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Introduction 

This is a continuation of the paper entit led, "A 
Comparison of Some Estimators in Sampling for a Time 
Series with Linear Trend" (I), in which a best linear 
estimator was chosen. The best way to estimate the 
variance of this estimate is the subject of this paper. 

The problem of variance estimation for a t ime 
series with linear trend is studied using model based 
procedures. The work done by Royall and Cumberland 
((2), (3)) is refined and adapted to the special problems 
of the Current Employment Survey (790 Survey) at the 
Bureau of Labor Statistics. A variety of variance 
estimation techniques are examined; including a 
variation of jackknife estimation and shrinkage toward 
a constant. 

The variance estimator that performed the best is a 
refinement of the estimator that was suggested by 
Richard Royall (2). This refinement uses a variation of 
jackknife estimation to estimate a conditional variance. 
The population totals, for which a variance estimator is 
needed, are changing with t ime. The units which make 
up the population fol low a linear model. Let the 
characterist ic of interest for unit i at t ime k be 
denoted Yk(i). The expected value for Yk(i) given 

Yk- l ( i )  = Yk- l ( i )  is proportional to Yk- l ( i )  where 

lower case Yk(i) is used to denoted the realization of 

Yk(i). The model also states that the units in the 

population are uncorrelated and the conditional 
variance for unit i at t ime k is proportional to the 
characterist ic of interest at t ime k - l .  This model is 
given algebraical ly as follows: 

E(Y k(i)/k- I) = 8kYk_ 1 (i) for k=2,3, .... 

Coy (Yk(i), Yk(j) / k- 1) = ~ij C~k 2 Yk- l(i) 

0 if i ~ j  

2 .where ~ij = 1 if i = j  

o is a constant~ 

(1.1) 

and E( " / k - ! )  denotes conditional expectation 
given outcomes up to and including t ime k - I .  

If S is used to denote the entire population then 
the realized population total  at t ime k is: 

Yk(S) = y Yk(i) 
i~S 

If s k is used to denote the sample at  t ime k from S 

then define 

Yk (Sk) = Z Yk(i) for k=2, 3, .... 
its 

Yl(Sl) = Yl~S) sinces I = S. 

(Time k=l is called the benchmark month.) 

Upper case wi l l  be used to denote random variables 
and lower case wi l l  be used to denote their realized 
values. 

The problem of es t imat ing Yv (S) was studied in (1) 
and the solution, tk(S) ,  which is s~uggested there  is: 

(1.2) 
t I (S) = y I (S) since s I = S 

,% 

and tk{S) = Yk(Sk) + 8k tk_i(rk) k=2,3, ..... 

where r k = S - s k (the complement of s k in S) and 8k 

is an estimate of 8 k given by: 
A 

8k = Yk (SkSk- l)/Yk - 1 (SkSk- 1 ) 

where SkSk_l is used to denotes k n Sk_l 'the 

intersection of s k and Sk_ I " 

Thus t k(9 = ~ Yk(i) if ie s k 

8ktk - 1 (i) if ie r k = S-s k 
th 

is used to estimate the outcome in the i unit at 
time k. 

A common 8k, which is independent of i in model 

( I . I )  provides the link between sample and non sample 
units. The sample units are used to estimate 8 k with 

8 k . Then 8 k is used to estimate the nonsample Yk(i) 

from tk_ l( i) . 

If the model ( I . I )  holds then tk(S) is unbiased in the 
sense that 

E(Tk(S)-Yk(S))= 0. 

where :¢Yk(i )  

Tk(i) ?_Yk(SkS k 1 ) 

~ -Yk-  l(SkSk- I ) 

and Tl(i) = Y 1 (i) for all i¢S. 

if ie s k 

if i e r k 
t k _ (i)k = 2,3, - - -  1 

The error  var iance of Tk(S) is defined as the 

variance of (Tk(S) - Yk(S)) which I'll denote:  

V(Tk(S)- Yk(S))= E (Tk(S)- Yk(S)) 2 

Note that  all expecta t ions  are taken with respect  to 
the model (1.1) and not with respect  to the sampling 
distribution by which s k was chosen. 

