Martha J. Banks, The University of Chicago

In the last decade or so, telephone survey techniques have come to be considered seriously when designing a high quality survey. Reasons for this include the rising cost of field work (especially travel costs), a trend toward lower response rates in personal interview surveys (often due to respondents' fears of allowing strangers into their homes), and the recognition that most population groups have a fairly high phone coverage rate.

However, when examining data from a telephone survey, it would be extremely useful to have some idea of how estimates might differ from those which would have been obtained in a personal interview survey.

This study presents the results of one approach to measuring such differences. It uses data from a personal interview survey and estimates differences between the phone and the nonphone populations. Therefore it does not indicate all differences between results from a phone survey and a personal interview survey because it does not measure such things as differences in the answers given by the phone population when it is interviewed by phone rather than in person. It would require a special methodological study to obtain estimates of these differences. My analysis of existing data is a cost-effective way to approximate the differences between phone survey estimates and estimates from interviewing in person.

The data used in this analysis are from a national U.S. personal interview survey conducted for the Center for Health Administration Studies in 1976. This study focused on access to medical care in the United States. As part of this effort, black southerners living outsie of SMSAs and those of hispanic heritage living in the Southwest were oversampled at about 3.4 to 1 . Altogether, 7787 persons in 5432 families were interviewed. The overall response rate of this area probability survey was 85 percent.

Because the focus of the study was access to medical care, I will be presenting differences in medical care estimates between the phone and nonphone populations. However, I urge those who have access to data from other subject areas to conduct the same sort of examination on those data. I believe the results in the medical care area to be quite interesting, and it would be extremely useful to see how the results compare with those obtained in other subject areas.

During the interviewing, respondents were asked for their telephone numbers so that some of the interviews could be verified. The respondent also indicated where the phone was located. Therefore, we were able to construct a variable which identifies whether on not the interviewed persons had home phones.

Table 1 shows that about 10.1% of all families and 9.3% of all persons in the U.S. had no home phone in 1976. The best predictor of phone coverage is financial status, as measured by the last two variables shown in the table: family income and poverty status. Besides the low-income population, groups with low phone coverage are
southerners, especially rural southern blacks; hispanics; persons whose family head was under 25 and or divorced, separated, or never married; and those living alone or in large families of 7 or more.

Many people assume that coverage rates can be used as proxies for noncoverage bias measures. That is, they assume that the larger the percent without phones, the larger the differences between the total population and the phone population. However, data in this paper suggest that phone coverage is not as good a predictor of nonphone bias as commonly supposed.

Table 2 shows the effect on the estimated percent who have contacted a doctor during the preceeding year. Based on all persons, 76.7% of the population contacted a doctor. The figure for those with home telephones is 77.6%. The ratio of the two, .988 (given in the last column), is significantly different from 1.000 at the five standard error level. Examining this last column of Table 2 shows that there are no population groups given for which the ratio of the total estimate to the phone estimate is significantly greater than 1.000 . All the ratios either are about 1.000 or are significantly below it. Therefore, using data from only the phone population would tend to overstate the percent seeing or speaking with a physician during the year.

On the other hand, comparing population subgroups using data for only those with phones would result in conclusions nearly identical to those based on comparing population groups using data for all persons. Both show that those in the Northeast are most apt to contact a doctor and those in the South (especially rural southern blacks) are the least likely to. Both data sets indicate that those in SMSAs are more likely to see or talk to a doctor than are those living outside SMSAS, as are preschool children and the divorced. Contacting a doctor is positively correlated with the finanical status of the family, as both the phone data and the total data show. Therefore, while a data set based on only the phone population may overstate the percent contacting a doctor within the year, estimates of differences between population subgroups may contain little bias.

Notice also that there is not a consistant relationship between phone coverage rates and the ratios between estimates. For example, Table 1 showed that persons in families whose head is under 25 have quite low phone coverage, only about 74%. However in Table 2, the ratio between the total and phone population estimates, .995, certainly does not suggest a larger noncoverage bias for this group than for persons in families whose heads are 25 or older.

Other tables, not shown here, present the same conclusions for several other health care variables. Each indicates that the phone population is consistantly somewhat more health-care advantaged than is the total population.

