
MULTIVARIATE EDIT AND IMPUTATION FOR ECONOMIC DATA 
R.J.A. L i t t l e  and Ph i l ip  J. Smith, U.S. Bureau of the Census 

I .  Int roduct ion 
The qua l i t y  control of data has become an in -  

creasingly important aspect of survey work. Non- 
sampling errors a f fect ing the i n t e g r i t y  of the 
data are possible at v i r t u a l l y  every junct ion 
in a survey where data are communicated or t ran-  
scribed from one person or devise to another. 
Without qua l i t y  control of survey information, 
data intended for f ina l  analysis or tabulat ion 
and publ icat ion can be spurious or missing. In 
th is  case, analysis and publ icat ion of such in -  
formation may be of dubious value and may jeo- 
pardize the c r e d i b i l i t y  of the organization 
conducting the survey and preparing the analysis 
and report:  bad data must be edited and values 
imputed when they are missing or have been de- 
leted during the ed i t ing  process. 

The next section describes and ed i t / imputa-  
t ion procedure based on an extension of the 
method developed by Frane (1978) for i den t i f y i ng  
out ly ing cases, which is avai lable in the BMDPAM 
Procedure in the BMDP s t a t i s t i c a l  computer 
package (BMDP, 1979). The method is i l l u s t r a t e d  
using selected data from the Annual Survey of 
Manufactures (ASM), with variables measured on 
the logar i thmic scale. An important l im i t a t i on  
of the method as applied to business surveys is 
the f a i l u re  to take account of l inear  constraints 
between the variables measured on the raw scale, 
such as the requirement that a set of component 
items sum to t he i r  aggregate. Section 3 out l ines 
a modi f icat ion of the basic method which takes 
in to account l inear  constra ints,  and discusses 
fu r ther  work required to implement the procedure 
in a r e a l i s t i c  se t t ing .  
2. The Basic Method 

Our method is designed to analyze a (nxp) rec- 
tangular data matrix containing n observations 
on p variables X i = ( X i l , . . .  Xip), i=l  . . . .  n. 
Some values in the matrix are assumed to be miss 
i ng because they were not recorded or have been 
edited out by other edi t  rout ines.  

Figure 1 gives a simple flow chart for our 
prototype ed i t / imputat ion procedure for incom- 
plete mul t i var ia te  data. In the f i r s t  step the 
missing data pattern is analyzed and observations 
and variables are rearranged according to the 
pattern of missing and observed values in each 
case. In the second step the program iden t i f i es  
cases which are apparently ou t l i e r s .  The th i rd  
step i den t i f i es  out ly ing variables wi th in the 
out ly ing cases obtained from the previous step. 
F ina l l y ,  imputed values are calculated for the 
missing or out ly ing values, and edited estimates 
of the mean and covariance matrix of the va r i -  
ables are produced. 

We i l l u s t r a t e  our procedure using data from 
the 1982 Annual Survey of Manufactures (ASI~L)~ 
I t  should be noted that the procedure we deta i l  
is not a comprehensive solut ion to al l  ed i t ing 
and imputation requirements of the ASM. Rather, 
our method is a general s t a t i s t i c a l  tool which 
requires adaptation to the speci f ic  ed i t ing and 
imputation requirements of a survey. In Section 
3 we describe of the ASM's par t i cu la r  ed i t ing 
and imputation requirements and sketch how our 

method might be adapted to meet them. The data 
we consider consists of a sample of 155 cases 
from a pa r t i cu la r  industry surveyed by the ASM. I 
Fourteen variables were selected from the data, 
seven current year variables and the seven corres- 
ponding variables from the preceding year.  These 
variables are the number of production workers 
(PW), the number of a l l  other employees (OE), 
lega l l y  required f r inge benefi ts paid (LE), vol-  
untary payments to f r inge benef i t  programs (VP), 
to ta l  man hours worked by production workers 
(MH), production workers' wages (WW), and al l  
other salar ies and wages (OW). When these 
mnemonic names are prefaced by an 'A' they de- 
note current year data. I f  they are prefaced 
by a 'B' they denote preceding year data. 

Table 1 i l l u s t r a t e s  the f i r s t  step of the 
program. Rows and columns of the data are re- 
arranged to group s imi la r  patterns of missing 
data together.  This not only c l a r i f i e s  the 
pattern of missingness, but also reduces the 
computation required to perform the ed i t ing and 
imputation. 