If we condition on the outcomes up to t ime k - I  then 
the model (1.1) allows the error variance to be wri t ten  
as: 
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V(Tk(S)- Xk(S))= 8k2 V(Tk_i(S) - Yk_I(S)) 

+ E(V(Tk(S)_ - Yk(S)/k-l)) for k > I (1.4) 

and = 0 for k=l 

The problem of estimating the2error variance of 
tk(S) then reduces to estimating 8 k and the expected 

value of the conditional error variance, V(Tk(S) - 

Yk(S)/k-I) for each k. What follows is a study of these 

two estimation problems. 

This study contains both theory and empirical work. 
A variety of variance estimators are tried. One 
estimator which is based on a variation of the 
jackknife variance estimator appears to be best. 
It is given explicit ly as Vk5 in (2.9). 

Description of Variance Estimators 

I) The iterative formula (1.4) can be written as the 
following difference equation. 

Vk= ~ 2  Vk_l + E(V(Tk(S ) _ Yk(S)/k_l) ) 

k=293,.. (2.1) 
where V k = V(Tk(S)- Yk(S)). 

(note that V I = 0) 

Now note that V(Tk(S) - Yk(S)/k-I) = 

= V(Tk(rk) - Yk(rk)/k- l) 

= V((Yk(SkSk_l)/Yk_l(SkSk_l))" Tk_l(r k) - Yk(rk)/k-l)  

= V((Yk(SkSk - l)/Yk- 1 (SkSk- 1 ))" tk-  1 (rk) - Yk(rk )/k- 1) 

= (tk_l(rk)/Yk_l(SkSk_l)) 2 V(Yk(SkSk_l)/k-l) 

+ V(Y k(rk)/k- 1) 

First note that  the second part  of (1.1) which s tates  

2 
that  V(Yk(i)/k-l)= o Yk_i(i) implies: 

V(Yk(rk)/k- 1 ) = (Yk- 1 (rk)/Yk- 1 (SkSk- I )) X 

V(Yk(SkSk_ l) /k- I). 

Next note that Yk- l(rk) is unobservable but tk_ l(rk) 

is its estimator. Therefore 

V(Yk(rk)/k- I) " (tk_ 1 (rk)/Yk- 1 (SkSk- 1 ) X 

V(Yk(SkSk- l ) /k-  1) 

(2.1) can be rewri t ten approximately as. 

V k "-- 8k 2 Vk_ 1 + ~((Ak+l) • Ak. V(Yk(SkSk_l)/k-1)) 

611 = 0) k=2,3, .... 
. (2.2) 

where A k = (tk_ l (rk)/Yk- 1 (SkSk- I ))" 

If E((A k+l)" A k " V(Yk(SkSk_ l)/k- l)) is estimated by 
v% 

(Ak+l) " A k " V (Yk(SkSk_ l)/k-l) where 
A 

V (Yk(SkSk_l)/k-l) is an e3dlnator of 

then (2.2) implies V~k is V(Yk(SkSk_ I)I k - I  ) 

approximately: 

A A A 

V k - 8k 2 Vk_ I + (Ak+l)AkV(Yk(SkSk_l)/k-l)(2.3) 
A 

where 8 k is an estimator of 8 k. 

The empirical results which were presented in (I) 
and the equation (2.2) indicate a linear relation between 
time, k, and V(Tk(S)-Yk(S)) when the sets s k remain 

relatively stable. That is, Yk- I(SkSk- I ) varies only 

slightly with k for k > I. In this case an approximation 
to (2.2) is: 

~ =0 2 
k 8k Vk-i + G (2.4) 

where G is constant. 

In addition, if 8 k is close to one then (2.4) is 
approximately: 

V k = Vk_l +G 

The solution to this difference equation is: 
v k = ( k -  l)G (2.5) 

Thus V k is roughly proportional to k - l ,  the distance 

from the benchmark month. 

The assumptions that support the expression for V k 

given in (2.5) are met in many strata of the 790 survey 
(4). The computer simulations mentioned in (I) also 
give empirical support to (2.5). 

An implication of this result is that any estimator of 
V k should also be proportional to the distance from the 

benchmark month. 

V k - (k- i) G (2.6) 

This implies that the variance of the variance 
estimator is proportional to the square of the distance 
from the benchmark month. This means that variance 
estimators must become rather unstable as distance 
from the benchmark month increases and that the 
relative error of the variance estimator remains 
approximately constant as time passes. 

