ESTIMATING THE VARIANCES OF PRICE INDEXES BY HALF SAMPLING: WHY IT WORKS

Phillip S. Kott,

The Bureauv of Labor Statistics (BLS)
estimates Laspyres price indexes for a
multitude of commodity and product
classes using complex ratio formulae
and, where possible, probability propor-
tionate to size (PPS) sampling designs.
Half sampling techniques are employed to
estimate the variances of these indexes.
There is little proof, however, that
these methods produce accurate measures
of sampling variances. This paper uses
superpopulation models to provide formal
analysis and support of BLS variance
estimation procedures.

The statistical literature, of
course, is not mute on the subject.
McCarthy (1966) introduces the concept
of balanced half sample variance esti-
mation and shows that it is exact for
linear estimators with simple random
sampling within strata. A host of
empirical papers study the use of
McCarthy's techniques for measuring the
variance of ratio estimators under the
same sampling design. These include
Frankel (1971), Kish and Frankel (1974),
Lemeshow and Levy (1978) and many
others.,

A formal analysis of complex esti-
mators is provided by Kreuski and Rso
(1981), who show that balanced half
sample variance estimation has desired
properties as the number of strata ap-
proaches infinity. OFf more practical
interest is their analysis when the num-
ber of strata is finite. Krewski and
Rao use a superpopulation model to
analyze the variance estimation of ratio
estimators again with simple random
sampling within strata (see also 1979).
Their superpopulation work differs from
the analysis presented here. It is more
Bayesian and is limited to the combined
ratio estimator with simple random
sampling within strata. 1In addition,
Krewski and Rao specify random variables
in a way that leads to some misleading
results when applied to price index
estimators. Nevertheless, a special
case of their results are comparable to
a special case of the results found
here.

1. INTRODUCTION
BLS designs its sampling procedures
to facilitate half sample variance cal-

culations. When the price index for a
particular population of commodities (or
products) is desired, the population is
first stratified, usually by geograph-
ical region, and then tuwo primary
sampling units are chosen from each
stratum through some form of PPS
sampling. In order to introduce the
concept of a superpopulation model in
the most straightforuard mannher, ue
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begin in Section 2 with a price index
for a homogenous population of com-
modities that is estimated based on a

without replacement PPS sample of two

commodity units.

We extend this simple analysis tp
subsampling in Section 3 and to strat-
ified populations in Section 4. Proba-
bility samples are drawn with what are
assumed to be optimal measures of size
in the first four sections. As a
result, thé index estimators have a
linear form not much different from that
in the classical half sampling litera-
ture (see McCarthy). Nevertheless,
since sampling is proportionate to size,
half sample variance estimators are not
in general unbiased relative to the
sampling design. This is where the
superpopulation model comes in: these
variance estimators are shoun to be
nearly model-unbiased ("nearly" becaus?
a finite population correction factor is
omitted).

In Section 5, the assumption of op-
timal measures of size in PPS sampling
is dropped. This forces the index es-
timator into ratio form. Arbitrary hslf
sample variance estimators are shown to
be nearly model-unbiased for a separate
ratio estimator if and only if the
superpopulation model is extended to
include another random variable. A
direct estimator of the sampling vari-
ance is introduced and shown to be more
model-efficient than a "fully balanced™
half sample variance estimator. In
Section 6, a direct variance estimator
(what Krewski and Rao call the "linear-
ization estimator") proves to be
model-biased downward for a combined
ratio estimator when the number of
strata is small or a few strata are
relatively large. In addition, the
fully balanced half sample variance
estimator turns out also to be model--
biased downward, but less so and only
wuhen the strata are not of equal size.

2. THE HORVITZ-THOMPSON ESTIMATOR
AND PPS SAMPLING
The simplest type of price index is a
long term relative for a population of N
units (commogities or products):
RY =(LPfQ®y/ (TP Q})=Ib;x;,
where P§ is the price of unit i at
time s,
Q% is the quantity of i
' (the base period),
b; =P$@%/LP/Q, is i's base

at O

expendjture (revenue) share,
and x;=P?/P; is i's price trend.
Suppose we wWish to estimate this
relative based on a (probability)
sample, S, of two units. Godambe (1955)



shouws that ne linear, unblased esti-
mator, R a;x.» wuhere E(R®)= =RY, exists
with munlmum variance for all possible
values of the x; (price trends). Hou
then can the "best" estimation strategy
be determined?