A useful prel iminary to o u t l i e r  detection is 
to display the marginal d i s t r i bu t i ons  of the 
observed values of the var iables.  One might 
consider applying methods for  univar iable o u t l i e r  
detection to the marginal d i s t r i bu t i ons  of the 
var iables.  However, there are two reasons why 
th is  is not appropriate for  industry data. F i r s t -  
l y ,  the d i s t r i bu t ions  of a l l  of the variables 
are known to be skewed. Thus, methods based 
upon normality cannot be applied without a pre- 
l iminary transformation of the data. Second- 
ly ,  even i f  an appropriate transformation can 
be appl ied, ou t l ie rs  based on transformed data 
are p lausib ly  val id members of the underlying 
populat ion, at least in the context of ASM data. 
Exist ing c r i t e r i a  for ou t l i e r  detection in the 
ASM are based on re lat ionships between var iables,  
through the requirement that rat ios of pairs of 
variables l i e  wi th in  specif ied l i m i t s .  Thus 
a s t a t i s t i c a l  method of o u t l i e r  detection needs 
to focus on mul t i var ia te  re lat ionships rather 
than on marginal character is t ics  of the var iables.  

Step 2 of the flow diagram in Figure 1 pro- 
ceeds to estimate the mean and covariance matrix 
( ~c, Zc) of the var iables.  Because the data 
contain missing information, the EM algori thm 
is used to obtain maximum l i ke l ihood estimates 
of ~ and Z , assuming the observations are mu l t i -  
var iate normally d is t r ibu ted  2 (Orchard and Wood- 
bury, 1972; Beale and L i t t l e  1975; Dempster, 
Laird and Rubin, 1977). However, because these 
estimates are contaminated by out ly ing data, 
we subscript them with a "c" to denote th is  char- 
a c t e r i s t i c .  

In our i l l u s t r a t i o n ,  were transformed to the 
natural logarithm (~n) scale to remove the skew- 
ness of the marginal d i s t r i b u t i o n s .  A more funda- 
mental reason for the log transformation is that 
imputation procedures for business data are often 
based on ra t io  estimates. For example, i f  i t  is 
required to impute for  A on the basis of a corre- 
lated f i e l d  B and pr io r  year values A' and B' of 
A and B, then we may impute for  A as fol lows: A 
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= ( A ' / B ' )  B. Taking logar i thms, th is  imputation 
re la t i on  becomes l inear  in the logarithms of A, 
A ' ,  B' and B. Our imputation procedure can be 
viewed as a genera l izat ion of th is  kind of ed i t  
where a l i near  re la t ionsh ip  between m A, m A ' ,  

~n B ' ,  and £n B and other avai lab le pre- 
d ic to rs  are emp i r i ca l l y  determined by regressions 
based on ava i lab le  data. 

The estimated means and covariance matr ix 
( ~c, ~c) are presented in Table 2. The EM 
algor i thm also supplies imputed values X i j  for  
missing values in the data mat " durin the 
f i na l  E step. These imputed values are pre- 
d icted condi t ional  means from the regression of 
the missing var iables on the observed var iables 
in each case, and they are useful in subsequent 
steps of the a lgor i thm.  

The next step of the program i d e n t i f i e s  out-  
l y ing  cases. For the i th  case, the Mahalanobis 
distance 

Di = (Xi - Pc )T ~c- l (x i  - ~c) 

is ca lcu la ted ,  where X i is the vector of observed 
or imputed values for  the i th  case. D i represents 
the distance of case i from the centro id of obser- 
vations and accounts for  distance for  var iables 
that  are present,  only.  