Tchebycheff's inequality implies that  for any 
positive real number b 

A 

P(IV k -  Vkl > bo ^ ) < - ~  
V k b'" 

Thus if V k is graphed as a function of k a l l  ;~ 

confidence region for V k is graphed about V k this 

confidence region will be fan shaped as shown in 

figure 1 .  
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The est imation problem given by (2.3) can be solved A 
a var ie ty  of ways depending upon how g k and 

A 

V(Y k (SkSk- 1 )/'k- 1)) are ch.osen. 

Thus for each dist inct  pair (~K' V (Yk(akSk_l)/P-1)), 

(2.3) gives a di f ferent  e s t imator  of var iance and var ie ty  
A A 

of dif ferent  Bs and Vs were tried. 

2) B k is e s t ima ted  in 2 ways. The f i r s t  method is 

rat io of y values one month apar t  for matched  

units. 
A 

Bka = Yk (SkSk- l)/Yk - 1 (SkSk- 1 ) 

The second method is a shrinkage es t imator  tha t  
makes use of prior knowledge about B k. In many s t r a t a  

of the 790 Survey g k is usually near one. This suggests 

an es t imator ,  ~kb ~ defined as follows: 

3 2 
~kb = (l-~ka)/((l-~k a) + dk2) + I 

where dk2 is an es t imator  of the variance of Bka. 

This method is discussed in (5). When model (1.1) 
obtains then 

v(BAka ) = E(°2/yk - l (SkSk-i  )) 

" 2 
and V(Yk(SkSk_l)/k-i ) " o Yk_l(SkSk_l) 

These last two equations suggest that dk z may be 
choosen to be 

2 O (Y 1)/k - l)/Yk_ 2 (sksk_ d k = k (SkSk - 1 ) (2.7) 

Next the V(Yk(SkSk_l)/k-l) needs to be es t imated .  

This t e rm is the condit ional  var iance of a sum of 
uncor re la ted  random variables.  Thus it may be wr i t ten  
as: 

Z V(Yk(i)Ik- t) .(2.8) 
i¢s kSk - 1 

An approximately unbiased est imator for each term 
in this sum is 

2 

(Yk (i) - ~kaYk - 1 (i)) . 

If a constant  K i is choosen so that  E(Ki(Yk(i) = 

l(i)) 2 BkaYk_ / k-l) = V(Yk(i)/k-l) then (2.8)can be 

estimated with 

A 

Vka Z Ki(Yk(i)- ̂  = BkaYk_ t (i))) 2 
ics kSk - 1 

where K i = [ I - Yk-l(i)/Yk_l(SkSk_l ) ] - 1  

Another method is to choose one K such tha t  when 
(1.1) holds then 

E(K E (Yk(i) - ~'kaYk_ l(i)) 2 / k- 1) 
i~s kSk - 1 

= V(Yk(SkSk- 1)/k- 1) . 
-1 

Then K =[I - (X (Yk_12(i)) /y2(SkSk_l)) 3 
SkSk- 1 k- 1 

Call  this e s t ima to r  VkbO 

These two es t imators  for V(Yk(SkSk_l) /k- l )can  be 

combined with the information contained in (2.4) to 

develop regression and composi te  es t imators  for V k. If 

we let  Vkl represent  any one of the four possible  

es t imators  for V k which can be developed Irom, % a  or 

A A using (2.3) then define a new Bkb , and, Vka or Vkb, 

est imator for V k as 

Vk2 = B k ' k  + C k where B k 

and C k are chosen so that :  
k 

_ ) 2  
7 (B k i + C k Vii is minimized. 

i=l 

Vk2 is a regression es t imator  for V k. For k 

suff ic ient ly  large Vkl and Vk2 are nearly independent.  

This suggests a var iance es t imator  which is a composi te  

of both Vkl and Vk2. The weights for this composi te  

es t imator  are a function of the variances of Vkl and 

Vk2. 

