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Introduction

This is a continuation of the paper entitled, "A
Comparison of Some Estimators in Sampling for a Time
Series with Linear Trend" (1), in which a best linear
estimator was chosen. The best way to estimate the
variance of this estimate is the subject of this paper.

The problem of variance estimation for a time
series with linear trend is studied using model based
procedures. The work done by Royall and Cumberland
((2), (3)) is refined and adapted to the special problems
of the Current Employment Survey (790 Survey) at the
Bureau of Labor Statistics. A variety of variance
estimation techniques are examined; including a
variation of jackknife estimation and shrinkage toward
a constant.

The variance estimator that performed the best is a
refinement of the estimator that was suggested by
Richard Royall (2). This refinement uses a variation of
jackknife estimation to estimate a conditional variance.
The population totals, for which a variance estimator is
needed, are changing with time. The units which make
up the population follow a linear model. Let the
characteristic of interest for unit i at time k be
denoted Y, (i).  The expected value for Y, (i) given
Yi 1@ =y, @ is proportional to y, (i}  Where
lower case yk(i) is used to denoted the realization of
Yk(i).
population are uncorrelated and the conditional
variance for unit i at time k is proportional to the
characteristic of interest at time k-1. This model is
given algebraically as follows:

The model also states that the units in the

for K=2,3,eu.e

(1.1)

E(Yk(i)/k-l) = B Y1 ®

Cov (¥, 0, Y, ) / k-1 = § 0,7y, |0

0 if i#j
8. =
B 1 if

02 is a constant,

where
i=j

and E( * / k-1) denotes conditional expectation
given outcomes up to and including time k-1.

If S is used to denote the entire population then
the realized population total at time k is:

vy (S =1 y (D)
K™ jes K
1f Sy is used to denote the sample at time k from S

then define
Y 6= v, @ for k=2, 3, oo «
ies,
Yl(Sl) = YIIYS) sinces; = S.

(Time k=1 is called the benchmark month.)
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Upper case will be used to denote random variables
and lower case will be used to denote their realized
values.

The problem of estimating y, (S) was studied in (1)
and the solution, tk(S) , which is suggested there is:
(1.2)
tl(S) = yl(S) sinces| =S

and t,(8) = v, (5,) + B, 1) k=243pee .

wherer, =S -5 (the complement of s in S) and By
is an estimate of Bk given by:

B =Y S 1Yy 1 6gSi- 1)

where S5 1 is used to denote S, NS the

intersection of Sy and Si*
yk(i) if ie Sk
Thus tk(i) =

Bktk_l(i) if ie f, = S~s,

1S

. . . cth
is used to estimate the outcome in the i unit at

time k.
A common Bk’ which is independent of i in model

(L.1) provides the link between sample and non sample
units. The sample units are used to estimate Bk with

B, - Then B, is used to estimate the nonsample yk(i)
from tk_l(i) .

If the model (1.1) holds then tk(S) is unbiased in the
sense that

E(Tk(S)—Yk(S))= 0.

where Yk(i) if ie s
T0) =
i) o Tk
k-1
Y Gy k=23, ---

and Tl(i) = Yl(i) for all ieS.

The error variance of Tk(S) is defined as the
variance of (Tk(S) - Yk(S)) which I'll denote:

2
VT (S) - Y, (S) = E (T, (S) - Y, (5)

Note that all expectations are taken with respect to
the model (1.1) and not with respect to the sampling
distribution by which 5, was chosen.

If we condition on the outcomes up to time k-1 then
the model (1.1) allows the error variance to be written
as:



VT8 - ¥, () = 8,2 VT, ;S - ¥, ;)
+ E(V(Tk(S) - Yk(S)/k—l)) fork > 1
=0 fork=l

(L.4)
and

The problem of estimating the ,error variance of
tk(S) then reduces to estimating Bk and the expected
value of
Yk(S)/k-l) for each k. What follows is a study of these

two estimation problems.

the conditional error variance, V(Tk(S) -

This study contains both theory and empirical work.
A variety of variance estimators are tried. One
estimator which is based on a variation of the
jackknife variance estimator appears to be best.
It is given explicitly as V, 5 in (2.9).

Description of Variance Estimators

1) The iterative formula (1.4) can be written as the
following difference equation.

