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The Statistical Reporting Service (SRS) of 
the U.S. Department of Agriculture uses data 
from earth-observation satellites to decrease 
the variance of survey estimates of crop areas. 
This is accomplished by using a regression 
estimator in which the enumerated survey item ~s 
the primary variable and some transformation of 
the satellite data is the auxiliary variable. 
The auxiliary variable currently used by SRS is 
the sample-unit aggregation of the results from 
discriminant analysis performed on the satellite 
data. This study investigates an alternative 
auxiliary variable--the sample-unit aggregation 
of estimated posterior probabilities. We derive 
formulas for the expected variance of the 
regression estimator in terms of population 
characteristics and information measures for the 
two auxiliary variables. The two auxiliary 
variables are compared using the developed 
formulas. 

I. INTRODUCTION 

Data Descriptions. Since the mid-1970's, the 
U.S. Department of Agriculture's Statistical 
Reporting Service (SRS) has been a regular user 
of satellite data. SRS uses these data in two 
different ways: in construction of area 
sampling frames [1,2] and as auxiliary data in 
survey estimation of crop areas [3,4,5,6]. The 
latter application is the focus of this paper. 

The U.S. Landsat satellites provide the 
satellite data used by SRS. The current, 
Landsat IV satellite contains two different 
instruments for collecting earth observation 
data. Called the Multispectral Scanner (MSS) 
and the Thematic Mapper (TM), respectively, 
these two instruments operate on the same basic 
principle. That is, over certain intervals of 
the electromagnetic spectrum both measure the 
amount of energy originating from picture 
elements (pixels) on the earth's surface. MSS 
measures four spectral intervals; whereas TM 
measures seven. Pixel sizes are 0.32 hectares 
(0.80 acres) and 0.09 hectares (0.22 acres) for 
MSS and TM, respectively. 

Annually SRS conducts a June Enumerative 
Survey (JES). The JES sample units, called 
segments by SRS, are randomly selected from a 
stratified area-sampling frame. In agricultural 
strata, segments are typically I square mile 
(260 hectares) in size. 

Data Notation. At the pixel level~ Z(h,i,j) 
denotes the MSS or TM measurement vector for 
pixel j of segment i in stratum h. An 
information function, g, is a real-valued 
function over the Z measurement space. 

At the segment level t Y(h,i) denotes the 
amount of land planted to the crop of interest 
in segment i of stratum h, whereas X(h,i;g) 
denotes the auxiliary variable resulting from 
the aggregation of g[Z(h,i,j)] over pixels in 
segment i of stratum h. The total number of 
potential segments in stratum h is denoted by 
N(h) and the number of sampled segments by n(h). 

At the sample level~ Y(h;s) and X (h;g,s) are 

the sample means of Y(h,i) and X(h,i;g), 
respectively. B(h;g,s) is the sample regression 
slope for Y(h,i) on X(h,i;g). 

At the stratum level~ Y(h) is the total 
amount of land planted tO the crop of interest. 

m 

This is the quantity that is estimated. X(h;g) 
is the stratum mean-per-segment of the auxiliary 
variable X(h,i;g). X(h;g) is known because all 
the Z(h,i,j)'s are known. 

Estimators. In geographical areas where 
Landsat data are not available, SRS estimates 
Y(h) via a direct expansion estimator, denoted 
DE(h), using only ground data. Where both 
Landsat and JES data are available, SRS 
calculates the following regression estimator: 
Reg(h;g) = N(h) [Y(h;s) + B(h;g,s) [X(h;g) 

- X(h;g,s)]] 
The approximate, large-sample variance is 
(I) V[Reg(h;g)] = [l-R2(h)] V[DE(h)], 
where R2(h;g) is the square of the stratum 
correlation between X(h;g) and Y(h), and 
V[DE(h)] is the variance of DE(h) for the same 
geographical area. 

Statement of the Problem. This paper 
investigates how the choice of g, the 
information function, affects the variance of 
the described regression estimator. We consider 
two different information functions: the 
classification function, denoted a(.), and the 
posterior-probability function, denoted o(.). 
These two functions are described in detail in 
Section III. From equation (I) it follows that 
the effect of choosing between these two 
information functions is characterized by the 
following efficacy ratio: 

E(h) = R2(h;a)/R2(h;o). 
Section V presents formulas by which the 
asymptotic value of E(h) can be computed in 
terms of population parameters. Section VI 
establishes the validity of these formulas, and 
Section VII presents the implications of the 
derived formulas. In addition to the results of 
this paper~ Hung [7] describes related work on 
this problem. 

