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i. INTRODUCTION 

In this paper we estimate the population 
mean Y from a simple random sample (yl,Y2 ..... 

yn) of size n. Suppose that the variable Yi 

is related to an auxiliary variable, say x., i 
where X is known. It is known that the linear 
regression estimator yi = y + b(X - x) is 

unbiased provided that the target population 
is essentially infinite and the paired obser- 
vations (xi,Y i) follow the usual linear model. 

Situations arise, however, in which while the 
assumption of an essentially infinite popula- 
tion is plausible, the model linking the 
variables x i and yj is of a quadratic form. 

Hence we propose the parabolic model 

Yi = 81 + 82 xi + 83 x2i + ei' 

i = 1,2 ..... n (i.i) 

Our assumptions are as follows: (a) The under- 
lying population is very large, i.e., essentially 
infinite; (b) X is known; (c) 81 , 82 , 83 are 

unknown parameters; (d) e I , e 2 ..... en are 

independent random variables and conditional 

21 expectations E(eilx i) = E(e i) = O, E(e i x i) 
2 

= O for i = 1,2 ..... n; and finally (e)x I ..... 
e 

x are observable without error. Taking expec- 
n 

tations of the model in (i.i) over the entire 
population, we note that 

= 81 + 82 X + 83 E(x2). (1.2) 

Using the method of least square estimation, one 
can find unbiased estimates for 8i; however 

since population data on x are not generally 

available, E(x 2) has to be estimated. There- _ 
fore, the parabolic estimator yp of Y is pro- 

posed as 

YP= ~i + ~2 ~ + ~3 (~2 + s2)'x (i.3) 

2 1 n - 2 s 2) where s = (x - x) (~2 + 
x ~ Y~i=l i ' x 

(x 2 ^ is an unbiased estimator of E ), and 8. is 
1 

the least square estimator of 8. for i = 1,2, 
i 

3. The purpose of this paper is to show that 
~p is an unbiased estimator of the population_ 

mean Y; to compute the exact variance V(yp) of 

the parabolic estimator; and to determine an 
unbiased estimator v (yp) for V(yp). 

Let 

A = col(Yl ..... Yn )' 

B = coi(81, 82 , 83), 

F = col(e I ..... en), and 

1 x I x~ 2 . 

p = 1 x 2 x 2 

........ 

2 
X n X n 

Then the parabolic model (i.i) becomes A =PB+ 
F, or 

F = A- PB (2.1) 

Since y n 2 i=l e.1 = F~F = (A- PB) (A- PB), we are 

A A 

then to determine a vector B = col (~i' ~2' B3) 

that minimizes Y ni=l ei'2 Using the least square 

methods in regression analysis [2], we find that 

a solution of B is given by B = (P~P)-Ip~A and 

the conditional expectation of B, given x., is 
1 

A 

El(B) = B. Since the conditional expectation 

E l(A) of A is E l(A) = PB, hence the unconditional 

A A 

expectation of B is E(B) = E[EI(B)] = B. There- 

fore B = (p~p)-I P~A is an unbiased estimator of 
B. 

3. EXPECTATION AND VARIANCE OF yp 

Consider the expression (1.3) for pp. Taking 

conditional expectations of both sides, given x., 
i 

we get 

EI(Yp) = BI + B2 X + B3 (~2 + s2)'x 

Therefore 

E(~p) = E[E l(yp)] 

= BI + B2 ~ + B3(~2 + S2)x 

= Y, 

2. UNBIASED ESTIMATOR OF B. 
l 

We will use the subscript 1 to denote con- 
ditional expectation and variance given x i, e.g., 

(Z) = E ( Z l x i ) . .  E 1 

which shows that ~p is unbiased for Y. 

In  o r d e r  to  compute  t h e  e x a c t  v a r i a n c e  V ( y p ) ,  

we first note that the conditional dispersion 

394 



matrix D I of B, given x.1, is obtained as follows. 

A 

D I(P'PB) = D l(P'A) 

= P~D I(A)P = P~O2e IP. 

