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I. ~ ~ O N  5. 
This paper discusses how to present the sample Wide range (W)-the statistics for which the 

variance for the data from the National Health measure for a single individual for a period of 
Interview Survey (NHIS) and includes some details reference will range from 0 to a number in excess 
of the polynomial used to represent the NHIS of 5, for instance, the number of days of bed 
sample variance points estimated by balanced half 
samples (BHS) method. 

~he current method has been used since the 
inception of the NHIS in 1958. The Current 
Population Survey (Edelman, 1967) and National 
Survey of Family Growth have also been using the 
same technique to present the sample variance 
points derived by Keyfitz procedures and BHS, 
respectively. 

The NHIS procedure of variance presentation has 
never been organized in an understandable manner. 
Pefnaps this is partly because there are no 
satisfactory answers to some of the assumptions 
made for the adoption of the method. The main 
purpose of this paper is to clarify crucial steps 
in presenting the variances of the NHIS data. No 
attempt is made to address the validity of the 
current methods. 

Section 2 discusses how the NHIS variables 
with similar characteristics are grouped. 
Section 3 includes the estimation of sample 
variances for the items in each group by BHS 
method. Section 4 describes how to fit a curve 
to the variance points estimated in section 3. 
The estimation of the coefficients for the curve 
is presented in section 5. Finally, section 6 
includes the conments on this method and other 
potential alternatives to the BHS method. 

2. ~PING OF NKIS VARIABLES 
The variables in the NHIS publications are 

based on the complex sample survey and weighted 
four times to estimate the U. S. civilian 
noninstitutionalized population. The sample 
design and ~eighting procedures are not discussed 
in this paper. 
~hen a sample is taken by cluster sampling and 

persons in the cluster are often correlated, it 
would be desirable from the previous experience 
to isolate certain classes of variables which 
have the similar score of intracluster 
correlation. 

Rather, NHIS variables are classified according 
to four main characteristics, e.g., the range of 
variables, recall period, the length of data 
collection period, and the type of variables. 
These are briefly described below: 

~he three range s of variables 
Narrow range (N) -the statistics which estimate 
population attributes, for instance, the number 
of persons in a particular income group, and 
statistics for which the measure for .a single 
individual for a specified period of reference 
period is usually either 0 or I, on occasion may 
take on the value 2, and rarely 3. 
~edium Range (M) -the statistics for which the 
measure for a single individual for a period of 
reference will rarely lie outside the range 0 to 

disability experienced during the year. 
Four reference period@ 

Type A-statistics on prevalence or incidence 
for ~i~_ich the period of reference in the 
questionnaire is 12 months. 
Type B- incidence type statistics for which the 

period of reference in the question is 2 weeks 
Type C- statistics for which the reference 

period in the questionnaire is 6 months. 
Type D-statistics for which the refernce period 
in the questionnaire is 3 months. 

Two lengths of data collection periods 
The period of data Collection is usually I or 4 

quarters. These are represented with the number 
I or 4. ~he data from 8 or 12 quarters are often 
combined when the size of the sample from four 
quarters is too small to have meaningful data 
analysis. 

Two classes of variables 
A set of cul-ves for relative standard errors 
(RSE) of aggregates (A) and percentages (P) are 
COmXmLly presented in the NHIS publication. RSE's 
of other statistics, e.g., ratios, and difference 
between two means, ratios, or percents, can be 
approximated from t~D or more of such curves 
usually assuming that the covariance terms can 
be ignored. 
Thus, the data from the NHIS could be classified 
into at least one of 48 possible types of 
variables according to 2 types of estimates, 
2 different durations of data collection period, 
4 recall periods, and 3 ranges of variables. 

Table A illustrates the symbols that are most 
conmmnly used. For instance, A~ is used to 
represent the aggregate of 4 quarters data (A4), 
based on a two week recall (B) and of the narrow 
range (N). Similarly we can write symbols of 
percentages. For example, PIAW means the 
percentage from one quarter data (I~), based on a 
12 month recall (A), and of the wide range (W). 
Occasionally, one symbol represents more than one 
group of variables when these variables vary 
widely, e.g., A4~ is used to represent two 
different curves. One im for restricted activity 
and bed disability days, and the other is for 
work or school loss days as shown in Table B. 