Vo= B2V + BT () - Y, (S)/k-1)

k=2,3,.. (2.1)

where V| = V(Tk(S) - Yk(S)).
(note that v, = 0)

Now note that V(Tk(S) - Yk(S)/k-l) =
= V(Tk(rk) - Yk(rk)/k-l)

VI, 88 MYy 188 )" Ty 0 - Y (e k-D)
VI, (5,8 W18 D " e (6 - Yy (e k=D

= I (s O VOV (S8, kD)
+ VY, (£ )/k-1)

First note that the second part of (1.1) which states
that V(Y, (/k-1) = o%, [ implies:

VOV, (5 k1) = Oy, (e, (s DX
VY (5,5, /k-1).

Next note that yk_l(rk) is unobservable but tk_l(rk)

is its estimator. Therefore

VO, (6 k=1 = (6, (55, ) X
V(Yk(sksk" l)/k‘ 1)

(2.1) can be rewritten approximately as.
s 2 . . .
Ve = Bk Vi1 * E((Ak+l) A, V(Yk(sksk_l)/k—l))

(Vl = 0 k=2,3,....
. (2.2)

where A = (tk_l(rk)/yk_ l(sksk—l))'
If E(A +1)" A T VY, (s s )/k-1)) is estimated by
(Ak+1) AV (Yk(sksk_l)/k-l) where

\'a (Yk(sksk_l)/k—l) is an estiinator of
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V(Y, (5,5, _)/k-1) then (2.2) implies Vk is

approximately:

A

. ~ 2 ~ A
V 287V + B ADA VY, s /KD 2.3

where Bk is an estirnator of Bk.

The empirical results which were presented in (1)
and the equation (2.2) indicate a linear relation between
time, k, and V(‘I'k(S)-Yk(S)) when the sets S remain

relatively stable. That is, Yi- 1(sksk_ 1) varies only

slightly with k for k > 1. In this case an approximation
to (2.2) is:

3&

0,
BV, +6 2.4)

where G is constant.

In addition, if Bk is close to one then (2.4) is
approximately:

Vk = Vk-l +G
The solution to this difference equation is:
v, = k-1)G (2.5

Thus Vk is roughly proportional to k-1, the distance

from the benchmark month.

The assumptions that support the expression for Vk

iven in (2.5) are met in many strata of the 790 survey
4). The computer simulations mentioned in (1) also
give empirical support to (2.5).

An implication of this result is that any estimator of
Vk should also be proportional to the distance from the

benchmark month.

Vi = (k-1 G (2.6)

This implies that the variance of the variance
estimator is proportional to the square of the distance
from the benchmark month. This means that variance
estimators must become rather unstable as distance
from the benchmark month increases and that the

relative error of the variance estimator remains
approximately constant as time passes.
Tchebycheff's inequality implies that for any
positive real number b
- AN ;»)
P(IVk Vk' >ho [ )< e

V,.
I

Thus if Vk is graphed as a function of k and a
confidence region for Vi is graphed about Vi this
confidence region will be fan shaped as shown in

figure 1.



The estimation problem given by (2.3) can be solved

a variety of ways depending upon how By and
V(Y (85, _1)/k-1) are chosen.

Thus for each distinct pair (é\é, v (Yk(sksk_l)/p—l)),
(2.3) gives a different estimator of variance and variety

of different Bs and Vs were tried.

2) Bk is estimated in 2 ways. The first method is
ratio of y values one month apart for matched

units.

Bra = Yk®S /Y1681

The second method is a shrinkage estimator that
makes use of prior knowledge about Bk. In many strata

of the 790 Survey By is usually near one. This suggests
an estimator, ’B\kb’ defined as follows:

3 2
A 7 2
Bkb = (I"Bka) /((I-Bka) + dk ) + 1

where dk2

This method is discussed in (5). When model (1.1)
obtains then

. . . ~
is an estimator of the variance of Bka’

2~ 2
V(Bka) = E(O '/yk—l(sksk—l))
~ .2
and VY, s /K1) = 0¥y 68 )
These last two equations suggest that dk2 may be
choosen to be
2 _ g 2
d k = V(YkSksk—l)/k_l)/yk—l(sksk—l) (2-7)
Next the V(Yk(sksk_1