There are several ways in which these results might be used. When analyzing telephone data, a researcher might merely keep in mind the fact that

[^0]TABLE 2 - PERCENT CONTACTING A DOCTOR DURING THE YEAR, BY PHONE COVERAGE; CHAS 1976*

	PERCENT C		CONTACTING A	DOCTOR	DURING THE YEAR		RATIUS OF THE FERCENTS					
CHARACTERISTIC	$\begin{gathered} \text { PHONE } \\ \text { POPULATION } \end{gathered}$		NONPHONE POPULATION		TOTAL POPULATION		NONPHONE TO PHONE	POPULATION POPULATICN	TOTAL POPULATION			
			TO PHONE	POPULATION								
REGION												
NORTHEAST	81. 4\%	(1.4)			74.8\%	(6.4)	81.1%	(1.4)	918	(.081)	. 996	(.004)
NORTH CENTRAL	76.6	(1.3)	83.5	(5.3)	76.9	(1.3)	1.089	(.071)	1.004	(.003)		
SOUTH	74.8	(1.2)	66.4	(2.5)	73.4	(1.1)	. 888	(.036)	. 981	(.006)		
WEST	79.2	(1.5)	52.0	(4.7)	76.5	(1.5)	. 656	(.060)	966	(.006)		
RESIDENCE												
SMSA CENTRAL CITY	78. 1	(1.3)	69.1	(3.8)	77.2	(1.3)	. 885	(.051)	989	(.005)		
SMSA OTHER	79.9	(1.1)	67.5	(4.2)	79:1	(1.1)	. 845	(.054)	. 990	(.004)		
NONSMSA URBAN	75.1	(1.9)	68.7	(4.2)	74.4	(1.7)	. 915	(.061)	. 990	(.007)		
RURAL NONFARM	76.0	(1.6)	66.5	(3.7)	74.7	(1.5)	. 875	(.052)	. 983	(.007)		
RURAL FARM	70.6	(3.2)	63.3	(10.6)	70.2	(3.1)	. 896	(. 155)	. 994	(.009)		
RACE												
SPANISH HERITAGE, SOUTHWEST	72.0	(5.7)	44.0	(11.0)	64.7	(5.3)	. 612	(.160)	. 898	(.042)		
OTHEF WIIITE	78.0	(0.8)	72.0	(2.9)	77.5	(0.8)	. 924	(.039)	. 995	(.003)		
NONSMSA SOUTHERN BLACK	69.6	(4.7)	58.2	(6.5)	65.1	(3.8)	. 827	(. 110)	. 936	(.043)		
OTHER NONWHITE	77.5	(3.8)	74.4	(8.4)	77.0	(3.4)	. 960	(.118)	. 994	(.016)		
AGE												
O-5	89.3	(1.6)	76. 1	(4.5)	87.4	(1.5)	. 852	(.053)	. 978	(.008)		
6-17	71.6	(1.6)	53.9	(4.8)	69.9	(1.5)	. 753	(.069)	. 976	(.007)		
18-34	79.0	(1.3)	73.1	(3.2)	78.3	(1.2)	. 925	(.043)	. 991	(.005)		
35-54	76.0	(1.5)	65.9	(4.8)	75.3	(1.5)	. 868	(.065)	. 991	(.004)		
55-64	79.6	(2.1)	81.7	(6.5)	79.7	(2.0)	1.027	(.086)	1.001	(.004)		
65 Plus	79.9	(1.9)	69.5	(6.7)	79.3	(1.8)	. 870	(.086)	. 993	(.005)		
AGE OF HEAD												
UNDER 25	82.5	(2.3)	80.9	(3.6)	82.1	(2.0)	381	(.052)	. 995	(.013)		
$25-34$	82.4	(1.3)	69.1	(3.7)	80.8	(1.2)	. 838	(.046)	. 980	(.006)		
35-44	75.0	(1.5)	54.4	(4.8)	73.2	(1.4)	725	(.065)	. 975	(.006)		
$45-54$	75.3	(1.6)	70.9	(5.2)	75.0	(1.5)	. 943	(.072)	. 997	(.004)		
55-64	78.3	(1.9)	74.0	(6.2)	78.1	(1.8)	. 945	(.082)	. 937	(.005)		
65 PLUS	76.1	(1.9)	64.2 ((6.2)	75.4	(1.8)	844	(.084)	. 991	(.005)		
SEX OF HEAD												
MALE	77.2	(0.8)	63.7	(2.4)	76.0	(0.7)	. 825	(.032)	.985	(.003)		
FEMALE	80.2	(1.5)	81.6	(3.1)	80.4	(1.3)	1.019	(.043)	1.003	(.006)		
MARITAL STATUS OF HEAD												
MARRIED	77.5	(0.8)	64.8	(2.6)	76.5	(0.8)	835	(.035)	. 987	(.003)		