In the absence of missing values and contamin- 
ated data, and under the mu l t i va r ia te  normal 
assumption, (n-p)nD i / [ ( n - l )  (n+ l )p ]  has an F 
d i s t r i b u t i o n  with p and (n-p)degrees of freedom 
(Anderson, 1958; Hawkins, 1974). I f  the data 
are incomplete the exact d i s t r i b u t i o n  of D i is 
unknown, but replacing ~c and ~c by ~ and ~, 
respec t i ve ly ,  i t  can be shown that D i is asym- 
p o t i c a l l y  chi-squared with Pi degrees of freedom 
under the model, where Pi is the number of pre- 
sent var iables in un i t  i .  To take some account 
of the fact  that  u and [ are est imated, we 
conjecture that  approximately (nc-Pi)ncD i / [ ( n c - l )  
(nc+ l )P i ]  has an F d i s t r i b u t i o n  with Pi and 
(nc-Pi)  degrees of freedom, where n c is the 
number of complete observat ions.  This conjecture 
has l i t t l e  theore t i ca l  basis, but does well in 
s imulat ion studies for  a related problem d is -  
cussed by L i t t l e  (1979). Case i may be i d e n t i -  
f ied  as being ou t ly ing  i f  D i is too large.  The 
program computes D i for  each case and using the 
above d i s t r i b u t i o n a l  resul ts  determines i f  case 
i is ou t l y i ng .  

This i d e n t i f i c a t i o n  step sorts cases in to two 
d i f f e r e n t  groups: those that are out ly ing and 
those that  are less l i k e l y  to be ou t l y ing .  A 
p-value of 0.01 or less for  the Mahalanobis 
distance was used as a c r i t e r i o n  for  determining 
the ou t l y ing  cases. 

Al l  ou t l y ing  cases are not necessar i ly found 
by th is  procedure, since as noted above, e s t i -  
mates of Uc and ~c are contaminated. However, 
we expect that  the most i n f l u e n t i a l  cases are 
i d e n t i f i e d .  Therefore, be t te r  estimates of u and 

can be obtained from the data cases i d e n t i -  
f ied as being i n l y i n g .  Using the EM algor i thm 

we obtain new estimates u and ~ which are contam- 
inated to a lesser degree than Pc and ~c" 
Also, new imputations for  missing values are 
computed from these est imates. 

In the next step the "improved" estimates 

are used to i d e n t i f y  ou t ly ing  variables w i th in  
ou t l y ing  cases. To do t h i s ,  the fo l lowing a lgor -  
ithm is implemented: 

STEP I :  For each ou t ly ing  case i ,  compute for  
each observed var iab le k 

Di(k)  : (X i (k)  - P(k) )T i (k )  -I (X i (k)  - P(k)) ,  

the Mahalanobis distance with var iable k omit-  
ted.  This distance shows the e f fec t  of e l im in -  
at ing k in computing the distance of the obser- 
vat ion from the mean. I f  var iable k is the 
on~y.~outlying value in th is  observat ion, then 
D i ~ )  w i l l  be s i g n i f i c a n t l y  smaller than D i .  

STEP 2" min D i ( k )  is determined" 
k 

The s ingle most i n f l u e n t i a l  var iable cont r ibu-  
t i ng  to the ext remi ty  of observation i is found. 
Let us cal l  th is  var iable J l .  By removing J l ,  
the con t r ibu t ion  of observation i to the proba- 
b i l i t y  of X i (k )  is increased the most. 

STEP 3" Compute D i ( k J l ) ,  the Mahalanobis d is -  
tance with both var iable J l  and k 
removed, for  a l l  present var iables 
k # j l .  

STEP 4: Determine min D~ 
! 

k 
(kJ 1 ) 

The var iab le  minimizing D.(kJl  ) is the next 
most i n f l u e n t i a l  var iab le ,  lond i t iona l  on the 
removal of var iable Jl in step 2. Let J2 denote 
t h i s  va r iab le .  The algor i thm then proceeds to 
f ind J3, the next most i n f l u e n t i a l  var iab le ,  
condi t iona l  on the p r io r  removal of var iables 
J2 and J l ,  and so on un t i l  a l l  the present 
var iables in observation i are exhausted. 

Table 2 gives a summarization of th is  a lgor i thm 
for  one of the out ly ing cases in Table 6. The 

to ta l  distance computed using ~ and ~ for  th is  
case is D 2 = 119.3 which corresponds to a p-value 
much less than 0.001. 

Removal of the most i n f l u e n t i a l  var iab le ,  BPW 
reduces the distance to 53.79, a 54.92% decrease. 
I f  BPW was the only ou t ly ing  value then b y r ~  T 
moving i t  the P-value associated with D6 ~ . . . .  j 5 
would be, at leas t ,  moderately large.  However, 
on removiny BPW, the p-value does not improve 
great ly  (< 0.001) and consequently we are led to 
search for  other ou t ly ing  var iables in the case. 