3. VARIANCE ESTIMATION BY BAIANCED K~IF SAMPIES 
Two steps are applied to NHIS data in order to 

obtain a set of variance curves. First step is 
the derivation of relative variance by the 
balanced half sample (BHS) procedure. The second 
step is to fit a curve to a set of points 
representing such relative variances. This 
section discusses the first step of 
method. The second step will be presented in the 
next section. 
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Table A 
Classification of NHIS Variables for aggregates* 

Recall Range of variable 
period N M W 

A (12 months) 

B (2 weeks) 

C (6 months) 

D (3 months) 

A4AN A4AM A4AW 

A4BN A4EM A4BW 

A4CN A4CM A4CXd 

A4DN A4EM A4DW 

N: Narrow range (0-I) ; M: Medium range (0-5) ; 
W: Wide range (0-5 or over);* Similarly for 
percentage and one quarter data by replacing the 
first letter and second number with P and I. 

All the NHIS sample PSU's are classified into 
one of the two types, self representing PSU's (SR 
PSU) and nonself representing PSU's (NSR PSU). 

Two or more SR PSU's are regrouped into a new 
SR PSU, and then each new SR PSU is divided into 
two pseudo PSU's by systematically assigning odd 
numbered segments (subunits of PSU) into one 
pseudo-PSU mad even mmnbered segments into the 
other pseudo-PSU. These t~ pseudo PSU's become 
a pair in a newly formed stratum. 

The NSR PSU's are paired so that the two are 
similar in size and characteristics. 

The main reason for pairing is that the pair 
thus formed reflects the stratum and the actual 
sampling procedures so that one can indirectly 
estimate an actaul sampling error through EHS 
procedures (McCarthy, 1966). The pairing of the 
pseudo-PSU's is accomplished independently for 
each of the four geographic regions (North-East, 
North-Central, South, and West). 149 pseudo 
strata each including two PSU's are summarized in 
another document (Schnack, 1974). 

149 pairs give 152 replicates based on the 
149 x 152 orthogonal matrix (Plackettand ~ ,  
1946). For each replicate, the original weights 
of individuals are newly ratio adjusted by the 60 
cell age-race-sex table of the Current Population 
Survey (Jones, 1976), so that the wight of an 
individual could be changed over replication. 
This might give better estimates for the 
population and reduce sample variance. 

Denote a sample estimate of X by x i from the 

ith balanced half sample, i=I .... ,152 
Population X is estimated by 

1 152 
= ~ x i (3.1) 

i 
152 

and the sample variance of x is given by 

v ~ ( ~ )  = 
1 152 

___ ~. (xi_ ~) 2 (3.2) 
152 z 

The size of the v~r(~) given in (3.2) depends 
on several factors in a practical situation. 
The most important factor is the difference 
between the ~ elements or two pseudo PSU's in a 

stratum, var(E) is directly related to this 
difference especially for a linear estimate. 

When one stratum included many elements o~ 
different sizes and only t~ elements are 
randomly taken, it may happen that the two 
elements do not represent the stratum well and 
hence might distort the magnitute of the stratum 
variance. On the other hand if the stratum 
included only a few elements of similar size and 
character, the two elements so selected would 
correctly reflect the variance of that stratum. 

4 ~ F~Tru~ 
The basic assumption made on the curve fitting 

is that the sample variance is a function of 
estimates and that this is the only factor 
producing the variance and not the differences in 
the estimates. 

Two main reasons for the use of this method are 
that fitting a curve to the variances provides 
the stability to these estimates and that there 
is not enough time nor money to compute variances 
for all items. In fact, if that could be done, 
it would be too messy and unstable to produce 
variances for users of data. 

let Xl, x2 ..... x k be a set of k ,sample 

estimates for k items from nl, n 2 ..... n k sample 

counts. ~he estimates are left unspecified. 
The NHIS variances of these estimates are 

derived by the EHS method. 
Let V(xl) , V(x2) ...... V(Xk) be the 

relative sample variances of x I , x 2 ..... x k. 

The relative sample variance is defined by 

°2 (xi) i=I ..... k (4.1) 
v(x i) = 

E2(x i) 

Now one may try to draw a curve to represent 
these k relative variances. Often tb.is is 
impossible when these k points are widely 
scattered around and hence no one curve may 
represent them all. If some evidences show the 
existence of fitting curve, we could find such 
polynomial. 

V may be considered as a decreasing function 
of the x i, e.g., for i=I ..... k, 

V(xi)= A + B/x i B > 0 (4.2) 

where A and B are regression coefficients. 
Edelman(19~7) gives various other alternative 

models and R ~ values for them. But only the model 
(4.2) enjoys some justifications for such use as 
illustrated in the two examples below. 

Suppose that a binomial sample of "a" clusters 
is randomly taken from "A" clusters, each 
containing M elementary units and denote the 
average per element by p, e.g., 

x X p =___ , let E(p )= P = and 

n N 

2 (1-f)P Q (M-I)p (p)= __ ___ (I + ] (4.3) 

N N 

(Cochran p.242), where Q = I-P ,f = a/A and 
is the intracluster correlation coefficient. 
The relative variance of p is, ignoring f, 
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V(p) = -( I+(M-I ) p) + ___I ( I+(M-I ) p) 

N 2 X N 

~ich is the form given in (4.2). 