WIDOWED	75.1	(2.2)	69.2	(6.1)	74.6	(2.1)	. 922	(.085)	. 994	$(.007)$		
DIVORCED	84.1	(2.3)	79.4.	(5.7)	83.3	(2.2)	. 944	(.072)	. 990	$(.013)$		
SEPARATED	75.6	(3.6)	73.5	(5.2)	75.1	(3.0)	. 972	$\text { (. } 083 \text {) }$. 993	$(.022)$		
NEVER MARRIED	77.1	(3.1)	69.0	(6.1)	75.5	(2.8)	. 895	(.087)	. 979	(.017)		
FAMILY SIZE												
ONE	78.7	(1.9)	68.7	(4.4)	77.1	(1.7)	. 874	(.059)	. 980	(.010)		
TWO	79.6	(1.5)	74.4	(4,5)	79.2	(1.4)	. 935	(.059)	. 995	$(.005)$		
THREE	79.0	(1.5)	74.1	(4.1)	78.5	(1.4)	. 938	(.055)	. 994	(.006)		
FOUR	82.4	(1.4)	68.2	(5.0)	81.5	(1.3)	. 827	(.062)	. 989	(.004)		
FIVE	77.7	(1.9)	67.5	(6.2)	77.0	(1.8)	. 869	(.082)	. 991	$(.006)$		
SIX	71.0	(2.9)	73.2	(6.9)	71.2	(2.7)	1.031	(.105)	1.002	$(.008)$		
SEVEN OR MORE	65.9	(3.1)	52.7	(6.2)	63.7	(2.8)	. 801	(. 102)	. 967	(.017)		
ADULTS IN FAMILY												
ONE	81.7	(1.4)	74.1	(3.1)	80.4	(1.2)	906	(. $04 t$)	. 984	(.007)		
TWO	78.7	(0.9)	66.2	(2.7)	77.5	(0.9)	. 842	(.036)	. 985	(.003)		
THREE	75.0	(1.8)	65.3	(6.6)	74.5	(1.8)	871	(.090)	. 994	(.005)		
FOUR OR MORE	72.4	(2.6)	60.3	(9.4)	71.7	(2.5)	832	(.134)	. 989	(.009)		
LESS THAN \$3000	71.3	(2.9)	69.0	(4.4)	70.6	(2.4)	. 968	(.073)	. 991	$(.021)$		
\$ 3000-\$4999	77.2	(2.2)	69.0	(3.9)	75.1	(1.9)	. 894	$(.056)$. 973	$(.014)$		
\$ $5000-\$ 6999$	76.5	(2.1)	63.4	(4.7)	74.3	(2.0)	. 829	$(.065)$. 971	$(.011)$		
\$ $7000-\$ 9999$	75.4	(1.9)	61.8	(4.9)	73.7	(1.8)	. 819	(.069)	.977 .999	(.009)		
\$10000-\$14999	76.3	(1,4)	75.5	(4.8)	76.3	(1.3)	. 988	$(.066)$. 9995	$(.004)$		
\$15000-\$24999	79.4	(1.4)	62.7	(9.1)	79.0	(1.3)	. 789	$(.116)$. 995	(.003)		
\$25000 OR MORE	81.0	(2.0)	80.8	(12.5)	81.0	(2.0)	997	(. 157)	1.000	(.002)		
POVERTY STATUS												
BELOW POVERTY	72.4	(1.9)	66.8	(2.9)	70.7	(1.6)	. 923	(.048)	. 978	(.014)		
100\% - 125\% POVERTY	74.9	(2.7)	62.4	(6.0)	73.2	(2.5)	. 834	$(.086)$. 977	$(.012)$		
125\% - 200\% POVERTY	74.3	(1.6)	66.7	(4.3)	73.6	(1.5)	. 898	(.061)	.991	$(.006)$		
200\% - 300\% POVERTY	77.2	(1.4)	70.5	(5.1)	76.8	(1.4)	. 914	(.069)	. 995	$(.004)$		
300\% - 400\% POVERTY	79.7	(1.6)	73.5	(7.8)	79.5	(1.6)	. 922	(.099)	. 997	(.004)		
400% OR MORE POVERTY	83.4	(1.4)	74.7	(9.4)	83.2	(1.4)	. 895	(.114)	998	(.003)		
TOTAL	77.6\%	(0.7)	67.7%	(2.0)	76.7\%	(0.6)	. 872	(.026)	. 988	(.002)		

"NUMEERS IN PARENTHESES ARE THE STANDARD ERROR ESTMATES.
the entire population might be a bit more disadvantaged than the data suggest. This approach would be most appropriate when working with sample sizes small enough that the bias would comprise only a small part of the total error. When a larger-scale survey is planned, the phone data might be adjusted in some way so that the entire population is approximated more closely.

