PARABOLIC REGRESSION ESTIMATION

D.C. Doss and J. Hoomani, University of Alabama in Huntsville G.R. Somayajulu*, Osmania University

1. INTRODUCTION

In this paper we estimate the population mean \bar{Y} from a simple random sample $\left(y_{1}, y_{2}, \ldots\right.$, y_{n}) of size n. Suppose that the variable y_{i} is related to an auxiliary variable, say x_{i}, where \bar{X} is known. It is known that the linear regression estimator $\bar{y}_{\ell}=\bar{y}+b(\bar{x}-\bar{x})$ is unbiased provided that the target population is essentially infinite and the paired observations $\left(x_{i}, y_{i}\right)$ follow the usual linear model. Situations arise, however, in which while the assumption of an essentially infinite population is plausible, the model linking the variables x_{i} and y_{j} is of a quadratic form. Hence we propose the parabolic model

$$
\begin{align*}
y_{i}= & \beta_{1}+\beta_{2} x_{i}+\beta_{3} x_{i}^{2}+e_{i} \\
& i=1,2, \ldots, n \tag{1.1}
\end{align*}
$$

Our assumptions are as follows: (a) The underlying population is very large, i.e., essentially infinite; (b) \bar{X} is known; (c) $\beta_{1}, \beta_{2}, \beta_{3}$ are unknown parameters; (d) $e_{1}, e_{2}, \ldots, e_{n}$ are independent random variables and conditional expectations $E\left(e_{i} \mid x_{i}\right)=E\left(e_{i}\right)=0, E\left(e_{i}^{2} \mid x_{i}\right)$ $=\sigma_{e}^{2}$ for $i=1,2, \ldots, n$; and finally (e) x_{1}, \ldots, x_{n} are observable without error. Taking expectations of the model in (1.1) over the entire population, we note that

$$
\begin{equation*}
\bar{Y}=\beta_{1}+\beta_{2} \bar{X}+\beta_{3} E\left(x^{2}\right) \tag{1.2}
\end{equation*}
$$

Using the method of least square estimation, one can find unbiased estimates for β_{i}; however since population data on x are not generally available, $E\left(x^{2}\right)$ has to be estimated. Therefore, the parabolic estimator \bar{y}_{p} of $\overline{\bar{Y}}$ is proposed as

$$
\begin{equation*}
\bar{y}_{\mathrm{p}}=\hat{\beta}_{1}+\hat{\beta}_{2} \overline{\mathrm{x}}+\hat{\beta}_{3}\left(\bar{x}^{2}+\mathrm{s}_{\mathrm{x}}^{2}\right) \tag{1.3}
\end{equation*}
$$

where $s_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2},\left(\bar{x}^{2}+s_{x}^{2}\right)$
is an unbiased estimator of $E\left(x^{2}\right)$, and $\hat{\beta}_{i}$ is the least square estimator of β_{i} for $i=1,2$, 3. The purpose of this paper is to show that \bar{y}_{p} is an unbiased estimator of the population mean \bar{Y}; to compute the exact variance $V\left(\bar{y}_{p}\right)$ of the parabolic estimator; and to determine an unbiased estimator $v\left(\bar{y}_{p}\right)$ for $V\left(\bar{y}_{p}\right)$.

$$
\text { 2. UNBIASED ESTIMATOR OF } \beta_{i}
$$

We will use the subscript 1 to denote conditional expectation and variance given x_{i}, e.g., $E_{I}(Z)=E\left(Z \mid x_{i}\right)$.

Let

$$
\begin{aligned}
& A=\operatorname{col}\left(y_{1}, \ldots, y_{n}\right), \\
& B=\operatorname{col}\left(\beta_{1}, \beta_{2}, \beta_{3}\right), \\
& F=\operatorname{col}\left(e_{1}, \ldots, e_{n}\right), \text { and } \\
& P=\left[\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
\cdots & \ldots & \ldots \\
1 & x_{n} & x_{n}^{2}
\end{array}\right]
\end{aligned}
$$

Then the parabolic model (1.1) becomes $A=P B+$ F, or

$$
\begin{equation*}
F=A-P B \tag{2.1}
\end{equation*}
$$

Since $\sum_{i=1}^{n} e_{i}^{2}=F^{\prime} F=(A-P B)^{\prime}(A-P B)$, we are then to determine a vector $\hat{B}=\operatorname{col}\left(\hat{\beta}_{1}, \hat{B}_{2}, \hat{\beta}_{3}\right)$ that minimizes $\sum_{i=1}^{n} e_{i}^{2}$. Using the least square methods in regression analysis [2], we find that a solution of \hat{B} is given by $\hat{B}=\left(P^{\prime} P\right)^{-1} P^{\prime} A$ and the conditional expectation of \hat{B}, given x_{i}, is $E_{1}(\hat{B})=B$. Since the conditional expectation $E_{1}(A)$ of A is $E_{1}(A)=P B$, hence the unconditional expectation of B is $E(\hat{B})=E\left[E_{1}(\hat{B})\right]=B$. Therefore $\hat{B}=\left(P^{\wedge} P\right)^{-1} P^{\wedge} A$ is an unbiased estimator of B.
3. EXPECTATION AND VARIANCE OF $\overline{\mathrm{y}}_{\mathrm{p}}$