Godambe suggests that the x; be
treated as independent, identlcally dis-
tributed random variables from a
superpo pulation with mean uy and vari-
ance g,. It is then possible to find
the |near, sampling-unbiased estimator
(EgIR®-RY¥)=0) with the least model-~-
expected sampling variance. It is the
Horvitz-Thompson (HT) estimator in
mean—gfaratlos form:

=lb;x;s;/E(s;)=2xs;/2, (2.1
uhere s is the number of times unit i
is in the sample, and
E(s;)=E(s;*)=2b;. (2.2)
(Godambe never said so explicitly, but
it is necessary to assume that no unit
expenditure share, b., is greater than
172.)

Equation (2.2) is satisfied by many
different "without replacement"™ PPS
sampling designs. Perhaps the simplest
to execute is systematic PPS sampling
Wwith the b; as the measures of size.
This deSIgn coupled with the HT esti-
mator form a strategy that is very pop-
vlar at BLS. Readers unfamiliar with
systematic PPS sampling are referred to
Raj (1968), pp. 51-2.

The model-expected sampling vari-
ance of the HT estimator under any
sampllng plgn obeylng (% 2) is

E xVarg ( - g‘(1/2 -ib; (2.3)

Unless we want to dlstlnquvsh bet-
ween different samples, we will assume
that samples consist of the first two
enumerated units. Let us suppose fur-
ther that unit 1 is in half sample A and
vunit 2 in B. The estimator of variance
from either half sample,is

Var (R® ls,-s,-1)—(x,-R*)
-(x,-xs) /4
=Virg(RE] ),

Notlce that the model _expectation
of VarA(R Isy=s,=1) is 9x/2. Since
this is true for every pair of sampled
units, we conc*ude that

E [VarA(R‘)l =g/ (2.4)
What is missing form VarA(') to make it
model-unbiased is a finite population
correction factor (1-2Lb;?)

Let us examine the assumptions of
our superpopulation model to see which
are really needed for our results, It
is certainly necessary for the x: to

have a common mean. If, in addition, we
assumed only that the price trends have
a common covariance (c), then one could
show that
EyEg [Varg (R®) 1= Z(b -2b,
and
[VarA(R‘)l Ib: (g, -¢c)r2.
T%e HT estimator and without replace-

ment PPS sample design may not be opti-
mal in this case. Nevertheless, the

2

gk —err2
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model expectation of the variance esti-
mator has nearly no sampling bias (a
ueaker condition than near model-un-
biasedness). The finite population cor-
rection factor becomes a complicated
expression which is left to the reader
to derive.

If the population is large enough
and the shares small enough that [b is
nearly zero, then we can ignore finite
population correction entirely. This is
fortunate because the relative sizes of
the g; are unknoun. Too keep the nota-
tion in this paper as simple as pos-
sible, we will assume all gé =9: from
now on. This will also allow us to
speak of nearly model-unbiased variance
estimators rather than estimators with
nearly no model expected sampling
biases.

3. SUBSAMPLING

Finite population correction becomes
even more complicated when there is a
multistage sampling design; in which
case, the units discussed above are only
primary sampling units (clusters of
actual pricing units), and the x| are
themselves HT estimators of price rela-
tives. To simplify the expostion, let
Ui as%ume that eaﬁp X3 ? ; :

/P8 4 by =P /zp° Qs » and M
the number of prIC|ﬁg unlts in cluster
i. Suppose that tuo units are sub-
sampled from each sampled cluster so

that
-Ib £hb;;
and thu s,4 s /4,
where s.; is 1 if unit ij is
sample of cluster i, and
E(s,.l )= E(s,‘J )=2b; i

We can nouw borrou a devise from
Scott and Smith (1969) and consider a
superpopulation model in which the x::
within each i are independent random
variables with mean u; and variance g,.
These means, however, are also indepen-
dent random variables with a common
mean, Uy, and variance, 9#. Thus with
respect to all the superpopulation vari-
ables, the price trends of units from
within the same cluster have_a corre-
lation coeffient of gT/(g:+g,).

We can then show that the model~-
expected samgllng variance of is
E,Varg (R®) 9, (1764 -fb, fbu ) o+
gic1s2 —Zb‘).
while the model- expectatlon of the half
sample variance estimator based on the
first stage of sampling alone, given
54455425621 =65 =1, is
" " arA(k [ [(X“ +xﬂ)/2 - Rt]
'g‘/é + gg /2.