II. MODEL ASSUMPTIONS 

Use of Models. The direct-expansion and 
regression estimators described above are 
design-based estimators. Thus no models need be 
developed in order to calculate the estimates or 
to estimate variances after the survey data have 
been collected. Our purpose in using models is 
to obtain insight into the choice of the 
information function prior to performing the 
survey. We develop two interconnected models: 
a Landsat reflectance model and a super- 
population model for the finite geographical 
region of interest. The latter model is 
composed of two submodels: a pixel submodel and 
a segment submodel. 

Landsat Reflectance Model. There is general 
consensus (within the remote sensing community) 
that for an individual ground cover a mixture of 
multivariate normal (MVN) density functions 
adequately models Landsat reflectance. The 
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individual MVN distributions in such a mixture 
are said to correspond to spectral classes; 
whereas the various ground covers are said to 
correspond to information classes. 

Let f(.;i,j) denote the MVN density for 
spectral class j of information class i; f(.;i), 
the mixture of MVN densities for information 
class i; and f(.), the overall mixture density 
for the collection of Landsat data. Information 
class I is called the target information class 
or (in agricultural applications) the crop of 
interest. The information classes other than 
information class 1 are collectively referred to 
as the confusion information class or 
information class 0. 

We assume (spectral class) conditional 
independence between the Landsat reflectances of 
neighboring pixels. Admittedly 9 in practice the 
reflectance density functions are not known. We 
assume9 however, that they can be estimated with 
sufficient accuracy and precision that density 
estimation effects can be ignored. 

Super-Population Model. The super-population 
model is a sequence of realizations of the 
finite, geographical region of interest. These 
realizations are generated by pixel and segment 
submodels. 

For realization i' the pixel submodel 
generates N'(i') pure pixels. (A pixel is said 
to be pure if it is a member of only one 
information class.) The probability that a 
pixel is a member of information class i is the 
same for all pixels in a stratum. This common 
value is denoted by the super-population 
parameters p = p(1) = I - p(0). The 
probabilities of membership in spectral classes 
are also identical for every pixel in a stratum. 
The nOtation p(i,j) is the joint probability of 
membership in spectral class j of information 
class i. (Note: The stratum subscript will be 
omitted from model parameters when omission will 
not cause confusion.) 

The segment submodel then groups together 
pixels to form sample units. M(h,i) is the 
number of pixels in segment i of stratum h. 
Y(h,i,j) indicates membership in information 
class I (l=yes, 0=no) of pixel j in segment i of 
stratum h. (For each pixel there are as many 
Y(hgi~j)'s as there are crops of interest. 
Though only one classification is performed, 
each crop of interest is a separate estimation 
problem with its own information class I.) The 
M(h,i)'s are independently distributed with 
respect to each other and with respect to the 
Y(h,i,j)'s. The segment submodel assumes that 

corr* [Y(h,i,j), Y(h',i',j')] 
c h=h' 

i=i' 
= j#j 

0 h#h' or i#i', 
where corr* denotes super-population correlation 
and c is a super-population parameter. 

Recall that Y(h~i) is the amount of land 
planted to the crop of interest in segment i of 
stratum h. If the unit of areal measurement is 
the size of a pixel~ then Y(h,i) is the 
aggregation of Y(h,i,j) over j (i.e. pixels). 

Other super-population parameters which 
describe the segment submodel are the following: 

N(i') = number of potential segments in 
realization i', 

n(i') = number of sampled segments in 
realization i', 

m = E*[M(h,i)], 
v = V*[M(h,i)], 

and 
R*(h;g) = corr*[Y(h,i), X(h,i;g)], 

where E* and V* are expectations and variance~ 
respectively 9 with respect to the super- 
population. 

We assume that as i' approaches infinity that 
N(i'), n(i'), and N(i') - n(i') do likewise. 
Then equation (i) becomes exact and R(h;g) 
converges to R*(h;g). 