Consider the expression (1.3) for \bar{y}_{p}. Taking conditional expectations of both sides, given x_{i}, we get

$$
E_{1}\left(\bar{y}_{p}\right)=\beta_{1}+\beta_{2} \bar{x}+\beta_{3}\left(\bar{x}^{2}+s_{x}^{2}\right)
$$

Therefore

$$
\begin{aligned}
E\left(\bar{y}_{p}\right) & =E\left[E_{1}\left(\bar{y}_{p}\right)\right] \\
& =\beta_{1}+\beta_{2} \bar{x}+\beta_{3}\left(\bar{x}^{2}+s_{x}^{2}\right) \\
& =\bar{Y}
\end{aligned}
$$

which shows that \bar{y}_{p} is unbiased for \bar{Y}.
In order to compute the exact variance $V\left(\bar{y}_{p}\right)$,
we first note that the conditional dispersion
matrix D_{1} of \hat{B}, given x_{i}, is obtained as follows.

$$
\begin{aligned}
D_{1}\left(P^{\prime} \mathcal{P B}\right) & =D_{1}\left(P^{\prime} A\right) \\
& =P^{\prime} D_{1}(A) P=P^{\prime} \sigma_{e}^{2} I P .
\end{aligned}
$$

Then

$$
\left(P^{\prime} P\right) D_{1}(\hat{B})=\sigma_{e}^{2} I
$$

and

$$
D_{1}(\hat{B})=\sigma_{e}^{2}\left(P^{\prime} P\right)^{-1}
$$

If we let

$$
L=\operatorname{col}\left(1, \bar{x}, \bar{X}^{2}+s_{x}^{2}\right),
$$

we get

$$
\overline{\mathrm{y}}_{\mathrm{p}}=\mathrm{L}^{\wedge} \hat{\mathrm{B}}=\hat{\mathrm{B}}^{\wedge} \mathrm{L}
$$

and

$$
\begin{aligned}
\mathrm{V}_{1}\left(\mathrm{~L}^{\prime} \hat{B}\right) & =\mathrm{L}^{\prime} \mathrm{D}_{1}(\hat{\mathrm{~B}}) \mathrm{L} \\
& =\mathrm{L}^{\prime} \sigma_{\mathrm{e}}^{2}\left(\mathrm{P}^{\prime} \mathrm{P}\right)^{-1} \mathrm{~L}
\end{aligned}
$$

Hence

$$
V_{1}\left(\bar{y}_{p}\right)=\sigma_{e}^{2} L^{\prime}\left(P^{\prime} P\right)^{-1} L .
$$

Finally, the unconditional variance becomes

$$
\begin{align*}
V\left(\bar{y}_{p}\right)= & E\left[V_{1}\left(\bar{y}_{p}\right)\right]+V\left[E_{1}\left(\bar{y}_{p}\right)\right] \\
= & \sigma_{e}^{2} E_{x}\left[L^{\prime}\left(P^{\prime} P\right)^{-1} L\right]+V\left(\beta_{1}+\beta_{2} \bar{x}\right. \\
& \left.+\beta_{3} \bar{x}^{2}+\beta_{3} s_{x}^{2}\right) . \quad \text { Hence } \\
V\left(\bar{y}_{p}\right)= & \sigma_{e}^{2} E_{x}\left[L^{\prime}\left(P^{\prime} P\right)^{-1} L\right] \\
& +\beta_{3}^{2} V\left(s_{x}^{2}\right) . \tag{3.1}
\end{align*}
$$

$$
\text { 4. ESTIMATION OF V(y } \left.{ }_{\mathrm{p}}\right)
$$

Let

$$
R_{0}^{2}=(A-\hat{P B})^{\prime}(A-\hat{P B}),
$$

which reduces to

$$
R_{0}^{2}=A^{\prime}\left[I-P\left(P^{\prime} P\right)^{-1} P^{\prime}\right] A
$$

and it can be shown [2] that

$$
E_{1}\left(R_{o}^{2}\right)=(n-3) \sigma_{e}^{2}
$$

Moreover,

$$
E\left(R_{o}^{2}\right)=(n-3) \sigma_{e}^{2}
$$

Therefore, an unbiased estimator $\hat{\sigma}_{\mathrm{e}}^{2}$ of σ_{e}^{2} is $R_{o}^{2} /(n-3)$. Next, we let

$$
\hat{\beta}_{n}^{2} \equiv \hat{\beta}_{3}^{2}-v\left(\hat{\beta}_{3}\right),
$$

where $v\left(\hat{\beta}_{3}\right)$ represents an unbiased estimator of $V_{1}\left(\hat{\beta}_{3}\right)$. Since $D_{1}(\hat{B})=\sigma_{e}^{2}\left(P^{\prime} P\right)^{-1}$ we have

$$
\hat{D}_{1}(\hat{B})=\hat{\sigma}_{e}^{2}\left(P^{\prime} P\right)^{-1} \equiv \hat{\sigma}_{e}^{2}\left[c_{i j}\right]
$$