I used stepwise discriminant analysis to identify which variables were most associated with differential phone coverage. The results then were used to construct a composite variable that distinguishes groups with relatively high or low phone coverage. I did this twice, once using both demographic and medical care variables and then using just demographic variables. Using the results of the discriminant analysis based on the demographic variables only, I formed the weighting categories given in Table 3. Categories like the first couple (poor persons with family heads under 25 and poor persons who are southern blacks) have weights of about 1.9 , indicating that nearly half of the persons in these groups do not have phones. Some of the last categories in the table have weights just a bit above 1.0 , indicating that nearly all persons in such groups have phones.

Tables 4 and 5 compare results when the phone population is adjusted by these weights. I also did this using the weight based on both medical care and demographic variables. The results showed the latter adjustment was not really superior to the results from adjusting by the demographic only weight, so the results are not presented here. The demographic only adjustment has the advantage of being useful to survey researchers interested in subject matters other than health.

Table 4 indicates the effect of the adjustment on basic demographic variables. The adjusted phone data approximates the data for the total population better than does the unadjusted phone data. This is the case even when the demographic variable was not used directly in the adjustment weight construction. For example, consider region, the first variable in Table 4. NonSouthSouth was the only regional distinction used in the weights to adjust the phone data. Nevertheless, the adjusted phone data is closer to the total population data for persons in the Northeast, North Central, and South; and the estimate for the Western U.S. is only slightly worse.

Table 5 and similar tables not presented here are most important, because they show the effect of the adjustment on selected health variables. Unfortunately, these tables do not show the
improvement that Table 4 showed in the distribution by demographic variables. The ratios of the total estimates to phone estimates in these tables really are not much closer to 1.0 than are the ratios using the unadjusted phone data. In Table 5, presenting data on the percent contacting a doctor during the year, the ratio for the total population is virtually unchanged. None of the subgroups shows any real improvement with the adjustment.

There are a few estimates in tables not shown here that are improved by the adjustment, especially in the estimated percent who were completely satisfied with their most recent medical visit. For example, the ratio for the total population improves to .995 , while the unadjusted ratio was .985. However, in general I would say that the adjustment process allows the adjusted phone data to approximate the total data fairly well in terms of demographics, but it still provides estimates that somewhat overrepresent the health-advantaged population.

I suppose that these results are not that unexpected, for two reasons. One reason is that, as was said earlier, the correlation between phone coverage and the amount of difference in medical care estimates is not as great as generally supposed. However I had hoped that the correlation would be large enough that an adjustment by coverage rates would make a substantial improvement in the phone population estimates.

The second reason that these results are not all that unexpected is that the ratios were fairly close to 1.0 in the unadjusted data, even though many were significantly different from 1.0 statistically. Because they were so close to 1.0 , there really was not much room for improvement.

When running the stepwise discriminant analysis which included health care variables, the only medical care variable which had large Fs was a three-category insurance variable: without insurance, with Medicaid or other reduced price insurance, and with regular group or individual insurance coverage. The Fs of the dependent variables in Table 5 and other tables not shown here (contact with a doctor and so on) were quite low. This indicates that other differences between the phone and nonphone populations were more important.

However, if possible. I would like suggestions on any other avenues to explore in terms of adjusting the phone population data so that it better approximates the total population.