If we assume thattb 2 {s nearly zero,
then VgrA(‘) is nearly model~unbiased.
The extension of this result to more

complicated subsampling schemes is
straightforusrd.

in the sub-



4. STRATIFIED SAMPLING

The BLS does not estimate many price
relative based on only tuo primary PPS
sampling units. Most of the Bureau's
index calculations involve complex
estimation formulae, 1In addition,
samples are often chosen with suboptimal
measures of size. Let us ease into the
subject slowly. Suppose we have a popu-
lation of L strata with N, units in each
each stratum k. Let ki denote the ith
unit in the kth stratum. The long term
relative gf the population is

R =Tb, Eb,: X i
where by =P& Q2 /ZPS Q% ,
and by =IP,0 Q.0 /LT PR% Q% .

Suppose two units from each stratum
are chosen via without replacement PPS
sampling. Let the x,; be independent
random_variables with mean Up and vari-

ance g,., If

K §t=zbkka| Sk.‘/Zr
then Ae a Ny o o
ExVarg (R™)=Ib, (1/2 -Tby dg,.

An arbitrary half sample estimator
of the sampling varjance is’
VQrA(EtI')=(anx.1—étl')
=Ib*txyy =xyy ) 2/4 + 4.2)

% bkbx(xk1—xk2)(x1,-x11)/6.
While this ¢stimator is nearly model~--
unbiased when all Iby;’g> are nearly
zero, more efficient nearly model--
unbiased estimators may be derived by
averaging together variance estimators
based on different half samples. (In
this paper, model efficiency will be
measured by (the inverse of) model varij-
ance.,, Alternatives measures, such as
Ex[(Var, (R€]+)-var (R®))?], have been
considered by the author. They do not
sffect the resuvlts in the sequel.)

McCarthy (1966) shous that an average
of half sample variance estimators is
most efficient when the set of hal¥f
samples on which they are based is
orthogonally balanced (pseudorepli-
cation). A set, T, of L'2L half samples
with this property can be constructed
from a L'x L matrix of pluses and
minuses with orthogonal columns; a plus
(minus) in the jth row and kth column of
the matrix would place unit k4 (k2) in
half sample j. See McCarthy for details
on this procedure.

When variance estimators based on
orthogonally balanced half samples are
averaged, the cross terms (the byby,
kX1),0f £4.2) vanish:

Varg (R4 -)=Lvar (R*] /L

1¢T, 2 2
=zbk(XK1-xk2) 74, (4.3)

decreasing the model variance of the
resulting gorthogonally balanced half
sample variance estimator. Notice that
in the present context of estimating the
sampling variance of RY in (4.1), (4.3)
can be calculated directly without an
orthogonal matrix.

(4.1)
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5. SUBOPTIMAL MEASURES OF SI1ZE

Quite often BLS does not draw PPS
samples wWwith perfect measures of size.
In the Producer Price Index (PPI) pro-
gram, base period revenue shares are
frequently approximated using employment
data. In the Consumer Price Index (CPI)
program, two related but different
strata are sometimes collapsed into a
single "stratum™ for variance calcu-
lation purposes. In both programs,
short term relatives comparing price
levels of adjacent periods in time, say
periods t and t-1, are based on samples
drawn in the base period (0) rather than
the reference period (t-1).

5.1 The Single Stratum Case
Return to the case of two
units from a single stratum.
P?Q? » and suppose that a set
are used as measures of size
PPS sample. Then
RE=(ID;v;x;)7(ID;v;),

§t=(fv;x;s;)/£v;s;).

where v;=B;/D,, 2 -

and Eg (s;)=E.(s; )=2D;/ZD£.

We again let the x; be independent
identically distributed random vari-

Notice that the model expect-

is uy and its model vari-

ance is Ib:*g3. Let us assume the

model standard deviation, Jb;* g4, is

nearly zero so that RY can be treated

as nearly uy,. This assumption will be

weakened considerably in Section 6.

Ratio estimators like Rt are not
sampling-unbiased. MWe ignore this fact
and call what are properly sampling mean
squared errors "sampling variances"
throughout this paper.

Note that A
EXESI(E‘ ~u, )P I=EE, L (R® -y, |-) ],
It is a,simple matter tozshgu

Var, (R®Is; =s;=1)=(1+F;, g /2,
where F,:=(v;=v:)/(v +v7).

