MULTIVARIATE EDIT AND IMPUTATION FOR ECONOMIC DATA
R.J.A. Little and Philip J. Smith, U.S. Bureau of the Census

1. Introduction

The quality control of data has become an in-
creasingly important aspect of survey work. Non-
sampling errors affecting the integrity of the
data are possible at virtually every junction
in a survey where data are communicated or tran-
scribed from one person or devise to another.
Without quality control of survey information,
data intended for final analysis or tabulation
and publication can be spurious or missing. In
this case, analysis and publication of such in-
formation may be of dubious value and may jeo-
pardize the credibility of the organization
conducting the survey and preparing the analysis
and report: bad data must be edited and values
imputed when they are missing or have been de-
leted during the editing process.

The next section describes and edit/imputa-
tion procedure based on an extension of the
method developed by Frane (1978) for identifying
outlying cases, which is available in the BMDPAM
Procedure in the BMDP statistical computer
package (BMDP, 1979). The method is illustrated
using selected data from the Annual Survey of
Manufactures (ASM), with varjables measured on
the logarithmic scale. An important limitation
of the method as applied to business surveys is
the failure to take account of Tinear constraints
between the variables measured on the raw scale,
such as the requirement that a set of component
items sum to their aggregate. Section 3 outlines
a modification of the basic method which takes
into account Tlinear constraints, and discusses
further work required to implement the procedure
in a realistic setting.

2. The Basic Method

Our method is designed to analyze a (nxp) rec-
tangutar data matrix containing n observations
on p variables Xy = (XjlseessXip)s i=1,...,n.
Some values in the matrix are assumed to be miss-
ing because they were not recorded or have been
edited out by other edit routines.

Figure 1 gives a simple flow chart for our
prototype edit/imputation procedure for incom-
plete multivariate data. In the first step the
missing data pattern is analyzed and observations
and variables are rearranged according to the
pattern of missing and observed values 1in each

case. In the second step the program identifies
cases which are apparently outliers. The third
step identifies outlying variables within the

outlying cases obtained from the previous step.
Finally, imputed values are calculated for the
missing or outlying values, and edited estimates
of the mean and covariance matrix of the vari-
ables are produced.

We illustrate our procedure using data from
the 1982 Annual Survey of Manufactures (ASM).
It should be noted that the procedure we detail
is not a comprehensive solution to all editing
and imputation requirements of the ASM. Rather,
our method is a general statistical tool which
requires adaptation to the specific editing and
imputation requirements of a survey. In Section
3 we describe of the ASM's particular editing
and imputation requirements and sketch how our
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method might be adapted to meet them. The data
we consider consists of a sample of 155 cases
from a particular industry surveyed by the AsM. 1
Fourteen variables were selected from the data,
seven current year variables and the seven corres-
ponding variables from the preceding year. These
variables are the number of production workers
(PW), the number of all other employees (OE),
legally required fringe benefits paid (LE), vol-
untary payments to fringe benefit programs (VP),
total man hours worked by production workers
(MH), production workers' wages (WW), and all
other salaries and wages (OW). When these
mnemonic names are prefaced by an 'A' they de-
note current year data. If they are prefaced
by a 'B' they denote preceding year data.

Table 1 illustrates the first step of the
program. Rows and columns of the data are re-
arranged to group similar patterns of missing
data together. This not only clarifies the
pattern of missingness, but also reduces the
computation required to perform the editing and
imputation.

A useful preliminary to outlier detection is
to display the marginal distributions of the
observed values of the variables. One might
consider applying methods for univariable outlier
detection to the marginal distributions of the
variables. However, there are two reasons why
this is not appropriate for industry data. First-
1y, the distributions of all of the variables
are known to be skewed. Thus, methods based
upon normality cannot be applied without a pre-
liminary transformation of the data. Second-
ly, even if an appropriate transformation can
be applied, outliers based on transformed data
are plausibly valid members of the underlying
population, at least in the context of ASM data.
Existing criteria for outlier detection in the
ASM are based on relationships between variables,
through the requirement that ratios of pairs of
variables lie within specified limits. Thus
a statistical method of outlier detection needs
to focus on multivariate relationships rather
than on marginal characteristics of the variables.