Then the element v_{33} in the $(3,3)$ position of $\hat{D}_{1}(\hat{B})$ is

$$
\begin{align*}
v_{33} & =\hat{\sigma}_{e}^{2} c_{33} \\
& =c_{33} R_{o}^{2} /(n-3) . \tag{4.1}
\end{align*}
$$

We now note that

$$
\hat{\beta}_{3}^{2}=\hat{\beta}_{3}^{2}-c_{33} R_{o}^{2} /(n-3)
$$

and

$$
\begin{aligned}
E_{1}\left(\hat{\beta}_{3}^{2}\right) & =E_{1}\left(\hat{\beta}_{3}^{2}\right)-\sigma_{e}^{2} c_{33} \\
& =E_{1}\left(\hat{\beta}_{3}^{2}\right)-V_{1}\left(\hat{\beta}_{3}\right) \\
& =\left[E_{1}\left(\hat{\beta}_{3}\right)\right]^{2}=\beta_{3}^{2}
\end{aligned}
$$

which establishes that

$$
\begin{equation*}
\hat{\beta}_{3}^{2} \equiv \hat{\beta}_{3}^{2}-c_{33} \mathrm{E}_{\mathrm{o}}^{2} /(\mathrm{n}-3) \tag{4.2}
\end{equation*}
$$

is an unbiased estimator of β_{3}^{2}.
To find an unbiased estimator of $V\left(s_{x}^{2}\right)$, we proceed as follows. Since

$$
\begin{aligned}
s_{x}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& =\frac{n}{n-1} m_{2}
\end{aligned}
$$

where m_{2} is the second moment about the sample mean, we can write the variance of s_{x}^{2} in terms of the cumulants of x, [3].

$$
\begin{align*}
\mathrm{V}\left(\mathrm{~s}_{\mathrm{x}}^{2}\right) & =\left(\frac{\mathrm{n}}{\mathrm{n}-1}\right)^{2} \mathrm{~V}\left(\mathrm{~m}_{2}\right) \\
& =\frac{\kappa_{4}}{\mathrm{n}}+\frac{2 \kappa_{2}^{2}}{\mathrm{n}-1} \tag{4.3}
\end{align*}
$$

where k_{r} is the r th cumulant of x. Using the theory of symmetric functions [3], we recall that the k-statistic of order k_{r}, which is a function of the observations, is an unbiased estimator of κ_{r} for all integers r. Moreover, the ℓ-statistic (or polykay) ℓ_{22} has the property $E\left(\ell_{22}\right)=\kappa_{2} \cdot \kappa_{2}=\kappa_{2}^{2}$, where ℓ_{22} is also a function of observations only. Hence. if we let

$$
\begin{align*}
\hat{\mathrm{V}}\left(\mathrm{~s}_{\mathrm{x}}^{2}\right) \equiv & \mathrm{k}_{4} / \mathrm{n} \\
& +2 \ell_{22} /(\mathrm{n}-1) \tag{4.4}
\end{align*}
$$

we get, from the tables of k - statistics,

$$
\begin{equation*}
\hat{\mathrm{V}}\left(\mathrm{~s}_{\mathrm{x}}^{2}\right)=\frac{1}{\mathrm{n}+1}\left[\frac{\mathrm{n}-1}{\mathrm{n}} \mathrm{k}_{4}+2 \mathrm{k}_{2}^{2}\right] \tag{4.5}
\end{equation*}
$$

where $k_{2}=f\left(t_{1}, t_{2}\right), k_{4}=g\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ and $t_{j}=\sum_{i=1}^{n} x_{i}^{j}$.

Finally, it follows that

$$
\begin{align*}
\hat{V}\left(\bar{y}_{p}\right)= & \frac{1}{n-3} R_{o}^{2}\left[L^{\prime}\left(P^{\prime} P\right)^{-1} L\right] \\
& +\left(\hat{\beta}_{3}^{2}-\frac{R_{o}^{2}}{n-3} c_{33}\right) \hat{V}\left(s_{x}^{2}\right) \tag{4.6}
\end{align*}
$$

is an unbiased estimator of $V\left(\bar{y}_{p}\right)$ determined by the observed sample values y_{1}, \ldots, y_{n} and x_{1}, \ldots, x_{n} 。

REFERENCES

1. Cochran, W.G. (1963) Sampling Techniques, 2nd edition, John Wiley and Sons, New York.
2. Hansen, M.H., Hururitz, W.M. and Hadow, W.G. (1953) Sample Survey Methods and Theory, Vol. II, John Wiley, New York.
3. Kenda11, M.G. and Stuart, A. (1969) "The Advanced Theory of Statistics," Vol I, 3rd edition, Hafner Publishing Company, New York.
4. Rao, C.R. (1973) "Linear Statistical Inference and Its Applications," 2nd edition, John Wiley \& Sons, Inc., New York.
5. Sukhatme, P.V. and Sukhatme, B.V. (1970) "Sampling Theory of Surveys With Applications", Iowa State University Press, Ames, Iowa.
$\overline{\text { FThis problem was initially suggested by the }}$ late H.O. Hartly.