This term is the conditional variance of a sum of
uncorrelated random variables. Thus it may be written
as:

Yk-1) needs to be estimated.

b vy, )/k-1)  .(2.8)
ies | s
k’k-1
An approximately unbiased estimator for each term

in this sum is
2

@ - By

If a constant K, is choosen so that E(Ki(yk(i) -
A w2 .
Bkayk-l(l» / k-1) = V(Yk(1)/k—l) then (2.8) can be

estimated with

~ . ~ 2
Ya = L Kiie) - By 1 )
ies | s
Kk7k-1 1
where K. =[1-y, ,0 i
i [ k-1 /yk_l(sksk_l) ]

Another method is to choose one K such that when
(1.1) holds then

E(K 3 (3, @ - ¥y 7/ kD)
ies sy
= V(Yk(sksk_l)/k-l) |
2. 2 B
Then K =l - (2 (y,_ ") /y“G;s,_)
! i ! Kkl ]

Call this estimator Okb’

These two estimators for V(Yk(sksk-l)/k'l) can be
combined with the information contained in (2.4) to
develop regression and composite estimators for Vk. If
we let vkl represent any one of the four possible
estimators for Vk which can be developed from, éla or
é\kb’ and, Oka or <’\kb’ using (2.3) then define a new
estimator for Vk as

sz :Bk k + Ck where Bk

and Ck are chosen so that:
k

z (Bki + C
i=1

Vi is a regression estimator for V. For k

2 . L
K- V“) is minimized.

sufficiently large Vkl and V,, are nearly independent.
This suggests a variance estimator which is a composite
of both Vkl and V..
estimator are a function of the variances of Vkl and
A/
k2
If the model (1.1) holds then the variance of V, | can

be estimated with
k

L = (I/K)zZ
i=1
Some additional calculation gives an approximation
to the variance of sz as:

The weights for this composite

(Byi + Cp- v, -

(2(2k + D/(k(k-1) L

Thus a third estimator for Vi is given by:
2(2k + 1)

k(k-1)+2(2k+1)

Vir *
Kk - 1)

Vg3 =

v
y k(k-1)+2(2k+1) k2

where sz = I ii Vil
i=1



and £, = (12/% - DXi - (+1)/2)
+ (12/k(k-1N(2k+1)/6) - i/2)

A fourth estimator which is crude but did well in the
computer simulations is
Vig = (3 + (SNK-1V, |

qu is an equally weighted composite of vkl and

the extrapolation of V21 to time k This

extrapolation is suggested by (2.6).

The next estimator for Vk is based on a jackknife
estimator for

VOY, (5,5, k-1,

The basic idea of the jackknife estimator is the
deletion of one term or unit and the computation of
pseudo estimators with this deleted sample. These
pseudo estimates are then used to estimate the
variance.

It V(Y (S, S _|)/k-1) is estimated from each of the

samples from which one element has been deleted and
these estimates are averaged then another estimate of
variance can be obtained. @ Computer simulations
showed that this procedure works quite well.

As an example let z) 2523 --- 2, be independent
identically distributed random variables with mean p

; 2
and variance o” .

LetC, = & 1 @~ %)
1
where X. = —= T =z
i n-1 Kk k
R 2
Then o z Ci is an excellent estimator of ¢
i=1
| n
In fact, = I C.
n. i
i=1
L7 -\2
=—= I (z.l - z)° In this simple case.

n-1 .
i=}

This same method is applicable to estimating
V(Yk(sksk_l)/k—l). For example define.

A w2
vkbj = K. i_is .(yk(l) - Bkajyk—l(l))
~ KSk-17)
where Braj = R e U CE )

(sksk_l-j) iss, ns | with its jth element
deleted and
. 2. 2 -1
Ki=[1-02 O "0 o) 5]
S-173
Then vk5 = Ak(Ak+1)(l/n (sksk_l)))(

z v

. 1 H 2
Jesksk—ll(bj + Bka vk—1,5 (2.9)

where n (Sksk-l) = no of units in SIK-] -
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Thus V version of (2.3) where

K5 is a
VY, 6,8, /KD is estimated using a modified jack

knife.

The estimators Vi through V|5 were studied via

computer simulation. The description and results of
this simulation follow in the next section.