Step 2 of the flow diagram in Figure 1 pro-
ceeds to estimate the mean and covariance matrix
( uc» Lc) of the variables. Because the data
contain missing information, the EM algorithm
is used to obtain maximum likelihood estimates
of u and Z » assuming the observations are multi-
variate normally distributed? (Orchard and Wood-
bury, 1972; Beale and Little 1975; Dempster,
Laird and Rubin, 1977). However, because these
estimates are contaminated by outlying data,
we subscript them with a "c¢" to denote this char-
acteristic.

In our illustration, were transformed to the
natural logarithm (gn) scale to remove the skew-
ness of the marginal distributions. A more funda-
mental reason for the log transformation is that
imputation procedures for business data are often
based on ratio estimates. For example, if it is
required to impute for A on the basis of a corre-
lated field B and prior year values A' and B' of
A and B, then we may impute for A as follows: A



= (A'/B') B. Taking Togarithms, this imputation
relation becomes linear in the logarithms of A,
A', B' and B. Our imputation procedure can be
viewed as a generalization of this kind of edit
where a linear relationship between an A, an A',
s2n B', and sn B and other available pre-
dictors are empirically determined by regressions
based on available data.
The estimated means and covariance matrix
( we» Jc) are presented in Table 2. The EM
algorithm also supplies imputed values X;; for
missing values in the data matrix during the
final E step. These dimputed values are pre-
dicted conditional means from the regression of
the missing variables on the observed variables
in each case, and they are useful in subsequent
steps of the algorithm.
The next step of the program identifies out-
lying cases. For the ith case, the Mahalanobis
distance

Dy = (X = 1) T T X4- wp)

is calculated, where X; is the vector of observed
or imputed values for the ith case. D represents
the distance of case i from the centroid of obser-
vations and accounts for distance for variables
that are present, only.

In the absence of missing values and contamin-
ated data, and under the multivariate normal
assumption, (n-p)nD;j/L(n-1) (n+1)p] has an F
distribution with p and (n-p) degrees of freedom
(Anderson, 1958; Hawkins, 1974). If the data
are incomplete the exact distribution of Dj is
unknown, but replacing u. and }. by wand },
respectively, it can be shown that D; is asym-
potically chi-squared with p; degrees of freedom
under the model, where p;j is the number of pre-
sent variables in unit i. To take some account
of the fact that u and | are estimated, we
conjecture that approximately (n.-p;j)n.D;/[(n.-1)
(ne+1)pjl has an F distribution with p; and
(nc-pi) degrees of freedom, where n. is the
number of complete observations. This conjecture
has little theoretical basis, but does well in
simulation studies for a related problem dis-
cussed by Little (1979). Case i may be identi-
fied as being outlying if D; is too large. The
program computes Dj for each case and using the
above distributional results determines if case
i is outlying.

This identification step sorts cases into two
different groups: those that are outlying and
those that are Tless likely to be outlying. A
p-value of 0.01 or 1less for the Mahalanobis
distance was used as a criterion for determining
the outlying cases.

A1l outlying cases are not necessarily found
by this procedure, since as noted above, esti-
mates of p. and Zc are contaminated. However,
we expect that the most influential cases are
identified. Therefore, better estimates of u and

can be obtained from the data cases identi-
fied as being 1inlying. Using the EM algorithm
we obtain new estimates u and ) which are contam-
inated to a lesser degree than .
Also, new imputations for missing values

computed from these estimates.
In the next step the "“improved"
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and ..
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are used to identify outlying variables within
outlying cases. To do this, the following algor-
ithm is implemented:

STEP 1: For each outlying case i, compute for
each observed variable k
k) - C T v A -
0180 = iy = 1)) Ly ™ Kigry - ue))»

the Mahalanobis distance with variable k omit-
ted. This distance shows the effect of elimin-
ating k in computing the distance of the obser-
vation from the mean. If variable k is the
onl{ outlying value in this observation, then
Dy ) will be significantly smaller than D;.