We uili not (yet) take the sampling
expectation of the RHS of (5.1), 1In-
stead, consider this. Suppose there is
a sampling variance estimator, V, with a
model expectation nearly equal,to the
conditional model variance of R for
every sample; i.e.,

Er(5|§;=5'=1)=(1+fr1)9:/2. Vixj. (5.2)
Khile V might not be a nearly model un-
biased estimator of the sampling vari-
ance, its model expecta&:on.has nearly
no sampling bias: EgE,(Y]*)=
E:E*l(gt-u,l-)‘]=E,E,[(Re-u‘)1].

sampled
tet B;=
of D;‘;‘ B.
to draw a

and

and
ables.
ation of R

(5.1)

We now must find a ¥ that obeys
(;.2) for all possible samples.
Var,a(-) doesn't; neither does Varg(-);
houever, the average of these tuwo does:
ExVar g (R *)=E, [ (x,~ R®) ™) .
=(1-2f\1+f11‘)gx/2. (5.3)
and Ay .. 2
bUE,Vars(R I-)=(1+2f,1+f11 Jg,72; (5.4)

A A _ PR
E‘(VarA+VarB)/2-(1+f‘1 )g‘/Z. (5.5)



This last variance estimator can be
computeq dlrectly-
Varg (R t) )= (1+fn_)(x,-x )/4.

An alternatlve approach to analyzing
the three variance estimators in this
case involves treating the v: as inde-
pendent, identically distribbted random
variables. Obviously, this treatment is
not applicable to "collapsed strata.”
The specification in such cases and the
extension -6F the subsequent analysis are
left to thé reader.

It is easy to see that under the
new model the ¥;: have mean zero and
identical variances, g, but are not
independent. The model-expected
sampling variance of Rtis
1+ g{)g 2/2, and the three half sample
estlmators above are x,v-unbiased. The
presence of an extra 2f;; term in (5.3)
and (5.4) make the model variances of
VgrA(-) and Var_(-) larger than that of
Varg(+). (The model variances need no
longer be conditional on the sample,
because the v. sre identically
distributed).

5.2 The Separate Ratio Estimator
Suppose the population is divided
into L strata as in Section 4, but now

PPS samples of two units from each

stratum are draun US|ng some D, - in
place of BK|-PQ Qk . In this sub-
section, we assume that while at least

some of the unit base period expen-
ditures (the By;) are unknown, all the
strata base period expenditures, the B,=
¥Bx;» are knoun.

The long term relative can be ex-
pressed as,

=Tb, (ka,Qk,)/(ka Q)= ZkaK,

uhere by =By /IBg as in Section 4.

The separate ratio estimator of R
based on the sampling scheme discussed
abovgtis

Re=Ibp(Txy,viisk, 27(Lviiski)e
where vy, =By /Dy,
sy; =1 iFf ki is in the sample of
units from stratum k, and

Es (sy; )=E(s,;})=2D,;/¥D, .

For our superpopulation model, let
the x, and the vy, be independent ran-
dom variables with repective feans and
variances Uyk: g: and uyg» uvkg,*. This
is by no means the most general model
that can be used to analyze half sample
variance estimation techniques. It is
possible to allow each stratum to\ex—
higit its ouwn variances (i.e., gy and
9,x) and retain the bulk of the sub-

sequent analysis., Nevertheless, this
simple model avoids much cumbersome and
expositionally useless notation. The
extensions to more general forms will be
left to the interested reader.

As in the last section, we will
assume that for each stratum k,
fby g, is nearly zero (by; =By; /B).
Consequently, RY is nearly fdku,k.
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The mgdel expected samplang vari-
ance of R 's

Eyv Vag(R )—2bk(1+g; )g‘/2
uhere ft‘("n sz)/(\lk| +Vk1)'
The estimator of this variance
half sample A, the half sample
the xy y I8 a2
VarA(RsI ¥Y=(Tby Xy -R,)
-Zbk(1 fk) (X g =Xg2 ) /‘i
+K%bkbl(1 ‘fk)(1 Fy )X =X ) (xy —x32 )74,

It is easy to see that this estimator
is model unbiased. Nevertheless, other
model unbiased half sample estimators
exist with less model variance.

An average of fully balanced half
sample estimators, i.e., not only are
the half samples orthogonally balanced
but each sampled unit is in exactly half
of the half samples, will result in the
follouln% estlmator'

VarF(R,l )=Ib, (1+f )(xk1-xkz) /6 +
Zbkblfk'fl(x\“\ -XK'L)(X“ -X 1)/4.
For a set of L' samples to be fully
balanced, L' must exceed L. When L' is a
multiple of 4, it is always possible to
construct a fully balanced orthogonal
matrix.