III. INFORMATION FUNCTIONS 

We consider two information functions: the 
classification function and the posterior- 
probability function. 

Classification Function. The classification 
function is the indicator function for 
classification into information class I. There 
are two variants of this function depending on 
the decision rule. The Bayes rules classifies 
into a s~ectral class on the basis of the 
maximum value of p(i,j)f(Z;i,j); the maximum- 
likelihood rule, on the basis of f(Z;i,j). Both 
rules then classify into the containing 
information class. 

Of course, any monotone transformation of the 
decision criteria can be used to perform an 
identical classification. The advantage of the 
two step procedure -- first classification into 
spectral class, then aggregation into 
information class -- is that since the spectral 
class distributions are MVN, the decision rules 
simplify to a quadratic discriminant. The 
winning information class could be determined 
directly on the basis of the f(Z;i)'s but the 
required exponentiations increase the 
computational effort and for Landsat data the 
increases in classification accuracy are small. 

Posterior Probability Function. The 
posterior probability function is given by 
o(Z)=[pf(Z;l) + (l-p) f(Z;0)] / f(Z). 

Choice of Information Functions. The 
classification function is of practical interest 
because of the computational simplicity of the 
quadratic discriminant. Also it creates a 
classification map which may satisfy non- 
statistical, pictorial information needs. On 
the other hand, the posterior probability 
function is of theoretical interest because in 
limiting situations (e.g., M(h,i) always I or 
c=O) it is known that R*(h;g) is maximized by 
g(.)=o(.) [8, pp 264-265]. 

IV. INFORMATION IN REMOTELY SENSED DATA 

We show in the next section that correlations 
involving information functions can be expressed 
in terms of Fisher information for p. 

Marco [9] derives 
I o = information content in unclassified 

data 
= (I - b) / p(l-p) 

and 

I a = information content in classified 
data 
= k/ p(l-p), 

where 
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b = f[f(z;l) f(z;0) /f(z)]dz 
k = p(l-p) (l-d-e)2/q (I-q) 
d = probability of 

misclassification of a pixel 
from the target information 
class into the confusion in- 
formation class 

e = probability of misclassifica- 
tion from the confusion infor- 
mation class into the target 
information class, and 

q = p(l-d) + (l-p)e 
= probability of classification 

into the target information 
class 

These two information measures are equal to 
zero when f(.;l) and f(.;0) are identical and 
are equal to I/p(l-p) when f(.;l) and f(.;0) 
have non-overlapping support• 

Marco [9] shows that I a ~ I o. The quantity b 
is also the asymptotic error rate for nearest 
neighbor classification of f(.;l) versus f(.;0). 
The quantity k is called the reliabilit X by 
Tenebein [i0] and it assumes values in the unit 
interval. 

V. MODEL FORMULAS 

Pixel-level correlations• From simple moment 
calculations we get the following intra-segment 
correlations in order of decreasing absolute 
value: 

corr*[Y(h,i,j), Y(h,i,j')] = c, 
corr*(o[Z(h,i,j)], o[Z(h,i,j')] = c(l-b) 

= c p(l-p) I o 
corr*(a[Z(h,i,j)],a[Z(h,i,j')] = ck 

= cp(l-p)l a for j ~j'. 
These correlations are for the same random 

variable but different pixels. For the opposite 
situation let 
r*(h;g) = corr*(Y(h,i),g[Z(h,i,j)]). For 
correlations between different random variables 
at the same pixel we obtain 

[r*(h;o)]2 = l-b = p(l-p) I o. 
[r*(h;a)] 2 = k = p(l-p) la, 

Since I a < !o, it follows that 
r2(h;a) <--rZ(h;o). 

Segment-level correlations• If v=0, then 
[R*(h;g)] 2 = [r*(h;g)] 2 t(h;g) 

= p(l-p) Ig t(h;g) 
where 

t(h;g) = [I + (m-l) c]/[l + (m-l)cp(l-p) Ig]. 
Hence, [R*(h;g)] 2 increases with increasing 
p(l-p), m, c, and I. 

The sign of c determines the rate of change 
of [R*(h;g)] 2 as a function of increasing I. 
Other effects of the sign of c are the 
following: 

. If c=0, then R*(h;g) = r*(h;g). 
• t(h;g) is greater or less than 1 as c is 
greater or less than 0. 
• If c > 0, then t(h;g) decreases with 
increasing I. If c < 0, the opposite is 
true. 