STEP 2: min Di(k) is determined:
k

The single most influential variable contribu-
ting to the extremity of observation i is found.
Let us call this variable jy. By removing ji,
the contribution of observation i to the proba-
bility of X (k) 1s increased the most.

STEP 3: Compute D;(KJ1), the Mahalanobis dis-
tance with both variable j; and k
removed, for all present variables
k #31.

STEP 4: Determine min Di(kj1)

k

The variable minimizing Di(k31) is the next
most influential variable, conditional on the
removal of variable jj in step 2. Let jo denote
this variable. The algorithm then proceeds to

find j3, the next most influential variable,
conditional on the prior removal of variables
jo and jy, and so on until all the present

variables in observation i are exhausted.

Table 2 gives a summarization of this algorithm
for one of the outlying cases in Table 6. The
total distance computed using pand ) for this
case is D% = 119.3 which corresponds to a p-value
much less than 0.001.

Removal of the most influential variable, BPW
reduces the distance to 53.79, a 54.92% decrease.
If BPW was the only outlying value then QﬁBFﬁj
moving it the P-value associated with Dgs
would be, at Tleast, moderately large. However,
on removinyg BPW, the p-value does not improve
greatly (< 0.001) and consequently we are led to
search for other outlying variables in the case.

Conditional on removing BPW, BWW is the next

most influential variable. ing it yields a
remaining distance of D (B§5?§wﬂ? with an in-
significant p-value (p > 0.01). Consequently,

we stop our search here having identified two
outlying variables, BPW and BNW.

The next step in the program described in
Figure 1 is to "edit" these outlying variables
in outlying cases: we now treat them as if that
data had been missing.

In the final step pand §J are re-estimated
via the EM algorithm and the Beaton Sweep oper-
ator is used in conjunction with these estimates
to produce regressions of missing variables on
non-missing variables for each case. Missing



values are then imputed from tﬁ?se regressions
and a clean data set is produced.
3. Discussion

As a general statistical tool, the procedure
presented in Section 2 is deficient in two main
respects. Firstly, the procedure for identifying
outlying cases is based on contaminated estimates
(uc» Jc) of the parameters. An iterative version
of the method may appear justified, but by analogy
with univariate procedures, we expect such a
method to be unstable unless the p-value for
identifying outlying cases is carefully chosen.
We have developed (and will report elsewhere) a
robust procedure for estimating ( u,
from all available data which alleviates this
problem.

A second difficulty with the procedure is
the choice of p-values for selecting outlying

cases and outlying values within cases. Rather
conservative p-values are suggested, to avoid
excessive editing of the data and consequent

under-estimation of the variances of the vari-
ables, However, rules for the choice of p-value
as a function of the amount of data do not appear
to be easily derivable. Furthermore, it could
be argued that the p-value is nothing more than
a poor proxy for alternative criteria based on
the distributions of the partial Mahalanobis
distances described 1in the variable selection
part of the procedure. These distributions are
intractable, but could be approximated by simu-
lation methods.