The fully balanced half sample
variance estimator has less model vari-
ance that any other combination of half
sample estimators. Nevertheless, there
is a nearly model unbiased sampling
variance estimator with less model
varlance 2
VarD(Rsl ‘)= Zbk(1+fk)(xk1 “Xy2) Z4. (5.6)
We will call this the glgggg half sample
variance estimator of Rs.

based on
with all

5.3 An Introduction to the Combined

Ratio Estimator

In the previous subsection, ue
assume that the stratum base period
expenditures, the by, are known and
can be used to estimate the long term
relative. Quite often this is not the
case. If the by were estimated vusing
dats from the sample,

bk=DyIvki sy; 7 (LDRL vy si; )s

the long term relative estimator would
be:\ A

teTb R

“=(zD WIXni Vi 54, )7 CED Tvg; sy )
Equation (5.7) defines the combined
ratio estimator in its purest form.

In actual practice, many price
index estimators employ the principles
of both separate and combined ratio
estimation. While we will not deal with
such estimators here, we can be confi-
dent that the properties of variance
in this paper ex-
index estimators.

(5.7)

estimation discussed
tend to more complex

6. THE COMBINED RATIO ESTIMATOR
The combined ratio estimator in
és .7) can be re-expressed as
"(de{xk‘vh Sy )/7(Td,Tv Sy: )
where vh =Vl /Uy »
and d, =D, Uykg /LD uyy +

(6.1)



Let the x,; and the v, be random
variables with the same properties as in
Section 5. In addition, let the stratum
price trend means, the v,y ., be indepen-
dent random variables uwith mean vy, and
variance g7.

To help detemine when a8 sampling
variance estimator is nearly model--
unbiased, we Will employ three smallness
assumptlons. These are listed below:?

Al def(§,+g,)(1+g $)20 for all k;
A2. 1+97)Ey [(delvk -1 130, j>2;
A3, gv.(g§fg’)2d 3 z0,

Assumption A1, a reuwording of our
standard nearness assumption, is suffi-
cient to ignore finite population cor-
rection. Assumption A2 allous us to
expand ratios by a Taylor series and
then truncate higher order terms. MWhen
dy =1, Assumptlons A1 and A2 imply
E,[Zby; g,l 20, the weaker nearness
assumptlon promised last section.
Assumption A3 will be dropped in Sub-
section 6.2. Nevertheless, uhen the
number of strata is large and each
stratum share is relatively small,
assumption is very reasonable.

Notice that when all the dy are
equal, Assumption A3 truncates terms of
order L™ . When A3 is dropped, houever,
Assumption A2 does not simply allow the
inclusion all L™ terms while trun-
cating higher order terms. It also
ellmlnates expressions like
E v -1)3/0%

the

6.1 The Case When Assumption A3 jis Valid

Let us begin this subsectlon by
showing that the relative R is not
nearly uyx under Assumptlon A1. While
E*’Vu(Rt) Uy » Varx U(R )>de gy @
value potentlally too large to
ignore.

On the other hand, if uwe take the
expectation and variance of R* with
respect to the xk, and vy, only, uwe have
E v (R? ) deuxk. uhlle
E,v [(R -id u,k) » and
Ey v,s l(R —R%)(R‘—fdku,k)l are both
nearly zero under A1 and A2.

One can now employ all three assump-
tions to determine the model-expected
sampling variance of the combined ratio
estimator:?

E,V‘,Vans(Rc) de (1+gv*)g,/2 +
Zd*g ,g?/z. (6.2)

An arbitary half sample estimator is
nearly model-unbiased under Assumptions
A1-A3, ' The average of orthogonally bal-
anced half samples produces a variance
estimator with the least model variance
among all possible averages of hal¥
sample estlmators'

Var (REI-)=Td [vk,(x“ ~Tdpu«g ) -
(qu_ thU ‘)l /4

There is a more direct way to esti-
mate the sampling variance of the com-~-
bined ratio estimator that is nearly
model-~unbiased under A1-A3 and has as
little model variance as VSro(').

(6.3)
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A
Replace Ldyu,x in (6.3) by RY, the v}
by vki Zuyy» and the dk by
Dkka/[zDh(Vhi +Vk1)/2] A
Var, (RT1-)=(ZD,? [ver (i, Re) - €6.4)

vn(xh ‘R )‘ /") X
(Z'Dh[ Vrt +v RI/Zl) .

