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ABS TRAC T 

Many samples are used to estimate more than 
a single quantity. A sample might be used to 

estimate several population means (or totals), ~, 

means for several subpopulations or treatment 
groups, differences between means for various 

subpopulations or treatment groups, means for 

both primary and secondary stage units, or, 
frequently, combinations of these. The sample 

allocation for such multiple-objective samples 

is often based on only a single quantity, a mean 
or proportion for the total population. This 

paper proposes a simple basis for allocation of 

samples that are to be used for multiple objec- 

tives--a weighted sum of the standard deviations 

or of the coefficients of variation of the 

estimators of the quantities of interest, where 

the weights are chosen to reflect the relative 

importance of the various quantities to be 

estimated. The optimal allocation is determined 

by minimization of the weighted sum subject to a 

cost constraint. Practical procedures for 

performing the minimization are discussed, and 

several applications are examined. 

I . INTRODUCTION 

Many samples, if not most, are used to 

estimate more than a single quantity. A sample 

might be used to estimate several population 

means (or totals), means for several subpopula- 

tions or treatment groups, differences between 
means for various subpopulations or treatment 

groups, means for both primary and secondary 

stage units, or, frequently, combinations of 

these. Further, the value of the precision of 

estimates often differs substantially among the 
various quantities to be estimated, as for 

example between an overall mean and a subpopu- 

lation mean. 

The sample allocation used for such a mul- 

tiple-objective sample is often in practice 

simply the optimal allocation for some single 

selected "primary" objective. Although the 

optimum is frequently relatively flat so that 

little efficiency is lost by allocations reason- 
ably close to the optimum allocation (Cochran 

(1963)), there are instances in which losses in 

efficiency resulting from such an approach may 

be substantial. 

Several authors have suggested approaches 

to address the problem. Bean and Burmeister 

(1978) provide an excellent review of a number 

of approaches proposed for allocating a strati- 
fied sample to estimate several population means 

or totals. Although much of the literature is 

confined to this context, most of the approaches 

(if not the solutions) are applicable to the 

broader context presented above. In reviewing 

the literature in this paper, all of the pro- 
posed approaches will be presented in this wider 

context. 

Cochran (1963) considered the approach of 
calculating the optimal allocations for a 

specified sample size for each of the quantities 

to be estimated and using the averages across 
these allocations as a compromise allocation. 

In an example he provides in which three popula- 

tion means are estimated with a stratified 
sample, the approach performs quite well. There 

is, however, no theoretical basis for the 

approach and there are undoubtedly cases, 

especially in the broader context considered 

herein, in which it does not perform so well. 

Yates (1953) proposed allocating the sample 

to minimize the cost subject to the constraint 

that the variances of the estimators be equal to 

specified values. Dalenius (1953, 1957) relaxed 

the unnecessarily restrictive constraint by 

allowing the variances of the estimators to be 
less than or equal to the specified values. 

A disadvantage of their approach is the diffi- 
culty of specifying maximum values for the 

variances of each of the estimators. Also, the 

approach may result in poor tradeoffs; some 

maxima may be very costly to achieve and 
the data collector may well prefer to use scarce 

resources to make greater reductions in other 

variances. 

A variant of the above approach which 

attempts to provide a practical solution to 
the problem of setting the variance tolerances 

and to consider tradeoffs was suggested by 

Chatterjee (1968). This approach also begins 

by specifying a set of variance tolerances and 

minimizing the cost subject to the constraint 

that the variances of the estimators do not 
exceed the tolerances. The "shadow price" for 

each of the estimators (that is, the partial 

derivative of cost with respect to the specified 

tolerance for that estimator) is then calculated 

giving the expected decrease in cost for a small 

decrease in the variance tolerance. The shadow 

prices are then used to calculate the cost 

of a number of sampling plans. This provides 
the data collector with a series of plans 

with varying cost and precision from which to 

choose. This approach has the distinct advan- 
tage of taking into consideration the various 
tradeoffs between cost and precision. However, 

the procedure is without any formal basis, and 
it may still be difficult to specify the set 

of variance tolerances at the outset. 

A different approach proposed by Chakravarti 

(1955) and Dalenius (1957) and examined further 

by Ghosh (1958) is to minimize the generalized 

variance (the determinant of the variance- 

covariance matrix) subject to a cost or sample 

size constraint. Aoyama (1963) approached the 
problem from the perspective of minimizing the 
area of the ellipsoid of concentration, which 

reduces to minimizing the generalized variance. 
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This approach has the advantage of not requiring 

specification of variance tolerances. On the 

other hand, it does not allow one to take into 

account any differences in the values of preci- 

sion for the variances and covariances of the 

estimators. Further, it may not be appropriate 

to take into consideration at all the values of 

the covariances. 