Simulation Results

These variance estimators were tested on a universe
of 300 units. Each unit had data for 20 months which
was generated to mimic an SIC in the National Survey
of Current Employment (790 Survey). A sample of 52
units was selected according to an optimum stratified
random sampling plan. For details see (1).

The data for the first month of the 20 month period
was generated from a lognormal distribution. The
parameters of this distribution were maximum
likelihood estimates obtained from actual 790 data in
one SIC. The density function for the lognormal that
was used to generate the employment data for month

one was: 2
f(x} = (1/{(ax - b) 2w DEXP (-(1/2a°))
where a =1.392, b=.5 and c¢ = 3.158.

Three hundred random numbers were generated
from this density to provide data for the first month.
Then the yk(i) for k=2,3,---20andi=1,2 3---

300, were generated from the model:
VD = By (@ + N, (3y, () (B

where N(a, b) is the normal distribution with mean a
and variance b.

Non response was modeled into this simulation.
Although the same sample of 52 units was kept
throughout the 20 month time period, nonresponse
caused the usable sample to vary from month to month.
The sample of respondents, S Was a simple random

subsample from the 52 original sample units. The size
of this subsample was fixed at n(sk) = 35.

The Sk are listed below.

k Bk k By

! .997 11 <995
2 1.004 12 .992
3 1.009 13 .989
4 1.012 14 .987
5 1.012 15 .986
6 1.012 16 . 987
7 1.010 17 .990
8 1.007 18 .995
9 1.003 19 1.002
10 .999 20 1.012



One replication of this simulation consists of
constructing the universe of 20 months of data for the
300 units. Then sampling and subsampling to get the s
for k = 1, 2, --~- 20. Note that Sy is all 300 units since

month 1 is the benchmark month. Then the basic
estimator given by (1.2) was computed and the various
estimators of its variance were computed for each
month.

Averages of the variance estimators were then
computed over a number of replications (15 to 50
depending on case). These estimated expected values
of the variance estimators were then compared to the
target values.

The target values were obtained from 250
replications of the simulation where the error variance
was estimated by comparing actual population totals
with estimators of these population totals for each of
the 20 months. Therefore the target value for month k
was 250 2

(1/250) 2 z. where 2, = (t, (S)-Y (S))

i i i k

from the ith replication.

This is an unbiased estimate of the error variance
(T, (9)-Y (S)) =

E(T (S) Yk(S))

These 250 replications were necessary to insure that
the relative error of the target values was kept below
10%.

In addition to the variance estimators VI< 1 through
ij, other artificial variance estimators were
simulated for comparison purposes. For example, (2.3)
was applied with the exact values of Bk and

V(Yk(sksk_l)/k—l). This gives some indication of what

is lost in accuracy when these quantities are estimated.
This also indicates how much error is produced by the

assumptions leading to (2.3).
k= 5
TABLE L. Vil 18.2
(in 1000's)
sz 17.8
ESTIMATOR
K3 18.0
vkl\t 17.3
ij 15.4
Byr ¥ 16.5
Byr V) 18.7
Byg, Y) 18.5
Bya, V) 18.3
TARGET 12.9
g target 1.2

Results of the Simulations

The two tables in this section briefly summarize the
results of the computer simulations which were
described in part Ill. Estimates of the expected value
of the variance estimators are given for time periods
k = 5, 10, 15 and 20. The right hand column gives the
number of replicates which were used for each
estimator. Each row of these tables corresponds to the
estimator indicated in the left hand column. Vkl
through VkS are defined in section II.

The ordered pair notation is used for the artificial
estimators. In this case (x,z) refers to the estimator

derived from (2.3) with a B, of x andaVv of z
In both table 1 and table 2, vkl through V., are
based on (2.3) with Bk and ¥

V(Y (sksk 1 :
1 and 2, %, Via and Bka are used in V.

kb * V is used to denote
)/k-1) and for the last three rows of tables

The population of 300 units that was used in the
simulation for table 1 contains many small units. In
order to avoid negative values of yk(i) a reflecting

barrier was set up at zero. If for some k and i a
negative yk(i) was generated by (3.1) then yk(i) was set

equal to one and Yo 1(i) was generated using this new
(1) of one. It is immediately noted that this relatxvely

minor pertubatlon of the model created a postlve bias
in all variance estimators.