Condit ional on removing BPW, BWW is the next 
most i n f l u e n t i a l  var iab le .  ,~.~nl@,.y,~g i t  y ie lds  a 
remaining distance of D (~r . . . .  "J with an in -  
s i g n i f i c a n t  p-value (p 6>5 0.01) .  Consequently, 
we stop our search here having i d e n t i f i e d  two 
ou t l y ing  var iab les ,  BPW and BNW. 

The next step in the program described in 
Figure I is to "ed i t "  these out ly ing var iables 
in ou t l y ing  cases: we now t rea t  them as i f  that  
data had been missing. 

In the f ina l  step ~ and ~ are re-est imated 
via the EM algor i thm and the Beaton Sweep oper- 
ator  is used in conjunct ion with these estimates 
to produce regressions of missing var iables on 
non-missing var iables for  each case. Missing 
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values are then imputed from th~ese regressions 
and a clean data set is produced. ° 
3. Discussion 

As a general s t a t i s t i c a l  t oo l ,  the procedure 
presented in Section 2 is de f ic ien t  in two main 
respects. F i r s t l y ,  the procedure for  i den t i f y i ng  
out ly ing cases is based on contaminated estimates 
(~c, Zc) of the parameters. An i t e r a t i v e  version 
of the method may appear j u s t i f i e d ,  but by analogy 
with un ivar ia te  procedures, we expect such a 
method to be unstable unless the p-value for  
i den t i f y i ng  out ly ing cases is care fu l l y  chosen. 
We have developed (and w i l l  report elsewhere) a 
robust procedure for  est imating ( lJ, Z ) 
from al l  avai lable data which a l lev ia tes  th is  
problem. 

A second d i f f i c u l t y  with the procedure is 
the choice of p-values for select ing out ly ing 
cases and out ly ing values wi th in  cases. Rather 
conservative p-values are suggested, to avoid 
excessive ed i t ing of the data and consequent 
under-estimation of the variances of the va r i -  
ables. However, rules for  the choice of p-value 
as a funct ion of the amount of data do not appear 
to be easi ly  der ivable.  Furthermore, i t  could 
be argued that the p-value is nothing more than 
a poor proxy for a l te rna t i ve  c r i t e r i a  based on 
the d i s t r i bu t i ons  of the par t ia l  Mahalanobis 
distances described in the variable select ion 
part of the procedure. These d i s t r i bu t ions  are 
i n t rac tab le ,  but could be approximated by simu- 
la t ion  methods. 

Considerable modif icat ions of the basic method 
would be necessary to provide a f l e x i b l e  ed i t ing  
tool for  ASM data. In pa r t i cu l a r ,  i t  should be 
recognized that the imputation procedure we 
describe is essent ia l l y  empir ical ,  and does not 
take in to account a p ~ o ~ i n f o r m a t i o n  about re la-  
t ionships between var iables.  Also, ex is t ing  pro- 
cedures for  ed i t ing ASM data exp lo i t  exact l inear  
re la t ionships such as i den t i t i es  re la t ing  an 
aggregate var iable t o t h e  sum of i t s  par ts .  For 
example, the to ta l  wages paid, SW, must equal WW 
+ OW, the sum of the wages paid to production 
workers and wages paid to other workers. The 
modif icat ions required in our program to solve 
th is  important problem should re f lec t  the nature 
of the l inear  constraints in a pa r t i cu la r  prob- 
lem. Spec i f i ca l l y ,  two issues need pa r t i cu la r  
a t ten t ion :  (a) Does the fact  that the l inear  
constra int  is sa t i s f ied  by the recorded values 
increase one's confidence in the i r  va l i d i t y?  
I f  two or more independent data sources are 
involved in the recorded values, then the answer 
to th is  question is probably yes. On the other 
hand, i f  the to ta l  is obtained by summing the 
indiv idual  components, or one of the components 
is found by subtract ing the other components 
from the t o t a l ,  then the sa t i s fac t ion  of the 
const ra in t  simply confirms the ar i thmet ic  and 
does not confer any pa r t i cu la r  v a l i d i t y  to the 
recorded values; (b) Is the to ta l  more re l i ab l y  
recorded than i t s  components? In the ASM context,  
the SW var iable is obtained from o f f i c i a l  records 
and is regarded as more t rustwor thy than the 
values of other var iables.  