Let E*(h) = [R*(h;a)]2/[R*(h;o)] 2 be the 
asymptotic limit of E(h), 
e*(h) = [r*(h;a)]2/[r*(h;o)] 2 and 

u(h) = t(h;a) / t (h;o). Then 
E*(h) = e*(h) u(h). 

The quantity e*(h) is always less than unity. 
The quantity u(h) has the following properties: 

• u(h) is not less or not greater than 1 as c 
is greater or less than 0. 
. u(h) is an increasing function of c and of 
mo 

• As cm approaches infinity, u(h) approaches 
I/e*(h); hence, E*(h) approaches i. 

When v~0, the expressions for R*(h;g) become 
very involved• The variances and covariances 
needed to calculate segment-level correlations 
for v~0 are given in Table I. It can be shown 
that if c=0 but v~0, then R*(h; g) is an 
increasing function of v. 

VI. SUPER-POPULATION MODEL VALIDITY 

Using the derived formulas, segment-level 
correlations can be predicted from parameters of 
the reflectance and super-population models• We 
analyzed an SRS data set to test the validity of 
the assumed models, estimate model parameters, 
and determine the ability of the models to 
predict segment-level correlations• 

The analyzed data set consisted of JES and 
Landsat data from 1981 for 41 SRS segments. 
These 41 segments were contained within a single 
Landsat pass (185 kilometers by 350 kilometers) 
within Iowa. The Landsat data for pure pixels 
of corn, soybeans, pasture, and "other" were 
decomposed into component MVN densities using 
the CLASSY algorithm [Ii]. 

Because of the large size of the pixel data 
set (31,576 pixels), the remainder of the 
analysis was performed in only one agricultural 
stratum -- the largest one, containing 19 
segments. The data set was further reduced by 
selecting a systematic subsample consisting of 
every fourth pixel. (Pixels sorted by Landsat 
row and column.) The resulting number of pixels 
was 3724 pixels with an average of 196 pixels 
per segment. 

First, we tested the validity of the super- 
population model. Instead of testing the 
Landsat reflectance model, we used simulated 
Landsat data which were mixtures of generated 
MVN variates. Parameters for the simulated 
Landsat data were those estimated by CLASSY on 
the larger data set. Thus, by analyzing 
simulated Landsat data in conjunction with 
actual ground data, we were able to examine the 
validity of the super-population model alone. 

The Bayes-classification and posterior-proba- 
bility functions for corn, soybeans, pasture, 
and "other" were evaluated for all pixels in 
the reduced data set. The parameters required 
by these functions were estimated from the 
larger data set. 

In addition to the JES assignment of pixels 
to segments (which we call Assignment A), two 
artificial assignments of pixels were made to 
create data sets with different c and v values. 
In Assignment B the pixels in the reduced data 
set were randomly assigned to one of the 19 
segments according to a multinomial distribution 
with proportions identically equal to 1/19. In 
Assignment C the pixels were assigned 
systematically to segments--every 19th pixel to 
segment i, etc. 

The parameters m and v were estimated from 
segment-size data (with the unit of measurement 
equal to the size of a pixel) by the method of 
moments. The parameters p and c were estimated 
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from the ground-cover label data also by the 
method of moments• The parameter b was 
estimated by l-obs([r*(h;o)]2), where 
obs([r*(h'o)] 2)• is the observed value of 
[r*(h;o)] 2. This was calculated by the pixel- 
level product-moment formula for all 3724 pixels 
in the reduced data set. The estimates of d and 
e were the observed misclassification rates• 
Table 2 lists the parameter estimates• 

Predicted segment-level correlations were 
calculated using the estimated parameters and 
the moment formulas in Table I. Observed 
segment-level correlations were calculated using 
product-moment formulas for the 19 segment 
aggregations in the reduced data set. The 
observed squared segment-level correlations were 
adjusted to unbiasedness under the assumption 
that [X(h,i;.), Y(h,i)] is distributed 
bivariate normal [12]. 
There was a close agreement between predicted 
and observed segment-level correlations. The 
coefficients of determination between predicted 
and observed values was 0.93 and 0.89 for 
[R*(h;a)] 2 and [R*(h;o)] 2 respectively. When 
observed values were regressed on the predicted 
valUes the slopes were not significantly 
different from 1.0. The 95 percent confidence 
intervals for the corresponding intercepts were 
[.02, .22] and [.01, .25] for [R*(h;a)] 2 and 
[R*(h,o)] 2 respectively 