Several authors have examined approaches 

based on the ratios of the actual variances of 

the estimators to the minimal variances under 

optimal allocations for each estimator. These 

ratios provide a measure of the relative loss 

of efficiency resulting from the compromise 

allocation. Dalenius (1957) proposed, and 

Chatterjee (1967) and Kish (1976) examined 

further, the approach of minimizing a (weighted) 

sum of these ratios subject to a cost or sample 

size constraint. Peters and Bucher (undated) 

instead proposed maximizing the sum of the 

inverses of these ratios. These approaches 

avoid the need to specify variance tolerances 

and do address tradeoff issues. However, 

because the quantity minimized (or maximized) in 

these approaches may differ substantially from 

the data collector's actual objective function, 

the resulting allocation may not be optimal in 

terms of the data collector's objectives. 

For data collection in which errors of 

estimates can be considered losses measured in 

monetary units, Yates (1960) proposed allocating 

the sample so as to minimize the sum of the 

expected total loss and the data collection 

costs. He considered specifically the case in 

which the expected loss can be expressed as a 

linear function of the variances of the esti- 

mated population means or totals. Cochran 

(1963) also discusses this approach. This 

approach is elegant and well-suited to this 

problem. Typically, however, one cannot define 

losses explicitly. 

Suggesting a basis for allocation related 

to Yates ' approach, Hartley ( 1965 ) considers 

minimization of a weighted sum of the variances 

of the quantities to be estimated subject to a 

cost constraint. This approach differs from 

Yates' both in its treatment of data collection 

cost as a constraint, rather than as a term 

in the quantity to be minimized, and by not 

explicitly interpreting the weighted sum as an 

expected loss. The approach proposed in this 

paper is similar to Hartley's approach. 

2. PROPOSED APPROACH 

As a basis for allocation of a sample that is 

to be used to satisfy several objectives, it is 

here proposed that a weighted sum of either the 

standard deviations or the coefficients of 

variation of the estimators of the quantitites 

of interest be minimized subject to a cost 

constraint. The weights are chosen to reflect 

the relative value of precision for the various 

quantities. 

Specifically, suppose one desires to esti- 

mate a set of quantities qi' using estimates 

qi with variances ~2. Let w denote the weights 
1 1 

corresponding to qi" Let f(c, n) denote a data 

collection cost function which reflects all of 

the cost components (c) and sample size compo- 

nents (n) of the sample design (i.e., c h = cost 

per unit in stratum h, and n h = number of units 

in stratum h), and let C denote the maximum 

total cost for data collection. The proposed 

allocation procedure is then to find the n which 

minimizes either the sum 

' oi 
S = Z w. ~ or the sum S = 7 w -- , 

i 1 1 i 1 qi 

subject to the cost constraint f(c, n) < C and 

to population size constraints n h < N h. When 

the cost components are all equal, the cost 

constraint reduces to a sample size constraint 

of the form N = Z n h. 

h 

Use of the standard deviations of the estima- 

tors is, for large sample sizes and unbiased 

estimators, approximately equivalent to use of 

the expected confidence interval length, assum- 

ing (I) asymptotic normality and (2) equal 

confidence coefficients for all confidence 

intervals. Similarly, use of the coefficients 

of variation of the estimators is approximately 

equivalent to use of the relative length of the 

expected confidence interval measured with 

respect to the quantity being estimated. The 

latter approach is particularly useful when 

several items measured in different units are 

being estimated since the coefficient of varia- 

tion is unit-free. If the former approach is 

used when items measured in different units are 

being estimated, the weights must take into 

account the units in which each quantity is 

measured. If estimators are biased, mean square 

errors should be substituted for the standard 

deviations. 
° 

The procedure is general in that, at least in 

principle, it provides a formal basis for 

optimally allocating any type of sample to 

be used to estimate any set of quantities. It 

can be used to allocate stratified or multi- 

stage samples from which population means, 

proportions, or totals for several items are to 

be estimated. For a multi-stage sample, the 

quantities to be estimated might include means 

for primary, as well as secondary, stage 

units (e.g., for hospitals, as well as for 

patient medical records). It can be used to 

allocate samples to be used to estimate means 

for several subpopulations or treatment groups, 

differences between these means, or both. 

The solution to the minimization can be 

accomplished in several ways. Analytic solu- 

tions are often obtainable in cases that are 

comparatively simple. Often symmetries in the 

problem can be used to simplify the solution. In 

some cases, direct enumeration of cases on a 

computer provides a feasible and simple solu- 

tion. For each possible case allowed by a cost 

constraint, the value of S (or S') can be com- 

puted and the allocation yielding the smallest 

value of S selected as the optimum. Usually 

530 



computational costs can be reduced substantially 

by eliminating large classes of cases which can 

be determined a priori not to be optimal. 
Another device that can be used to reduce 

costs is to consider only cases in which compo- 

nent sample sizes are multiples of some small 

integer, thus providing an approximate solution 

to the optimization. Finally and in general, 

a solution can be obtained using nonlinear 

programming methods. 