Regardless of the answers to (a) and (b), 
we suggest that one of the variables in each 
const ra in t  is dropped from our algorithm to 
avoid problems of n e a r - c o l l i n e a r i t y .  At the 

conclusion of the algor i thm, the value of the 
omitted variable is changed i f  necessary to 
sa t i s f y  the l inear  edi t  const ra in t .  I f  the 
l inear  edi t  constra int  is not sa t i s f i ed  by the 
unedited var iables,  we propose an addi t ional  
ed i t ing  procedure before the variable select ion 
algori thm for  i den t i f y i ng  out ly ing variables in 
cases. In th is  procedure the variable in the 
l inear  constra int  is changed that resul ts in the 
smallest Mahalanobis distance for  the case. The 
to ta l  might change in th is  procedure; th is  would 
not be allowed to happen i f  the answer to (b) is 
yes. 

I f  the answer to (a) or (b) are yes, then 
fu r ther  improvements to the algorithm can be 
achieved by assigning p r i o r i t y  levels to the 
variables in the stepwise var iable select ion 
procedure. I f  (a) is answered as yes and the 
l inear  constra int  is sa t i s f i ed  by the unedited 
values then the variables in the constra int  are 
assigned lower p r i o r i t y  for  select ion than other 
var iab les.  I f  (b) is answered as yes, then the 
to ta l  should replace one of i t s  components as a 
var iable in the algori thm and assigned low p r i o r -  
i t y  for  se lect ion.  These rules require s t r a i g h t -  
forward modif icat ions to handle data where some 
of the components of the l inear  constra int  are 
missing. 

Stronga p r i o r i  knowledge of l im i t s  for  ra t ios  
of variables determined by ASM subject matter 
spec ia l i s ts  is not exploi ted in our procedure. 
The stepwise select ion of variables could be 
modified to give variables that f a i l  to sa t i s f y  
these a p r i o r i  constraints higher p r i o r i t y  for  
ed i t ing  than others. Such modif icat ions might 
be viewed as approximations to a Bayesian analy- 
s is .  The development of more formal Bayesian 
procedures, which incorporate p r io r  information 
in to p r io r  d i s t r i bu t i ons  for  the parameters, 
appears to be a challenging s t a t i s t i c a l  problem 
worthy of a t ten t ion .  

A f ina l  pract ica l  concern is the u t i l i t y  of 
imputations derived by the method. The imputed 
value for  a missing or deleted var iable in a par- 
t i c u l a r  observation is the condit ional  mean 
given the present variables in that  observation, 
which is a l inear  funct ion of the present values. 
As such, i t  has the important property of captur-  
ing re la t ionships between the missing and present 
variables in the observation, as represented by 
t h e i r  estimated covariance matr ix .  A l te rna t i ve  
imputed values could be developed which add 
a random quant i ty  to the mean to preserve d i s t r i -  
butional cha rac te r i s t i cs .  (Schieber, 1978, and 
L i t t l e  and Samuhel, 1983, discuss implementations 
for  a single missing var iab le . )  Imputed values 
may require modi f icat ion to sa t i s fy  constra ints  
between the var iables.  Also, the option of 
re ta in ing out ly ing values which are considered 
val id by subject matter spec ia l i s ts  would also 
be a feature of an operational ed i t / imputa t ion  
system. For example, p r io r  year data in the ASM 
might be treated as correct i f  they have passed 
ed i t ing constra ints when the data was co l lec ted.  

As noted in footnote I ,  another aspect of 
ASM data not covered by the proposed procedure 
is the presence of zeros for  some var iables,  
corresponding to the absence of that var iable 
in pa r t i cu la r  cases. The logar i thmic t rans-  
formation is not appropriate for  such cases, 

520 



and they do not fal l  within the multivariate 
normal framework which underlies the method. 
Special procedures are required for editing 
these cases. 

In short, further work is required to re- 
solve these deficiencies. Nevertheless, the 
method as presented appears to be a useful, i f  
crude, tool for editing incomplete multivariate 
data. 