VII. MODEL IMPLICATIONS 

Sensitivity Analysis. By evaluating the 
model formulas at several different parameter 
values, the importance of different parameters 
in predicting segment-level correlations can be 
determined. This was done to produce Table 3. 
In column 3 of the table, the model formulas are 
evaluated at the (Assignment A) estimated 
parameter values given in Table 2. In column 4, 
the same parameter values are used except v=0; 
in column 5, c=0; and in column 6, c=v=0. Table 
3 indicates the following: 

v has a very small effect on predicted 
[R*(h;o)] 2 and E*(h) values• 
• The effect of v on predicted values is 
least for large values of [R*(h;o)] 2. 
• E(h) at v=0 is a lower bound for E*(h) at v 
> 0. 

c has a very large effect on the predicted 
values• 
• E*(h) is an increasing function of c over 
the observed values of c. 
Two-class/common-covariance case. The 

estimated k and l-b values in Table 2 are larger 
than would be encountered in practice• The 
reason for this is that only pure pixels were 
present in the simulated Landsat data. 

Smaller corresponding k and l-b values can be 
determined from the I o and I a values given by 
Marco [9]. These values are for the case of 
f(.;l) and f(.;0) both MVN with common variance- 
covariance matrix and are tabled by D, the 
square-root of the Mahalanobis distance between 
the two distributions• 

Using m,c,p, and v from Table 2 and also v=0; 

k and b based on Marco's I~ values; and d as a 
function of D [13, page i~]; we evaluated the 
model formulas at D=0.5, 1.0, 2.0, and 3.0 for 
the four crops• Table 4 lists the results for 

D=0.5 and 2.0 for corn and for "other"• The 
results for soybeans were similar to those for 
corn, and those for pasture similar to "other•" 
These results indicate the following: 

The maximum-likelihood classifier has 
higher [R*(h;a)] 2 values than the Bayes 
classifier for D small; whereas, the Bayes 
classifier gives slightly higher values for D 
large• 
• The effect of v (estimated v versus v=0) is 
large only in its influence on [R*(h;o)] 2 at 
small values of D. In this situation, 
[R*(h;o)] 2 for v estimated is smaller than 
for v=0 -- so much so, that E*(h) can exceed 
I. In all other cases, the effect of v is 
small• 
• E*(h) is an increasing function of v. 
Except for the case of the Bayes classifier 
at small values of D, E*(h) exceeds 0.90 at 
the levels of v estimated for the four crops• 

Vlll. CONCLUSIONS 

The analyses performed on the lowa data set 
(with simulated Landsat data) and on the two- 
class/common-covariance case support the 
following conclusions: 

i. The postulated super-population model 
reliably predicts segment-level 
correlations• 

2. Using the model formulas with v (segment- 
size variability within stratum) set to 
zero instead of using an estimated value 
has the following effects: 
. Small effect in predicting segment-level 
correlations under conditions of high 
spectral separability. 
. For low spectral separability, small 
effect in predicting R*(h;a), segment- 
level correlation between ground-truth and 
classification results, and significant 
over-prediction effect in predicting 
R*(h;o), segment-level correlation between 
ground-truth and posterior probability• 

3. The maximum-likelihood classifier has 
higher [R*(h;a)] 2 values than the Bayes 
classifier for low spectral separability; 
whereas, the Bayes classifier gives 
slightly higher values for high spectral 
separability• 

4. E*(h), the efficacy ratio of [R*(h;a)] 2 
(classification) to [R*(h;o)] 2 (posterior 
probability), is an increasing function of 
m (average segment size by stratum), v 
(segment size variability by stratum), and 
of c (intra-segment correlation)• Because 
of these effects, low efficacies at the 
pixel level are considerably increased at 
the segment level• For corn, soybeans, 
pasture, and "other" studied in one 
agricultural stratum of Iowa, the segment- 
level efficacies exceeded 0.90 under a 
wide range of conditions of spectral 
separability• 

IX. RECOMMENDATIONS 

On the basis of this study, the authors make 
the following recommendations: 

i. Because of classification's high segment- 
level efficacy and low computational 
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effort, classification should be the 
auxiliary variable of choice under 
conditions similar to the ones 
encountered in this study. 