If the model ( l . l )  holds then the variance of Vkl can 
be e s t ima ted  with 

k 
_ ) 2  

L = ( l /k)  r (Bki + C k Vii . 

i=l 

Some addit ional  calculat ion gives an approximat ion 
to the variance of Vk2 as: 

(2(2k + l)/(k(k- 1))) L 

Thus a third es t imator  for V k is given by: 

2(2k + I) 
= Vkl + 

Vk3 k(k-l)+2(2k+l) k(k- l) 

k 

where Vk2 = 

i=I 

k(k- I)+2(2k+I) 

fi  Vil 

Vk2 

339 



and f. = (12/(k 2 -  l ) ) ( i - ( ( k + l ) / 2 ) )  
l 

+ (12/k(k- l ) ) ( ( (2k+t ) /6) -  i/2) 

A four th  e s t i m a t o r  which is crude but did well in the  
compu te r  s imula t ions  is 

Vk# = (.5)Vkt + (.5)(k-t)V2,1 • 

Vk# is an equal ly  we igh ted  compos i t e  of Vkl and 

the  ex t r apo la t i on  of V2 1 to t ime  k . This 

ex t r apo la t ion  is sugges ted  by (2.6), 

The next est imator for V k is based on a jackknife 
est imator for 

V(Yk(SkSk- l ) / k -  l). 

The basic idea of the jackknife est imator is the 
deletion of one term or unit and the computation of 
pseudo estimators with this deleted sample. These 
pseudo estimates are then used to estimate the 
variance. 

If V(Yk(SkSk_ l ) / k -  I) is estimated from each of the 

samples from which one element has been deleted and 
these estimates are averaged then another estimate of 
variance can be obtained. Computer simulations 
showed that this procedure works quite well. 

As an example  le t  z 1 z 2 z 3 - - -  z n be independen t  

iden t ica l ly  d i s t r ibu ted  random var iables  with mean p 
2 and var iance  o . 

1 2 Let r- _ ~ .  
"'i n -2  % -  zi x i ) 

where I 
x. _ Z. z k l n-I k 

n 2 
Then _l Z C. is an exce l l en t  e s t i m a t o r  of o . 

n i=  1 1 

n 

] ZC  i In fact, n i=l 

I n 
= n-I i~l (z i .. }.)2 in this simple case. 

This same method is applicable to estimating 
V(Yk(SkSk_l)/k- I). For example define. 

= Z (Yk(i) - "~kajYk_ l(i)) 2 
Vkb j Kj ies kSk_ 1-J 

where  ~Xkaj : Yk(SkSk - l-J)/Yk - l(SkSk- 1 -j) 

(SkSk_l-j) is s k n Sk_l with its j th  e l e m e n t  

de l e t ed  and 

Kj : L 1  - ( z (Yk-l 2(i)) /y2(SkSk l - j ) ]  -1 

,%~- rJ  
Then Vk5 = Ak(Ak+l ) ( l /n  (SkSk_l))X" 

Y" k ~ _  ]Vkbj 2 
jEs + flka Vk- 1,5 (2.9) 

where  n (SkSk_l) = no of units in SkSk_l " 

^ Thus Vk5 is a version of (2.3) where 

V(yk(skSk_l ) /k- l )  is estimated using a modif ied jack 

knife. 

The e s t i m a t o r s  Vkl through Vk5 were  s tudied  via 

compu te r  s imula t ion .  The descr ip t ion  and resul ts  of 
this s imula t ion  follow in the  next  sec t ion .  

Simulat ion Resul t s  

These variance estimators were tested on a universe 
of 300 units. Each unit had data for 20 months which 
was generated to mimic an SIC in the National Survey 
of Current  Employment (790 Survey). A sample of 52 
units was selected according to an optimum st rat i f ied 
random sampling plan. For details see (I). 

The data for the f i rst  month of the 20 month period 
was generated from a lognormal distr ibut ion. The 
parameters of this distr ibution were maximum 
likelihood estimates obtained from actual 790 data in 
one SIC. The density function for the lognormal that 
was used to generate the employment data for month 
one was: 

f(x) : ([/((ax - b) ~2-~))EXP (-(I/2a2)) 
where a : 1.392, b :.5 and c = 3.158. 

Three hundred random numbers were generated 
from this density to provide data for the first month. 
Then the Yk(i) for k : 2, 3, --- 20 and i : I, 2, 3 --- 

300, were generated from the model: 

Yk(i) - ~kYk_l(i) + N(0, (.3)Yk(i)) (3.1) 

where  N(a, b) is the  normal  d is t r ibut ion  with mean  a 
and var iance  b. 