Considerable modifications of the basic method
would be necessary to provide a flexible editing
tool for ASM data. In particular, it should be
recognized that the imputation procedure we
describe is essentially empirical, and does not
take into account a prior¢information about rela-
tionships between variables. Also, existing pro-
cedures for editing ASM data exploit exact linear
relationships such as identities relating an
aggregate variable to.the sum of its parts. For
example, the total wages paid, SW, must equal WW
+ OW, the sum of the wages paid to production
workers and wages paid to other workers. The
modifications required in our program to solve
this important problem should reflect the nature
of the linear constraints in a particular prob-
lem, Specifically, two 1issues need particular
attention: (a) Does the fact that the linear
constraint is satisfied by the recorded values
increase one's confidence 1in their validity?
If two or more independent data sources are
involved in the recorded values, then the answer
to this question is probably yes. On the other
hand, if the total is obtained by summing the
individual components, or one of the components

is found by subtracting the other components
from the total, then the satisfaction of the
constraint simply confirms the arithmetic and

does not confer any particular validity to the
recorded values; (b) Is the total more reliably
recorded than its components? In the ASM context,
the SW variable is obtained from official records

and is regarded as more trustworthy than the
values of other variables.

Regardless of the answers to (a) and (b),
we suggest that one of the variables in each
constraint 1is dropped from our algorithm to
avoid problems of near-collinearity. At the
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conclusion of the algorithm, the value of the
omitted variable is changed if necessary to
satisfy the 1linear edit constraint. If the
linear edit constraint is not satisfied by the
unedited variables, we propose an additional
editing procedure before the variable selection
algorithm for identifying outlying variables in
cases. In this procedure the variable 1in the
linear constraint is changed that results in the
smallest Mahalanobis distance for the case. The
total might change in this procedure; this would
not be allowed to happen if the answer to (b) is
yes.

If the answer to (a) or (b) are yes, then
further improvements to the algorithm can be
achieved by assigning priority levels to the
variables in the stepwise variable selection
procedure. If (a) 1is answered as yes and the
linear constraint is satisfied by the unedited
values then the variables in the constraint are
assigned Tower priority for selection than other
variables. If (b) is answered as yes, then the
total should replace one of its components as a
variable in the algorithm and assigned low prior-
ity for selection. These rules require straight-
forward modifications to handle data where some
of the components of the linear constraint are
missing.

Strong a priori knowledge of 1imits for ratios
of variables determined by ASM subject matter
specialists is not exploited in our procedure.
The stepwise selection of variables could be
modified to give variables that fail to satisfy
these a priort constraints higher priority for
editing than others. Such modifications might
be viewed as approximations to a Bayesian analy-

sis. The development of more formal Bayesian
procedures, which 1incorporate prior information
into prior distributions for the parameters,

appears to be a chalilenging statistical
worthy of attention.

A final practical concern is the utility of
imputations derived by the method. The imputed
value for a missing or deleted variable in a par-
ticular observation is the conditional mean
given the present variables in that observation,
which is a linear function of the present values.
As such, it has the important property of captur-
ing relationships between the missing and present
variables in the observation, as represented by
their estimated covariance matrix. Alternative
imputed values could be developed which add
a random quantity to the mean to preserve distri-
butional characteristics. (Schieber, 1978, and
Little and Samuhel, 1983, discuss implementations
for a single missing variable.) Imputed values
may require modification to satisfy constraints
between the variables. Also, the option of
retaining outlying values which are considered
valid by subject matter specialists would also
be a feature of an operational edit/imputation
system. For example, prior year data in the ASM
might be treated as correct if they have passed
editing constraints when the data was collected.

As noted in footnote 1, another aspect of
ASM data not covered by the proposed procedure
is the presence of zeros for some variables,

problem

corresponding to the absence of that variable
in particular cases. The Jlogarithmic trans-
formation is not appropriate for such cases,



and they do not fall within the multivariate

normal framework which underlies the method.
Special procedures are required for editing
these cases.

