may be in- 
cluded in the model as polynomial effects. 

Direct standardization requires separte cell 
estimates for the complete cross-classification 
of all the confounding and study variables. 
This limits the number of confounding variables 
that can be controlled due to small sample sizes 
in each cell of the cross-classification. With 
the regression approach, the complete inter- 
action of all the confounding variables need not 
be included in the model. 
3. Exampl e 

Data from the National Medical Care Utiliza- 
tion and Expenditure Survey (NMCUES) will be 
used to provide a brief example. The State 
Medicaid Household Survey (SMHS) component of 
NMCUES collected data from a sample of 1,000 
Medicaid families from each of the States of 
California, Michigan, New York and Texas. A 
multi-stage cluster sample was used to select 
the Medicaid families in each State. Data were 
collected on all medical care events during 1980 
from the survey subjects. 

An important part of the SMHS data analysis 
is the comparison of health care utilization 
rates among the four states. Because the Medi- 
caid enrollees in each state differ considerably 
with respect to various extraneous factors 
believed to affect health care utilization, it 
was necessary to control for possible confound- 
ing due to these factors before making these 
comparisons. The possible confounding variable 

included in the model were: 
Age Health Status 
Race SMSA vs Non-SMSA 
Sex Income 
Hispanic Origin Education. 

Separate comparison of the state specific utili- 
zation rates were done for the four Medicaid aid 

categories: 
SSI Blind or Disabled 
SSI Aged 
Aid to Families with Dependent Children 

(AFDC) 
State Only. 

Standardization models were fit to the data 
for each of the aid categories and for several 
types of utilization. The models initially 
contained the state study factor variable, the 
previously listed confounding variables and the 
interactions of state with the confounding 
variables. The models were reduced to remove 
effects that did not significantly affect the 
utilization measure under consideration. 

Table 3 presents the estimated adjusted and 
unadjusted mean number of physician visits per 
person for 1980 by State and aid category. The 
estimated standard error of each value is also 

included. Notice that the adjusted and unad- 
justed means are quite similar. This indicates 
that the state comparisons are not confounded 
with the extraneous variables. 
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Table I. Example of Confounding Without 
Interaction 

Study Control Groups. 
Groups 1 2 3 

YII=2.00 Y12=4.00 Y13=8.00 YI=3.64 

Nll=150 N12=75 N13=50 NI=275 

Y21=5.00 Y22=7.00 Y23=II.00 Y2=8.82 

N21=50 N22 =75 N23=150 N2=275 

Table 2. Example of Confounding with 
Interaction 

Study 
Groups 

Control Groups 
1 2 3 

11 =2"00 YI2 =4"00 YI3 =8"00 

Nl1=150 N12=75 N13=50 

Y21=3.00 Y22=6.00 Y23=14.00 

N21=50 N22 =75 N23=150 

Yl=3.64 

N1=275 

Y2=9.82 

N2=275 

Table 3. Adjusted and Unadjusted Mean Number 
of Physician Visits Per Person by 
Aid Category and State for 1980 

Aid Category/ 
State 

Unadjusted Adjusted 
Standard Standard 

Mean Error Mean Error 

SSI Blind or Disabled 
CA 13.92 1.19 13.93 1.10 
Ml 10.33 .65 10.10 .67 
NY 15.97 1.46 16.47 1.35 
TX 9.23 .74 8.52 .68 

SSI Aged 
CA 11.40 .97 11.58 .93 
Hl 8.22 .47 8.55 .96 
NY 10.21 .76 10.06 .71 
TX 7.17 .47 6.78 .43 

AFDC 
CA 4.20 .21 4.21 .21 
MI 4.21 .23 4.35 .20 
NY 5.01 .30 4.88 .27 
TX 3.13 .18 3.44 .17 

State Only ~'," 
CA 6.46 .53 7.06 .56 
MI 6.30 .84 8.01 1.29 
NY 12.59 1.73 11.43 1.56 

*Texas did not have a state only program. 

579 