Non response was modeled into this simulation. 
Although the same sample of 52 units was kept 
throughout the 20 month t ime period, nonresponse 
caused the usable sample to vary from month to month. 
The sample of respondents, Sk, was a simple random 

subsample from the 52 original sample units. The size 
of this subsample was f ixed at n(s k) = 35. 

The 13 k are  l i s ted  below. 

k Bk k ~k 

] .997 11 .995 

2 1.004 12 .992 

3 1.009 13 .989 

4 1.012 14 .987 

5 1.012 15 .986 

6 1.012 16 .987 

7 1.010 17 .990 

8 1.007 18 .995 

9 1.003 19 1.002 

10 .999 20 1.012 
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One replication of this simulation consists of 
constructing the universe of 20 months of data for the 
300 units. Then sampling and subsampling to get the s k 
for k = 1, 2, 20. Note tha t  s 1 is all 300 units since 

month  1 is the benchmark month.  Then the basic 
e s t ima to r  given by (1 .2 )was  computed  and the various 
e s t ima to r s  of i t s  var iance were computed  for each 
month .  

Averages  of the var iance es t ima tors  were  then 
computed  over a number  of repl icat ions  (15 to 50 
depending on case). These e s t ima ted  expec ted  values 
of the var iance es t ima to r s  were then compared  to the  
t a rge t  values. 

The target values were obtained from 250 
replications of the simulation where the error variance 
was estimated by comparing actual population totals 
with estimators of these population totals for each of 
the 20 months. Therefore the target value for month k 
was 250 

(1/250) 7 Z i where Z i = (tk(S)-Yk(S)) 2 
i=l 

from the i th repl icat ion.  

This is an unbiased e s t ima te  of the error  var iance 
V(Tk(S)- Yk(S)) = 

E(Tk(S)- Yk(S)) 2 . 

These 250 replications were necessary to insure that 
the relative error of the target values was kept below 
10%. 

In addition to the variance estimators Vkl through 

Vk5 , other  ar t i f ic ia l  var iance e s t ima to r s  were  

s imula ted  for comparison purposes. For example ,  (2.3) 
was applied with the exac t  values of flk and 

V(Yk(SkSk_l)/k-l).  This gives some indicat ion of what  

is lost in accuracy  when these  quant i t ies  are e s t ima ted .  
This also indicates  how much error  is produced by the 
assumptions leading to (2.3). 

TABLE I. 
(in 1000's) 

ESTIMATOR 

Resul ts  of the Simulations 

The two tables in this section briefly summarize the 
results of the computer simulations which were 
described in part Il l. Estimates of the expected value 
of the variance estimators are given for t ime periods 
k = 5, 10, 15 and 20. The right hand column gives the 
number  of repl ica tes  which were used for each 
es t ima to r .  Each row of these  tables  corresponds to the 
e s t ima to r  indicated in the lef t  hand column.  Vkl 
through Vk5 are defined in sect ion II. 

The ordered pair notation is used for the ar t i f ic ia l  
estimators. In this case (x,z) refers to the estimator 

A A 

derived from (2.3) w i t h a  flk o f x a n d a V  o fz .  

In both table I and table 2, Vkl through Vk4 are 
/ k  / X  

based on (2.3) wi th Bka and Vkb. V is used to denote 

V(Yk(SkSk_l)/k - I )  and for the last three rows of tables 
A 

I and 2,~'ka and Bka are used in V .  

The population of 300 units that was used in the 
simulation for table I contains many small units. In 
order to avoid negative values of Yk(i) a ref lect ing 

barrier was set up at zero. If for some k and i a 
negative Yk(i) was generated by (3.1) then Yk(i) was set 

equal to one and Yk+l(i) was generated using this new 

Yk(i) of one. It is immediately noted that this relat ively 
r. 

minor pertubation of the model created a pos~ive bias 
in all variance estimators. 

The reason for this upward bias is that the 
ref lect ing barrier tends to check the natural dispersal 
of the population as k increases. The variance 
estimator which is strongly based on the model does not 
catch this because the sample contains mostly large 
units. These units would be the ones least effected by 
the ref lect ing barrier. 