Then 

(P~P)DI(B) = O2e I 

and 

DI(~) = O2(p.p)-l. 
e 

If we let 

we get 

and 

- 2 
L = col(l, X, ~2 + Sx), 

_ ^ ^ 

yp = L'B = B'L 

V I(L'B) = L'D I (B)L 

= L~o 2 (P'P)-IL. 
e 

Hence 

Vl(Yp) = O2e - L~ (P ~P ) -IL" 

F i n a l l y ,  t h e  u n c o n d i t i o n a l  v a r i a n c e  b e c o m e s  

V(yp) = E[V l(yp)] + V [E l(yp)] 

= °2e Ex [L'(P'P)-IL] + V($1 + ~2 ~ 

+ B 3 X 2 + B 3 s2). Hence 

V(yp) = O2e Ex [ e~ (P ~P ) -IL ] 

2 s2 ) + B 3 V( . (3.1) 

4. ESTIMATION OF V(yp) 

Let 

R 2 = (A- PB)" (A- PB), 
O 

w h i c h  r e d u c e s  t o  

R 2 = A~[l-p(p'p)-ip~]A, 
O 

and  i t  c a n  be  shown [2]  t h a t  

El(R2) = (n-3)O2"e 

Moreover, 

E(R~) = (n-3) °2"e 

A 

2. 2 . 
T h e r e f o r e ,  an  u n b i a s e d  e s t i m a t o r  o o f  o i s  

e e 

R 2 / ( n - 3 ) .  N e x t ,  we l e t  
O 

^ ^ 

where v(~ 3) represents an unbiased estimator of 

V I(~3 ) Since D I(B) = 02(P~P)-I • e we h a v e  

^ A 
^ A 

DI(B ) = 02 (p.p)-i _ 02 [ ]. 
e e cij 

Then  t h e  e l e m e n t  v33  i n  t h e  ( 3 , 3 )  p o s i t i o n  o f  

A A 

DI(B ) is 
^ 

2 
v33  = o e c33  

= c33 R2/(n-3). (4.1) 

We now note that 

and 

^2 ^2 R~/(n-3) 
B 3 = 63 - c33 

^2 ^2 2 
E 1 (63 ) = E l ( B  3 ) - o e c33 

^2 
= E l ( I B  3 )  - V 1 ( ~ 3  ) 

[ E l ( ~ 3 )  ]2 2 = = 63 , 

which establishes that 

^2 _ ^2 R~/(n-3) 
B 3 63 - c33 

2 
is an unbiased estimator of B 3. 

"s 2) To find an unbiased estimator of V( x ' we 

proceed as follows• Since 

2 = l~n 2 
s - x) x n-i i=1 (xi 

(4.2) 

n 

n-i m2' 

where m 2 is the second moment about the sample 

2 
mean, we can write the variance of s in terms 

X 

of the cumulants of x, [3]• 

2 n___) 2 
V(Sx) = ( n-i V(m2) 

<4 2~ = + , (4.3) 
n n-i 

where K is the rth cumulant of x. Using the 
r 

theory of symmetric functions [3], we recall 
that the k-statistic of order kt~ which is a 
function of the observations, is an unbiased 
estimator of < for all integers r. Moreover, 
the ~-statisti r (or polykay) ~22 has the 

2 
property E(%22) = <2 " <2 = <2' where %22 is 

also a function of observations only. Hence• 
if we let 

A 

V(S2)x - k4/n 

+ 2~22/(n-l), (4.4) 

3 9 5  



we get, from the tables of k - statistics, 

^ 2 i [n-i k4 + 2k22 ] 
V(Sx) = n+l n (4.5) 

where k 2 = f(t I, t2), k 4 = g(t I, t 2, t 3, t 4) 

n xj 
and tj = ~=i i" 

Finally, it follows that 

^ I R 2 [L . (p.p)-iL] 
V(yp) = ~-3 o 

,,2 R 2 
+ (B 3 o ^ 2 

n-3 c33) V(Sx) (4.6) 

is an unbiased estimator of V(yp) determined by 

the observed sample values YI' .... Yn and x I ..... 

X • 
n 
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*This problem was initially suggested by the 
late H.O. Hartly. 
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