FIGURE 1 

Sort Data 

i d e n t i f i c a t i o n  of 
out lying cases 

i d e n t i f i c a t i o n  of ou t l y ing  
var iables w i th in  ou t l y ing  cases 

ed i t  i ng/i  mput at i on 

TABLE Z. Estimated Means and Covariances of m Transformed Data 

from Estimation fn Step 2. ASM Data 

ESTIMATED MEANS 

8PW BWW BLE BVP 8MH APW AWW BOW ALE AVP AMH BOE AOE AOW 
5.13 7.63 5.72 5.48 5.78 5.08 7.65 5.15 5.77 5.57 5.71 3.19 3.15 6.23 

ESTIMATED COVARIANCE MATRIX 

8PW 8WW BLE BVP BMH APW AWW BOW ALE AVP MdH 80E AOE AOW 

BPW .97 

Bl,~l .97 1.09 

tILE .94 1.08 1.20 

8VP 1.03 1.24 1.28 1.81 

~NH .87 .90 .91 .98 .85 

APW .96 .97 .97 1.05 .87 1.04 

AMM .91 1.02 1.02 1.17 .85 .95 1.01 

80W .63 .74 .86 1.05 .63 .64 .72 1.13 

ALE .89 1.00 1.08 1.18 .84 .94 .98 .81 1.05 

AVP 1.03 1.26 1.31 1.79 .98 1.09 1.23 1.07 1.Z2 1.95 

• 89 .92 .96 1.03 .86 .98 .92 .66 .91 1.07 1.01 

80E .69 .72 .83 .95 .66 .70 .69 1.00 .80 .97 .69 1.18 

AOE .72 .78 .89 1.03 .71 .74 .75 1.05 .86 1.07 .73 1.16 1.27 

AOW .71 .82 .93 1.11 .89 .73 .80 1.13 .90 1.18 .72 1.06 1.19 1.32 

TABLE 1. 

Code 

Rearrangement of Data and 
Missing Data Pattern Analysis 

Variable Case 
Name Number 

A BPW 31 
B BWW 121 
C BLE 92 
D BVP 44 
E BMH 78 
F APW 133 
G AWW 35 
H BOW 1 53 
I ALE 70 
J AVP 42 
K AMH 43 
L BOE 53 
M AOE 40 
N AOW 55 

41 
29 
25 

152 
146 

Pattern 
ABCDEFGHIJKLMN 

M 
. . . . . . . . .  M . . . .  

M 

M 

M 

M 

-M-- 

........ MM .... 

........ MM .... 

..... M--MM--M- 

....... M---MMM 

....... M---MMM 

........ M---MMM 

....... M---MMM 

....... M---MMM 

...... M-MMM--M 

...... M-MMM--M 

MMMMM--M---M-- 

..... MM-MMM-MM 

TABLE 3 

CASE NUHBER 65 TOTAL OISTANCE • 119.32 P-VALUE - .000 

~ECOROEO I M P U T E D  INCREMENTAL OECREASE OISTANCE P 
VAR|ABLE VALUE(RAW SCALE) VALUE RANK IN OISTANCE . RE HA[N|NG VALUE 

BPW 143 74 1 54.92 53.79 .000 

8WM 473 828 Z 75.94 28.71 .01 ; 

ALE 2U9 3 85.83 16.91 . 166 

BOE 3 4 90.01 11.92 .355 

BOW 58 5 95.88 4.94 .860 

BVP 36 6 97.20 3.34 .921 

AMH 140 7 97.84 2.58 .928 

AVP 49 8 98.13 Z.23 . 905 

BLE 99 9 98.34 1.98 .859 

Al~ 887 10 98.44 1.86 .769 

AOg 117 11 98.64 1.6Z .662 

AOE 6 12 99.48 .61 . 739 

8MH 162 13 99.51 .59 .446 

AI~ 81 14 100.00 .UU I .UO0 
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1 Our procedure only applies to cases which 
have posit ive values for the variables 
under study. Three cases were excluded that 
include zeros for one or more items. Special 
edi t ing procedures are required for these 
cases. 

2 The estimates are consistent for ~ and 
under any underlying d is t r ibu t ion  with f i n i t e  
fourth moments (Beale and L i t t l e ,  1975). 
Thus the mul t ivar iate normality assumption 
is not essential for the u t i l i t y  of the 
method. 

3 To l im i t  i n s t a b i l i t y  in the regression es t i -  
mates caused by near co l l i near i t y  of the 
predictors, a potential  predictor is not 
swept into the regression i f  i ts variance 
conditional on current predictors fa l l s  below 
a certain tolerance, chosen to be one percent 
of i ts  unconditional variance. This practice 
is standard in most modern regression algor- 
ithms. 
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