Suppose that "a" first stage clusters are 
randomly taken from "A" clusters, a sample of 
"b" second stage clusters is also randomly taken 
from each of "a" first stage clusters and that 
each of '"o" second stage clusters included '~n" 
elementay units. Suppose that the sample is 
taken with replacement. Denote the total number 
of elementary units by n , e.g., n = abm, and 
the average number by p = x/n. we can write 
(Choi, 1981 ) 

2 PQ G o(p)= (1+_p 
2 

N N 

+ (G-H) ~ ) (4.5) 
I 

N 

where -G=abm(m -I), H= bin(bin - I), P l and P2 are 

the common intracluster correlation coefficients 
in the first and second stage clusters, 
respectively. 
We can also express it in the form of A+B/x, 
e.g., the relative variance of p is 

V(p)= - g + g 

N X 
G + (G-H) 

where g =(I +_ p2 
n n 

Pl ) 

(4.6) 

which also takes the same form of (4.2). 

This kind of arguments can be written in terms 
of design effects. 
Define, using the equation (4.5), the design 

2 
effects by Deff = ° (P) = g (4.7) 

PQ IN 

(4.6) can be written as -Deff /N + Deff /X 
that also takes the same form of (4.2) if Deff 
is independent of X. ~he function (4.2) is the 
only form among the equations that Edelman 
(1967) presented, which enjoys this type of 
justification. 

Consider the ith estimate p = x/y for the 
population P = X/Y where X is a subset of Y. 
Tomlin (I 974, p5) shows that the relative 
variance of p can be written as 

V(p)- V(X)- V(Y) (4.8) 

lhe variance of p can then, from the definition 
(4.2), be written by 

o2(p)_ B P(I-P) 
(4.9) 

Y 

The form of above equation (4.9) is the same 
as the usual form multiplied by B. Equation (4.2) 
is the only form that produces such a result. 

5 ~'rlMKTION (IF IHE R%RAMEIy/~ A AND B. 
There are many different ways to estimate 

regression coefficients depending on the various 
assumptions made on the regression model. In 
this section, the weighted least square method 

is used in order to reflect the 
heteroscedasticity of error terms in the model. 

Denote the relative variance by V(xi) of an 

estimate xi, i=I ..... k. First they are plotted 

to observe ~hether they can be represented by a 
curve and a few far outlying points, if any, are 
deleted, which are often caused by some erronous 
processing. 

Let (x i,V(x i)) for i=I ..... k be a set of 

pairs where x i could be aggregates, percents, 

or other estimates, lhe x. 's can be considered 
z 

as observable deterministic variables or random 
variables. 

V(xi) might vary with the unobservable random 

error e i which might include the errors of 

measurement and other unexplainable variables in 
(5. I) below. One may assume that the errors are 
uncorrelated but heteroscedastic. 

Under this situation, we may write 

V(xi)=f(xi) + e i i=I ..... k (5.1) 

where f(xi)= A+B/x i given in (4.2). 

Ordinary least Square (OLS) method is to 
minimize, 

k 
El = ~ (V(x i) - f(xi)) 2 (5.2) 

i 

let-Vi = V(x i) be the estimates of V(x i) from BHS 

method. To a certain extent, it may be possible 
that the heteroscedasticity of the model can be 

reflected by weighting L1 inversly to V i' e.g., 

k Vi - f(xi) 2 
le = ~ ( ) <5.3) 

i ~. 
l 

L2 is the sum of squares of the observed 
relative variance minus predicted relative 
variance divided by observed relative variance. 

The estimation can also be improved by 
iteration. Xhe minimization of L2 will give the 
initial estimates Ao and Bo, that will be used 
as initial values to the following iteration. 