CATEGORY	POVERTY STATUS	$\begin{gathered} \text { AGE OF } \\ \text { HEAD } \end{gathered}$	RACE	REGION	ADULTS IN FAMILY, MARITAL STATUS OF HEAD	RESIDENCE	$\begin{aligned} & \text { PERCENT } \\ & \text { OF TOTAL } \\ & \text { POPULATION } \end{aligned}$	WEIGHT
1	poor	under 25	al1	all	al1	al 1	1. 2%	1.8810
2	poor	25 plus	So. Black	all	a 11	al1	1.3	1.9472
3	poor	25 plus	Spanish SW	all	al 1	al 1	1.6	1.5998
4	poor	25-34	other	South	al 1	all	0.9	+.9816
5	poor	35-64	other	South s	al 1	all	3.1	1.4039
6	poor	65 plus	other	South	all	all	1.0	f. 1532
7	poor	25-24	other	nonsouth	a11	al 1	1.3	1.4460
8	poor	$35-64$	other	nonsouth	2 plus, not sep. or div.	all	2.1	1.1550
9	poor	35-64	other	nonsouth	all	al1	0.8	1.2987
10	poor	65 plus	other	nonsouth	all	al1	1.3	1.0456
11	nonpoor	under 25	a 11	South	all	all	1.7	1.5484
12	nonpoor	under 25	all	nonsouth	2 plus, not sep. or div.	a. 11	2.6	+. 1584
13	nonpoor	under 25	all	nonsouth	other than above	al 1	0.9	1. 1793
14	nonpoor	25-34	al1	South	2 plus, not sep. or div.	a 11	4.8	1.1836
15	nompoor	25-34	al 1	South	other than above	al 1	0.9	1.4978
16	nompoor	25-34	all	nonsouth	separated or divorced	al1	1.3	1.0748
17	nompoor	25-34	al 1	nonsouth	1. not separated or div.	al1	0.9	1.0706
18	nonpoor	25-34	al1	nonsouth	2 , not separated or div.	rural nonfarm	1.6	1.0330
19	nonpoor	25-34	al1	nonsouth	2 , not separated or div.	other	8.8	1.0326
20	nonpoor	25-34	all	nonsouth	3 plus, not sep. or div.	al 1	0.8	1.0651
21	nonpoor	35 pius	So. Black	a 11	a 11	all	0.8	1.2073
22	nonpoor	35 plus	Spanish Sw	al 1	all	al 1	1.4	1.1337
23	nompoor	35 plus	other	South	separated or divorced	all	0.9	1.2004
24	nompoor	35-64	other	South	1. not separated or div.	all	0.6	1.1008
25	nonpoor	$35-64$	other	South	2 , not separated or div.	all	7.0	1.0425
26	nompoor	35-64	other	South	3 , not separated or div.	all	4.2	1.0376
27	nonpoor	35-64	other	South	4 plus, not sep. or div.	all	1.7	1.1283
28	nonpoor	65 plus	other	South	a11	al 1	2.1	1.0737
29	nonpoor	$35-64$	other	nonsouth	1, separated or div.	all	1.2	1.0886
30	nonpoor	35-64	other	nonsouth	2 plus, sep. or div.	all	1.4	1.0556
31	nonpoor	35-64	other	nonsouth	1, not separated or div.	all	1.7	1.0700
32	nonpoor	35-64	other	nonsouth	2, not sep. or div.	rural nonfarm	2.8	1.0301
33	1-2 poverty	35-64	other	nonsouth	2 , not sep. or div.	other	2.8	1.0414
34	$2+$ poverty	35-64	other	nonsouth	2, not sep. or div.	other	10.9	1.0231
35	nompoor	$35-64$	other	nonsouth	3 , not sep. or div.	rural nonfarm	1.5	1.0000
36	nonpoor	35-64	other	nonsouth	3, not sep. or div.	other	7.5	1.0339
37	nonpoor	35-64	other	nonsouth	4 plus, not sep. or div.	al1	6.5	1.0143
38	nonpoor	65 plus	other	nonsouth	2 plus, not sep. or div.	al 1	4.9	1.0188
39	nonpoor	65 plus	other	nonsouth	other than above	all	1.8\%	1.0506

TABLE 4 - PERCENT OF THE POPULATION BY DEMOGRAPHIC CHARACTERISTICS, TOTAL POPULATION AND UNADUUSTED AND ADJUSTED PHONE POPULATIONS; CHAS 1976