The direct variance estimator in
(6.4) can be shoun to be identical to
what Krewski and Rao call the "linear-
ization estimator™ and what Frankel
calls the "Jaylor series estimator."™
The near model-unbiasedness of this
estimator depends very much on Assump-
tion A3, as we shall see in the next
subsection.

6.2 The General Csse

In this subsection we will abandon
Assumption A3 and discover that uwhile
arbitrary half sample estimators and
balanced half sample estimators remain
nearly model-unbiased when the strata
shares are equal, the direct variance
estimator in (6.4) is biased dounuward.

After some tedious calculations,
one can express the model~expected
sampling varlance of ! as a
Exv,uva"‘s(R )'[:dk‘ZZd"’(de) ]gv*g-r/z +

lde/2(1+g *) ngg\,¢+3/‘c(2dk) QV: ]9:-

Also after some work, it can be shoun
that

E,H,UVarA(RCI )— E,(v,uVars(R ) +

(¢gd,H? Zdﬁ)g gy - (6.5)
From (6.5) and Assumptlon At, we can
conclude that an arbitrary half sample
variance estimator is nearly model--
unbiased (model-biased downward) if all
the strata shares, the by, are (not)
equal.

Under Assumptions A1-A3, the average
of orthogonally balanced half sample
estimators minimizes the model variance.
When A3 is dropped, however, full bal-
ance produces an estimator with a
smaller model variance.

It remains to shouw that VarD(~) is
not modﬁl Uleased. In fact,

E Varg(RSl-)2_E Var (RS +
%, 0 DiRe X9 [
- 14Td2-(Zd, )"]9,,,.9"/4]
This sampling variance estlmator is
model~biased downward even when all
the strata shares are equal.

6.3 The Krewski-Rao Result

Krewski and Rao (1979 and 1981)
restrict their attention to simple ran-
dom sampling with replacement. In addi-
tion, they assume that the v,; have
Gamma dlstr|bug|ons, and the x«i have
variances of 9,¥g9, V. v 0Lt<2. Conse-
quently, the v,; and the x,; are not
independent when tX2. Constrast this

with our analysis, in which the x; and
the v, are always assumed to be inde-
pendent. Krewski and Rao's exact

results conicide with our approximations
only when the xy;, have variances equal
to g,+g; and the strata shares are all
equal.



we made a number of
the xx; and the vy, in
order to simplify the calcvulations and
the terminology. The greater model bias
(or model-expected sampling bias) and
increased model efficiency of the direct
variance estimator relative to the fully
balanced variance estimator do not
depend on most of these assumptions,
only on the independence of the xy and
Vi - The relative bias and efficiency
of the two variance estimators are not
invariant under Krewski and Rao's model,
however, because of a hypothesized de-
pendency betueen the vy, and xg;, . This
relationship between the random vari-
ables, while reasonable for many ap-
plications, is inappropriate for the
study of price index estimators.

In this paper,
assumptions about

7. SUMMARY
Let us review the major results of this
paper:

1. Under appropriate superpopulation
models, half sample techniques produce
nearly model-unbiased estimators of the
sampling variance of price indexes;
"nearly," because these estimators are
subject to finite population correction.

2. The finite population correction
factor depends on the stipulations of
the superpopulation model. Even under
the simplest of models, the factor is
ambiguous in the presence of sub-
sampling. When samples are drawn uwith
suboptimal measures of size, it is con-
venient to ignore finite population cor-
rection entirely.

3. For most price relative (index)
estimates, it is possible to produce a
model efficient, nearly model-unbiased
sampling variance estimator directly
without using an orthogonal matrix. The
exception is when the stratum expendi-
ture shares are unknown, and either the
number of strata is small or a few
stratum shares are relatively large
(i.e.,» when Tb,® can not be ignored).

4, I¥ balanced sampling is necessary to
produce a variance estimator that is
less model-biased than the direct es-

timator, then full balance, where each
sampled unit is in half of the half
samples is more efficient than simple

orthogonal balance.

5. The fully balanced half sample vari-
ance estimator is nearly model-unbiased
for the combined ratio estimator when
the strata expenditure shares are equal;
otheruwise, it has a tendency to be

model-biased downward, but less so than
the direct half sample variance esti-
mator.
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