Let L3 be t~he system to be repeatedly used to 
estimate Aj and Bj. The subscript j is for the 

jth time estimation. Start with Aoand Bo in 
^ 

f0(x i) to find the next estimates of % and B I 

in fl (xi) by minimizing L3, 

^ 

k V i - fj (xi) 
L3= [ ( 

i ~j_1(xi) 

 ere 
Bj -1 

+ 

x .  
1 

(5.4) 

B° 

, fj (xi)= Aj+ __J" 
x i 
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Only difference between (5.3) and (5.4) is that 
Vi in the denominator of (5.3) is replaced by 

fj_1(xi )- 

For the initial values A0 and B0, we solve 

aL2 = aL2= 0 (5.5) 

aA aB 
which gives A0 and B0. Similarly ~e may find 
Aj and Bj from 

aL3 = aL3 = 0 (5.6) 
_.-. .---- 

aA. aB. 
3 J 

k k k 
= (~ 1 )-I (~ Vi - B ~ I ) (5.7) 

J i f-~. i f---~. J i x i f j2 1 
3 -1 j -1 - 

k Vi k k Vi k 
(7. ) II )-(l__)I I I ) 
i xif~ i i ~2 i ~2. i Xi~_1 

.= - 3-I 3-I (5.8) 
3 ~k k k 

(I I )(I I )-(I I )2 
. . . . .  - 

i 3 ~2-I i x 2 ~2 i x ~2 
i 3-I i 3-I 

Observe that, if fj-1 is replaced by Vi in (5.7) 

and (5.8), these two systems give the initial 
values of A0 and B0. 

The results from (5.7) and (5,8) are 
repeatedly used for the next iteration until the 
predetermined conditions specified in (5.9) and 
(5.10) are satisfied, i.e., 

A j- A j_ I 

Aj 
< 0.01 (5.9) 

B j- B j_ I 

B °  

J 

< 0.01 (5.10) 

It has been proved that the roots always exist 
in NHIS situation. The iteration usually stops 
after about five times of repetition to meet 

these conditions. Let the final estimates be A 
^ 

and B. The relative variance can now be 
estimated by the curve 

V(x i)= A + B/x i (5.11) 

for aggregate x i without going back to the 

derivation. 
Fortran programs for the BHS procedures and 

curve fitting method are available at the 
National Center for Health Statistics. 

An estimate V is sometimes negative especially 
when x is large. In order to avoid such cases, 
one my "~gpose the condition 

V(xi)_> 0 or A >- B/x i (5.12) 

Often A is very small in NHIS situation. The 
relative variance can be approximated by 

V(x i)= B/x i 
Often ~ is used to measure the fitness of the 

curve to the data points. R 2 is defined by 

(~(xi) _ ~)2 
R2= i (5.13) 

k 
i~<xi) _ ~)2 

i 

where 

k 

= ____I [ ~(xi ) (5.14) 

k i 
R 2 is close to one when V(xi) is a good 

^ 

predictor of V(x i) and close to zero when 

V(xi) is poor predictor. 

Table B 
Estimates of A and B and cut-off (CP*) 
points for NHIS aggregate data (x). 

Symbol and Estimates of Parameters 
type of x year A B CP* 

A4AN-Pers0ns in .... '73 -0.000023 3,258.9 36 
any age-sex-color'79 -0.000022 3,377.5 38 
category#. '80 -0.000031 3,830.3 43 

A4BN-Acute ' 73 0.000208 52,761. I 588 
conditions. '79 0.000074 69,598.2 774 
Persons injured '80 0.000191 74,000.8 824 

A4BW-Restricted '73 0.000085 482,754.0 5,369 
activity and bed '79 0.000406 558,050.8 6,229 
disability days '80 0.000452 630,292.1 7,039 

A4BW-Work or '73 0.000104 303,506.0 3,376 
school loss days '79 -0.000135 350,808.0 3,892 

'80 0.000225 337,261.3 3,757 

A4BM-Physician @' 73 0.000029 85,139.6 946 
visits(P) or P'79 0.000011 117,187.2 1,302 
Dental visits D'79 0.000095 91,761.8 1,021 
(D). @'80 0.000070 106,516.3 I, 185 

A4CN-Short stay '73 0.000014 5,532.0 62 
hosp i tal ' 79 -0.000007 6,204.6 69 
discharges ' 80 0.000076 6,579.0 73 

A46W-Short stay '73 0.000519 98,041.8 I ,096 
hospital days '79 0.000168 130,704.6 I ,455 
for discharges '80 0.004483 111,371.8 I ,302 

# except for persons or total number in any 
age-sex-color category in population. This 
curve is also used for persons with activity 
limitation or with hospital episode. 

@ The data for P and D are combined. 
* 30 - Y A+B/CP X 100 . CP is the number of 

counts in thousands. 
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In each group of NHIS variables, there are 
many items due to the age-sex-race and 
socio-economic-health categories. A sample of 
about 1 0 0  items is randomly taken from 680 data 
items in a group. The RSE for each of these 
items is calculated by BHS. lhese 100 points of 
RSE's are used to draw a curve to represent the 
sample variance for the group. 