PHONE POPULATION						PHONE POPULATION	
CHARACTERISTIC	TOTAL POPULATION	UNADJUSTED	ADJUSTED	CHARACTERISTIC	TOTAL POPULATION	UNADJUSTED	ADJUSTED
REGION				MARITAL STATUS OF H	HEAD		
NORTHEAST	22.39\%	23.46\%	22.47\%	MARRIED	80.85	82.30	81.04
NORTH CENTRAL	30.57	32.23	30.83	WIDOWED	6.77	6.87	6.97
SOUTH	32.67	30.03	32.61	DIVORCED	5.41	4.94	5.36
WEST	14.37	14.28	14. 10	SEPARATED	3.50	2.85	3.20
RESIDENCE				NEVER MARRIED	3.46	3.06	3.43
SMSA CENTRAL CITY	25.59	25.47	25.95	FAMILY SIZE			
SMSA OTHER	36.65	37.75	36.90	ONE	7.56	6.99	7.31
NONSMSA URBAN	11.74	11.49	11.63	TWO	19.54	19.86	19.45
RURAL NONFARM	20.14	19.18	19.41	THREE	17.03	16.89	16.90
RURAL FARM	5.88	6. 11	6.11	FOUR	20.31	20.98	20.94
RACE				FIVE	15.96	16.40	16.27
SPANISH HERITAGE,				SIX	8.88	9.06	8.89
SOUTHWEST	4. 14	3.37	3.96	SEVEN OR MORE	10.71	9.82	10.28
OTHER WHITE	83.82	85.86	84.21	ADULTS IN FAMILY			
NONSMSA SOUTHERN				ONE	13.88	12.67	13.59
BLACK	2.44	1.62	2.29	TWO	55.95	55.89	55.47
OTHER NONWHITE	9.60	9.13	9.54	THREE	18.56	19.44	18.93
AGE				FOUR OR MORE	11.63	12.00	12.01
0-5	9.32	8.78	9.29	FAMILY INCOME			
$6-17$	24.59	24.48	24.44	LESS THAN \$3000	5.29	4.20	5.04
18-34	24.97	24. 17	24.95	\$ 3000-\$4999	8.93	7.37	8.43
35-54	21.76	22.34	21.68	\$ 5000-\$6999	9.93	8.61	9.27
55-64	9.35	9.80	9.55	\$ $7000-\$ 9999$	12.61	12.13	12.38
65 PLUS	10.03	10.43	10.09	\$10000-\$14999	25.47	26.38	25.71
AGE OF HEAD				\$15000 - \$24999	25.94	27.90	26.54
UNDER 25	6.35	5. 19	6.35	\$25000 OR MORE	12.36	13.42	12.63
25-34	21.67	21.02	21.66	PQVERTY STATUS			
35-44	26.46	26.55	26.02	BELOW POVERTY	14.51	11.41	14.51
45-54	20.99	21.76	21.12	100\%-125\% PQVERTY	6.69	6.38	6.26
55-64	12.72	13.22	12.91	125\%-200\% POVERTY	20.08	20.10	19.57
65 PLUS	11.81	12.27	11.94	200\%-300\% POVERTY	23.98	24.92	24.03
SEX OF HEAD				300\%-400\% POVERTY	16.62	17.66	17.05
MALE	85.16	85.92	84.82	400\% OR MORE			
FEMALE	14.84	14.08	15.18	POVERTY	18. 12%	19.52\%	18.58\%

PHONE ESTIMATE RATIO, TOTAL TO PHONE
PHONE ESTIMATE RATIO, TOTAL TO PHONE
CHARACTERISTIC ADJUSTED UNADJUSTED ADJUSTED UNADUUSTED CHARACTERISTIC ADJUSTED UNADUUSTED ADJUSTED UNADUUSTED