Table 2 summarizes the simulation results when the 
ref lect ing barrier is removed. This was made possible 
by adding 100 to Yi(i) for each i=l ,  2,... 300. When 

k= 5 10 

Vkl 18.2 40.6  

Vk2 17.8 41 .0  

Vk3 18.0 40 .9  

Vk4 17.3 38.7 

Vk5 15.4 38.1 

(8 k, %9 16.5 38.1 

(8k8, %9 16.3 37.6 

(8 k, %9 18.7 41.1 

(8k8 ' %9 18.5 40.5 

(8ka ' %9 18.3 40.0 

TARGET 12.9 24.9 
A 

o target 1.2 2.0 

15 20 REPS 

56.3  78. ¢ 20 

61.1 80.7 20 

60.0  80.3 20 

56.7  80.0  20 

5/4.7 73.9  50 

55 .i 74.4 15 

56.4 77.7 15 

58.1 78.2 15 

59.4 81.3 15 

59.6 81.2 15 

36.3 48.0 250 

2.8 4.2 250 
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k= 5 

TABLE 2. 
(in 1000's) 

ESTIMATOR 

Vkl 374.5 

Vk2 368.0 

Vk3 371.4 

Vk4 348.3 

Vk5 329.8 

(8 k, V) 355.3 

(8k8, V) 350.6 

(Sk, Vkl ) 376.7 

(8k8 ' Vkl ) 371.9 

(Ska ' Vkl ) 369.9 

TARGET 293.9 
A 

o" target 26 .I 

this is done, none of the Yk(i) which are generated by 
(3. I) are negative. 

Table 2 st i l l  indicates a positive bias in the variance 
estimators but not nearly so much as is present in 
table 1. 

Note that Vkl is not noticably improved by using the 

regression and composite estimation schemes. Thus 
V2k , V3k and V4k do not seem to be noticably better 

than V lk"  

This is probably because V lk already makes full use 

of the model (1.1) and thus the additional smoothing 
that is a t tempted using regression and composite 
estimation is redundent. 

In the lower half of both tables 1 and 2 one can 
compare the effect  of replacing estimates of 8 k and 

V(Yk(SkSk_l)/k-l) with their exact values. It appears 

that the exact knowledge of these 2 parameters 
provides relatively minor improvement in the variance 
estimator given by (2.3). This means that the bias in 
these estimators is due to the approximations which 
were used in the derivation of (2.3) and the use of a 
reflecting barrier at zero in the simulation. A good 
estimate of V(Yk(SkSk_l)/k-l) seems to be more 

important than a good estimate of 8 k . It should be 

noted that Vk5 (the jackknife estimator) does as well as 

the version which uses the exact values of 8 k and 

V(Y k(SkSk - l)/k- 1) . Thus it is unlikely that Vk5 can be 

significantly improved. 

The bias of these estimators also seems to be 
consistently positive. Therefore inferences from 
confidence intervals should be conservative. 

Table I shows that these variance estimators are 
very sensitive to the type of model failure that is 
produced by the ref lect ing barrier at zero. The entries 
in table I are generally about #0% higher than the 
target values. 

10 15 20 REPS 

8/45.3 1175.3 1610.0 20 

852 .5  1268.8 1672.6 20 

850.2 12/47.5 1661.5 20 

785.0 115i.3 1570.0 20 

815.2 1171.0 1575.8 50 

823.5 i174.8 1575.3 15 

808.0 1184.8 1607.5 15 

858.6 1209.7 1621.7 15 

841.7 1219.1 1653.9 15 

835.3 1237.0 1672.3 15 

711.4 1134.5 1371.8 250 

65.8 116.9 136.2 250 

Conclusions 

The best variance estimator, based on the modest 
amount of simulation testing done for this paper, is 
Vk5, (2.9). It makes use of the modified jackknife 

estimator to get a good estimate for V(Yk(SkSk_l)/k-l). 

Vk5 was tested using ~ k a "  Vk5 would usually be 

improved slightly using '~kb" 

The second important f inding was the use of 
shrinkage to estimate the 8 k . Although this nonlinear 

estimator, ~kb' helps only sl ightly in variance shrinkage 

estimation, i t  does provide considerable gains when i t  is 
used in Tk(S) . Thus the new estimator of choice is 

~kb in place of ~ka" The modified Tk(S) using 

jackknife can be applied equally well to this new basic 
estimator. 

The modified jackknife estimator provides another 
alternative for variance estimation in complicated 
situations. It can certainly be applied to a much wider 
class of problems than considered here. 

My thanks are due to Alfreda Reeves and 
Tawanna Neal, who typed and retyped this paper. 
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