Let S.l be square roots of (5.11) multiplied by 

100, i.e., relative standard error in percent. 
~he estimates of A, B, and the cut-off points 

in thousands at 30% relative standard error 
are given in Table B for the aggregate data 
from 1973, 1979, and 1980 National Health 
Interview Surveys. Here only a sample of items 
is used to draw a curve for the group. The use 
of partial items rather than all items might 
have an impact on the curve and hence it my be 
necessary to have this impact reflected on the 
variance curve. 

• "~ze variance of the estimates A, B, and R 2 may 
be found by bootstrap method. 

The series 10 publication for NHIS data 
includes the RSE curve of S i for aggregates x i. 

Figure A shows the RSE of S i for the aggregate 

x. of short stay hospital days, A4(~, short 
l 

stay hospital discharges, A4(2~, and population 
characteritics, A4AN from 1980 NHIS. 
Now the relative standard error of an estimate x. 

1 

is obtained from the prediction curve in Figure A 
without going through the direct calculation for 
individual items. 

Relative variance of pi = xi/Y i (xiis subset of 

yi ) is, 

V(Pi)=V(xi) - V(y i) 

= B (1-Pi) (5.15) 

YiPi 

Denote square root of (5.15) by SI. S[ is RSE of 
I Pi" Series 10 publication also included S i 

curve for given percent Pi" Figure B shows P4AN 

curve for RES's of percents for population 
characteristics from 1980 5~IIS data. 

The figure shows RSE's on the vertical scale 
and the percentages on the horizontal scale. 
In the figure, each curve is based on a different 
base number of Yi in millions. 

The curve for four quarters data can be used 
for one quarter data when both are the same type 
of data based on the same recall period and ~ahen 
one quarter data is weighted up by the same 
weights as is the four quarter data. 

A new curve for one quarter data should be 
drawn even for the same type of data when the 
weights for one quarter data are different from 
those of four quarter data. For instence, the 
number of acute conditions, e.g., common cold, is 
estimated quarterly to observe the seasonal 
changes of incidences. In this case, the weights 
used for one quarter data are different from 
those used for four quarter data. Thus, the curve 
for one quarter data should be different from 
that for four quarters data ev~ for the same 

Fig.~e ̂  RSE of aggregate 
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acute condition. 
If all other conditions remain the same, a 

curve based on four quarters data may be used to 
deduce a curve, as a crude approximation, for the 
data from eight quarters or more assuming that 
total variance can be divided into 15% of between 
PSU' s and 85% of within PSU' s (Bryant, 1975). 

This method of curve fitting is a covenient 
procedure in smoothing the sample variances for a 
large number of items. ~hrough this method, it is 
a simple matter for the users of data to find 
the sample variance of the data. But the accuracy 
of the smoothing model is a major concern. In 
order to increase this accuracy, we can further 
consider two problems, e.g., estimation of more 
accurate variance points and finding a curve 
which better represents these points. 

When the data are based on a complex survey 
design, methods other than BHS procedure can also 
be considered to calculate the variance of data 
based on such complex sample surveys. Some of 
them are 1/near approximation, Jackknife method, 
and Bootstrap method. BHS and these methods are 
useful especially when the sample elements 
reflect the population elements and actual survey 
design reasonably well. 

Analysts frequently form pseudo elements, that 
differ from the original elements, and they often 
ignore the actual steps of sampling design. Then, 
they use one of these methods when it is too 
complex to find a closed form of variance. For 
instance, GSK method of analysis (Grizzle, 
Starmer, and Koch, 1969) utilizes an independent 
estimator of variance from Balanced Pmlf Sample 
replication (BHS) or Linearization method for the 
National Health Examination Survey data and 
implant this result to derive the Wald statistic 
for a chi-square test statistic. 

Another example is that Hidiroglou and Rao 
(1983) used Linearization (Williams, 1962) to 
estimate the sample variance of Canadian Health 
Survey data and used this result for chi-square 
testing. 
A common problem to these procedures is that it 

is impossible to reflect the intracluster 
correlation correctly to variance estimation when 
a sample is taken by cluster sampling and the 
elements in the cluster are correlated. To avoid 
this problem, one may use a type of probability 
assumption defining the relationship of t~D 
members of any pair in the cluster (Choi, 
1981). The sample variances thus derived will 
include such correlations and hence the ~curve 
based on these variances should be more 
efficient. Secondly, in order to obtain a more 
accurate curve, we need to reflect the actual 
characteristics of these variance points on the 
estimation of regression parameters. Such 
characteristics include the correlation between 
the estimates of variance points and these points 
are not usual variables but relative variances 
based on the weighted data from the complex 
sample surveys. Therefore, the improvements in 
these two problems will certainly increase the 
accuracy of curves in the presentation of such 
sample variances. 
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