REGION						MARITAL STATUS OF H	HEAD				
NORTHEAST	81.4\%	81.4\% (1.4)	. 996	. 996	(.004)	MARRIED	77.5%	77.5\%(0.8)	. 987	987	(.003)
NORTH CENTRAL	76.8	76.6 (1.3)	1.001	1.004	(.003)	WIDOWED	74.3	75.1 (2.2)	1.003	994	(.007)
SOUTH	75.0	74.8 (1.2)	.979	. 981	(.006)	DI VORCED	84.1	84.1 (2.3)	. 990	. 990	(.013)
WEST	78.8	79.2 (1.5)	. 972	966	(.006)	SEPARATED	74.9	75.6 (3.6)	1.002	993	(.022)
RESIDENCE						NEVER MARRIED	77.0	77.1 (3.1)	. 980	979	(.017)
SMSA CENTRAL CITY	78.1	78.1 (1.3)	. 989	989	(.005)	FAMILY SIZE					
SMSA OTHER	79.9	79.9 (1.1)	. 990	990	(.004)	ONE	78.6	73.7 (1.9)	. 980	. 980	(.040)
NONSMSA URBAN	74.6	75.1 (1.9)	. 997	990	(. 0007)	TWO	79.6	79.6 (1.5)	. 994	. 995	(.005)
RURAL NONFARM	76.1	76.0 (1.6)	. 982	. 983	(.007)	THREE	79.2	79.0 (1.5)	. 992	. 994	(.006)
RURAL FARM	71.2	70.6 (3.2)	. 986	994	(.009)	FOUR	82.3	82.4 (1.4)	. 990	. 989	(.004)
RACE						FIVE	77.4	77.7 (1.9)	. 995	. 991	(.006)
SPANISH HERITAGE,						SIX	70.5	71.0 (2.9)	1.009	1.002	(.008)
SOUTHWEST	71.2	72.0 (5.7)	. 908	. 898	(. 042)	SEVEN OR MORE	66.7	65.9 (3.1)	954	967	(.017)
OTHER WHITE	78.1	78.0 (0.8)	. 993	995	(.003)	ADULTS IN FAMILY					
NONSMSA SOUTHERN						ONE	81.4	81.7 (1.4)	987	984	(.007)
BLACK	69.0	69.6 (4.7)	. 943	936	(.043)	TWO	78.6	78.7 (0.9)	. 986	985	(.003)
OTHER NONWHITE	77.5	77.5 (3.8)	. 994	. 994	(.016)	THREE	75.0	75.0 (1.8)	. 994	. 994	(.005)
AGE						FOUR OR MORE	72.4	72.4 (2.6)	. 990	989	(.009)
$0-5$	89.7	89.3 (1.6)	. 974	978	(.008)	FAMILY INCOME					
6-17	71.5	71.6 (1.6)	. 978	. 976	(.007)	LESS THAN \$3000	71.9	71.3 (2.9)	. 982	. 991	(.021)
18-34	79.0	79.0 (1.3)	. 991	. 991	(.005)	\$3000-\$4999	77.3	77.2 (2.2)	. 972	. 973	(.014)
$35-54$	76.1	76.0 (1.5)	. 990	. 991	(.004)	\$ 5000-\$6999	76.4	76.5 (2.1)	. 972	. 971	(.011)
55-64	79.5	79.6 (2.1)	1.003	1.001	(.004)	\$ $7000-\$ 9999$	75.3	75.4 (1.9)	. 979	. 977	(.009)
65 PLUS	79.8	79.9 (1.9)	. 994	. 993	(.005)	\$10000-\$14999	76.4	76.3 (1.4)	. 999	. 999	(.004)
AGE OF HEAD						\$15000-\$24999	79.6	79.4 (1.4)	. 993	. 995	(.003)
UNDER 25	82.0	82.5 (2.3)	1.001	995	(.013)	\$25000 OR MORE	81.0	81.0(2.0)	. 999	1.000	(.002)
25-34	82.3	82.4 (1.3)	. 982	980	(.006)	POVERTY STATUS					
35-44	74.9	75.0 (1.5)	. 977	. 975	(.006)	BELOW POVERTY	72.9	72.4 (1.9)	. 971	. 978	(.014)
45-54	75.1	75.3 (1.6)	. 998	. 997	(.004)	100\%-125\% POVERTY	Y 75.0	74.9 (2.7)	. 975	. 977	(.012)
55-64	78.2	78.3 (1.9)	. 998	. 997	(.005)	125\%-200\% POVERTY	Y 74.4	74.3 (1.6)	. 989	. 991	(.006)
65 PLUS	75.9	76.1 (1.9)	. 994	. 991	(.005)	200\%-300\% POVERTY	Y 77.4	77.2 (1.4)	. 992	. 995	(.004)
SEX OF HEAD						300\%-400\% POVERTY	Y 79.7	79.7 (1.6)	. 997	. 997	(.004)
MALE	77.2	77.2 (0.8)	. 985	. 985	$(.003)$	400\% OR MORE					
FEMALE	79.9	80.2 (1.5)	1.006	1.003	(.006)	POVERTY	83.5	83.4 (1.4)	.997	. 998	(.003)
						TOTAL	77.5\%	$77.6 \%(0.7)$. 989	. 988	(.002)

*NUMBERS IN PARENTHSES ARE THE STANDARD ERROR ESTMATES.

[^0]: *NUMBERS IN PARENTHESES ARE THE STANDARD ERROR ESTIMATES FOR BOTH THE PHONE AND THE NONPHONE POPULATIONS.