2. If only one classification is to be 
performed, the maximum-likelihood 
classifier) should be the classifier of 
choice for re~ression estimation. The 
reason for this is superior performance 
under conditions of low spectral 
separability and only slightly inferior 
performance under conditions of high 
spectral separability. 

3. The developed model formulas should be 
used as a planning tool in Landsat 
investigations. Such use would 
indicate potential efficiencies of 
Landsat regression estimation. 
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Discriminant 

U V 
m g 

Y(h,i) Y(h,i) 

X(h,i;a) X(h,i;a) 

X(h,i;o) X(h,i;o) 

Y(h,i) X(h,i;a) 

Y(h,i) X(h,i;o) 

Table I : Moment Formulas 

Cov(UtV) 

p[p+(l-p)c]v + p(l-p)m[l+(m-l)c] 

[q2 + p(l_p)(l_d_e)2c]v 
+q(l-q)m + p(l-p)(l-d-e)2cm(m-l) 

p[p + (l-p)(l-b)2c]v 
+p(l-p)(l-b)2[((l-b)-Ic)m+cm2] 

p[q + (l-p)(l-d-e)c]v 
+p(l-p)(l-d-e)m[l+(m-l)c] 

p[p + (l-p)(l-b)c]v 
+ p(l-p)(l-b)m[l+(m-l)c] 
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Table 2: Parameter Estimates for 
Reduced lowa Data Set with Simulated 

Landsat Data 

m = 196 

v = 184 (Assignment A) 
v-- 288 (Assignment B) 
v = 0 (Assignment C) 

crop 

corn 

soybeans 

pasture 

other 

d e (k) l-b c(A) c(B) c(C) 

.37 .13 .17 .46 .55 .09 .0076 -.0009 

.25 .23 .05 .56 .63 .13 -.0032 -.0047 

.17 .32 .16 .21 .29 .15 -.0009 -.0042 

.21 .70 .04 .13 .25 .09 .0020 -.0045 

Table 3. Sensitivities of Predicted Values 
To Levels of c and v in Reduced lowa Data Set with Simulated Landsat Data 

crop 

corn 

soybeans 

pasture 

other 

predicted c; estimated c=0 
value v~ estimated v--__~0 v; estimated v=0 

[R*(h;a) ]2: .93 .94 .64 .46 
[R*(h;o) ]2: .94 .96 .71 .55 
E* (h) : .99 .98 .90 .84 

[R*(h; a) ]2: .97 .96 .65 .56 
[R*(h; o) ]2: .98 .97 .72 .63 
E*(h) : .99 .99 .90 .89 

[R*(h;a) ]2: .88 .89 .32 .21 
[R*(h;o) ]2: .90 .92 .40 .29 
E*(h) : .98 .96 .78 .72 

[R*(h;a)]2: .73 .72 .19 .13 
[R*(h;o) ]2: .79 .85 .40 .25 
E*(h) : .92 .85 .49 .52 

crop 

corn 

other 

Table 4. Sensitivities of Predicted Values 
to Levels of v and D in 

Two-C lass/Common-Covar iance Case 

v=0 

D [R*(hio) ]2 _a~I/ [R*(h;a) ]2 E*(h) [R*(hio) 

0.5 .51 B .27 .52 .19 
ML** .43 .84 

2.0 .95 B** .94 .98 .94 
ML .93 .98 

v; estimated 

all/ [R*(h;a)] 2 
E*(h) 

B .29 1.49 
ML** .39 2.01 
B** .94 .99 
ML .93 .99 

0.5 .42 B .05 .12 .16 B .05 .32 
ML** .35 .83 ML** .30 i .88 

2.0 .95 B** .92 .97 .94 B** .92 .98 
ML .91 .96 ML .90 .96 

1/ 
m 

B = Bayes 9 ML = Maximum Likelihood 
indicates classifier with higher [R*(h;a)] 2 for given v and D 
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