The reason for this upward bias is that the
reflecting barrier tends to check the natural dispersal
of the population as k increases. The variance
estimator which is strongly based on the mode! does not
catch this because the sample contains mostly large
units. These units would be the ones least effected by
the reflecting barrier.

Table 2 summarizes the simulation results when the
reflecting barrier is removed. This was made possible

by adding 100 to yl(i) for each i=1, 2,... 300. When

10 15 20 REPS
40.6 56.3 78.4 20
4]1.0 61.1 80.7 20
40.9 60.0 80.3 20
38.7 56.7 80.0 20
38.1 54.7 73.9 50
38.1 55.1 74 .4 15
37.6 56 .4 77.7 15
41.1 58.1 78.2 15
40.5 59.4 81.3 15
40.0 59.6 81.2 15
24.9 36.3 48.0 250

2.0 2.8 4.2 250
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k= 5

TABLE 2. Vit 374.5
(in 1000's) Vi, 268.0
ESTIMATOR 371.4

Vi 348.3

Vies 329.8

Bjer V) 355.3

(Byegr V) 350.6

Ber Viep) 376.7

(Byg, Vic1) 371.9

Bia, Vi) 369.9

TARGET 293.9

8 target 26.1

this is done, none of the yk(i) which are generated by
(3.1) are negative.

Table 2 still indicates a positive bias in the variance
estimators but not nearly so much as is present in
table 1.

Note that Vkl is not noticably improved by using the

regression and composite estimation schemes. Thus
v2k’ V3k and qu do not seem to be noticably better

than Vlk .

This is probably because Vlk already makes full use

of the model (1.1) and thus the additional smoothing
that is attempted wusing regression and composite
estimation is redundent.

In the lower half of both tables ! and 2 one can
compare the effect of replacing estimates of Bk and

V(Yk(sksk-l)/k'l) with their exact values. It appears

that the exact knowledge of these 2 parameters
provides relatively minor improvement in the variance
estimator given by (2.3). This means that the bias in
these estimators is due to the approximations which
were used in the derivation of (2.3) and the use of a
reflecting barrier at zero in the simulation. A good
estimate of V(Yk(sksk_l)/k—l) seems to be more

important than a good estimate of Sk . It should be
noted that Vk5 (the jackknife estimator) does as well as
the version which uses the exact values of Bk and
VIY, (5,5, /k-1)

significantly improved.

Thus it is unlikely that ij can be

The bias of these estimators also seems to be
consistently positive. Therefore inferences from
confidence intervals should be conservative.

Table 1 shows that these variance estimators are
very sensitive to the type of model failure that is
produced by the reflecting barrier at zero. The entries
in table 1 are generally about 40% higher than the
target values.

10 15 20 REPS
845.3 1175.3  1610.0 20
852.5 1268.8 1672.6 20
850.2 1247.5 1661.5 20
785.0 1151.3  1570.0 20
815.2 1171.0  1575.8 50
823.5 1174.8 1575.3 15
808.0 1184.8 1607.5 15
858.6 1209.7 1621.7 15
841.7 1219.1  1653.9 15
835.3 1237.0 1672.3 15
711.4 1134.5 1371.8 250

65.8 116.9 136.2 250

Conclusions
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The best variance estimator, based on the modest
amount of simulation testing done for this paper, is
Vk5’ (2.9). It makes use of the modified jackknife

estimator to get a good estimate for V(Yk(sksk_l)/k—l).

ij was tested using /B\ka .V would usually be

k5
improved slightly using /B\kb‘

The second important finding was the use of
shrinkage to estimate the Bk . Although this nonlinear

shrinkage estimator, é\kb’ helps only slightly in variance

estimation, it does provide considerable gains when it is
used in T (S) . Thus the new estimator of choice is

T, (S) using é\kb in place of é\ka' The modified

jackknife can be applied equally well to this new basic
estimator.

The modified jackknife estimator provides another
alternative for variance estimation in complicated
situations. It can certainly be applied to a much wider
class of problems than considered here.

My thanks are due to Alfreda Reeves and
Tawanna Neal, who typed and retyped this paper.
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