3. EXAMPLE 1 

Suppose one is designing a sample in which 

there are three treatment groups and one control 

group and that one is equally interested in 

the three differences in means between each 

treatment group and the control group: 

U TI - UC UT2 - UC ~T3 - ~C 

Assuming that (1) the differences are estimated 

as the differences between sample means and (2) 

the costs per unit of observation are equal 

among the four groups, the proposed procedure 

would minimize the sum 

(2 2iJ2  2iJ2  21 S TI C T2 C T3 C 

= --- + n--c + +-- + +-- nT1 T2 nc nc 

/2 

subject to the sample size constraint nT1 + 

n + n + n = N, where the C2's and the n's 
T2 T3 C 

denote the variances and sample sizes corres- 

ponding to each treatment and comparison group. 

Lacking prior information about the vari- 

ances, they are assumed equal, and, by the 

symmetry of the problem, 

nT1 = nT2 = nT3. 

Thus, it is equivalent to minimize the sum 

S = 3 I + 
nT1 

subject to 3n + n = N. Readily obtainable 
TI C 

analytically using a Lagrange multiplier, the 

solution is given by 

n c = nT1/3 = nT2/3 = nT3/3. 

4. EXAMPLE 2 

Now suppose one is designing a sample in 

which there are three treatment groups, one (TI) 

of which is matched to a comparison group (CI) 
and the other two (T2 and T3) of which are 

matched to a second comparison group (C2) . 

Suppose the three mean differences 

~TI - ~CI ~T2 - UC2 UT3 - UC2 

are to be estimated and that precision is of 

equal value for each. 

Again assume that the differences are esti- 

mated as the differences between sample means 

and that the costs per unit of observation 
and the variances are equal among the groups. 

Since by the symmetry of the problem n 
T2 = nT3' 

the proposed procedure then reduces to a minimi- 
zation of the sum 

I/2 I/2 

S = + n c  + 2 + 
nT1 1 nc2 

subject to 

N = nT1 + 2nT2 + nc1 + nc2. 

Using a Lagrange multiplier, one finds the 

optimum allocation to be given as the solution 

of the following: 

I )ij2 1 I + I -2 

n I nc1 nT1 
= I 

n I nc1 nc1 
= )t 

n 2 nc2 

-2 
nT2 = 21 

( )Ij2 
I I -2 

+ n c 
n 2 nc2 2 

= 

N = nT1 + 2nT2 + nc1 + nc2. 

From the first two equations, one sees imme- 

diately that nT1 = nc1 and, similarly, from the 

I 
second two, that nT2 = ~ nc2. Since, as we 

have already noted, nT2 = nT3, one finds the 

optimal allocation to be as follows: 

nT1 = nc1 = .I 79 N 

= .188 N nT2 = nT3 

n = .266 N 
C2 

5. EXAMPLE 3 

In a study of graduate medical education, a 

sample of 50 hospitals was to be selected from 

which data would be collected to provide esti- 

mates of means for several variables for teach- 

ing hospitals and estimates of differences in 

means for those same variables between teaching 

and nonteaching hospitals. Letting n T and 

n N denote the sample sizes for teaching and 

nonteaching hospitals, respectively, the optimi- 

zation of the allocation of the sample between 

these was formulated as a problem of minimizing 
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S w I + w2 I I I 
= + n-N 

subject to n T + n N = 50. 

An analytic solution could not be readily 

found, but enumeration provided a ready and 

inexpensive solution. The resulting optima are 

shown here as a function of the ratio of w to 
I 

w2: 

w I/w 2 n T n N 

I/4 27 23 

I/3 28 22 

I/2 29 21 

1 31 19 

2 34 16 

3 36 14 

4 37 13 

It is noteworthy that the optimal allocation is 

relatively insensitive to the choice of weights. 

6. EXAMPLE 4 

Now suppose one is interested in estimating 

an overall mean and subpopulation means for two 

of three strata based on a sample of size 50 

with relative importance weights as shown below: 

Mean Re lative 

Relative to be Importance 

Stratum Frequency Estimated Weight 

I I/3 ]J1 .3 

2 I/3 ]/2 .2 

3 I/3 ]J3 0 

Overall - ]l .5 

Assuming the variances and unit costs are equal 

among the strata and ignoring finite population 

corrections, one forms the weighted sum of the 

standard deviations of the estimators of the 

me a ns 

= • + n2 + + .3 + .2\n2/ 

to be minimized subject to the sample size 

constraint n I + n 2 + n 3 = 50. 

The optimal solution is readily obtainable 

using direct enumeration. The actual number of 

cases enumerated can be substantially reduqed by 

utilizing the following constraints: 

n 3 <__ N/3 and n 3 <__ n 2 <__ N/2 . 

The first two inequalities must hold since no 

estimate is needed for the third stratum mean, 

whereas estimates are needed for both of the 

other strata. Further, n 2 must be no greater 

than one-half N, since the relative importance 

for the first stratum mean exceeds that for the 

second stratum mean and consequently more of the 

sample must be allocated to the first stratum 

than to the second. The resulting optimal 

allocation is as follows: 

n I = 22 n 2 = 18 n 3 = 10. 
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