In short, further work 1is required to re-

solve these deficiencies. Nevertheless, the
method as presented appears to be a useful, if
crude, tool for editing incomplete multivariate

data.
FIGURE 1
Sort Data
identification of
outlying cases
identification of outlying
variables within outlying cases
editing/imputation
TABLE 1, Rearrangement of Data and
Missing Data Pattern Analysis
Variable Case
Code Name Number Pattern

ABCDEFGHIJKLMN
A BPW ] I - ¥ J—
B BWW 121 emeeemee- |/ —
C BLE 92 mmmemeee-- M---
D BVP 44 cmeemeees Meem
E BMH 718 mmemmeeoeo Mewe
F APW 133 memeemeeee Y —
G AWl 35 emmmemmeao M--
H BOW 153 eemmmee- [ —
1 ALE 70 meeeeeee MM ~—-
J AvVP L M--MM--M-
K AMH L M- --MMM
L BOE 53 mmeeeen M---MMM
M AQE 40  —--eaes M~ ~MMM
N AOW 55 mmeeee- M= = =MMM
L i M~ --MMM
29 mmeees M-MMM--M
25 —eeea- M-MMM--M
152 MMMMM ~ =M~ = =M -~
146 = MM-MMM-MM
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TABLE 2. Estimated Means and Covariances of m Transformed Data

from Estimation in Step 2, ASM Data

ESTIMATED MEANS

BPW BWW BLE BVP BMH APW AWN B0W ALE AVP AMN BOE AOE AOW
$.13 7.63 5.72 5,48 5.78 5.08 7.65 6.15 5.77 5.57 5.71 3.19 3,15 6.23

ESTIMATED COVARIANCE MATRIX

BPW BWW BLE BYP BMH APW AWN 80N ALE AVP AMH B0E ADE AOW

BPW .97

BW .97 1.09

BLE .94 1.08 1,20

BvP 1.03 1.24 1.28 1.81

EL 87 .90 91 .98 .85

APW W96 .97 .97 1.08 .87 1.04

A .91 1,02 1.02 1,17 .8S .95 1.01

80w .63 .74 .86 1.05 .63 .64 .721.13

ALE .89 1.00 1,08 1,18 .84 .54 .99 .81 1.05

Avp 1.03 1.26 1.31 1.79 .98 1.09 1.23 1.07 1,22 1.95

A .89 .92 .961.03 .86 .99 .92 .5 .91 1.07 1.0t

B80E W69 72 .83 .95 .66 .70 .69 1.00 .80 .97 .69 1.18

3 W2 .78 .891.03 .71 74 751,05 .86 1,07 .73 1.161.27
AON VW82 .93 1011 .89 .73 .80 T.13 40 1.18 .72 1.06 1,19 1.32

TABLE 3

CASE NUMBER 65 TOTAL OISTANCE = 119.32 P-VALUE = .000

RECORDED IMPUTED INCREMERTAL DECREASE  DISTANCE 4
VARIABLE VALUE(RAW SCALE) VALUE RANK IN DISTANCE REMATNING VALUE

BPW 143 74 1 54,92 53.79 000
BiW 473 428 2 75.94 28.7 2018
ALE 9 3 85.83 16.91 166
BOE 3 k) 90.01 n.92 355
BON 58 5 95,86 4.94 .860
Bvp 36 6 97.20 3.34 .921
AMM 140 7 97.84 2.58 .928
AVP 49 8 98.13 2,23 .905
8LE 99 9 98.34 1.98 859
Al 287 19 98,44 1.86 .769
AGM nz n 98.64 1.62 .662
ACE 6 12 99.48 61 739
M 162 13 99.51 59 446
APM a 14 100.00 S0 1.000
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FOOTNOTES

Our procedure only applies to cases which
have positive values for the variables
under study. Three cases were excluded that
include zeros for one or more items. Special
editing procedures are required for these
cases.

The estimates are consistent for pand
under any underlying distribution with finite

fourth moments (Beale and Little, 1975).
Thus the multivariate normality assumption
is not essential for the utility of the

method.

To 1imit instability in the regression esti-

mates caused by near collinearity of the
predictors, a potential predictor is not
swept into the regression if its variance

conditional on current predictors falls below
a certain tolerance, chosen to be one percent
of its unconditional variance. This practice
is standard in most modern regression algor-
ithms.



