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AB S TRAC T 

Four sampling and estimation methods for 
estimating the number o f red-cockaded woodpecker 
colonies on National Forests in the Southeast 
were compared, using samples cho sen from simula- 
ted populations based on the observed sample. 
The methods included (I) simple random sampling 
without replacement using a mean per sampling 
unit estimator, (2) simple random sampling 
without replacement with a ratio per pine area 
estimator, (3) probability proportional to 
"size" sampling with replacement, and (4) proba- 
bility proportional to "size" without replace- 
ment using Mur thy" s estimator. The survey 
sample of 274 National Forest compartments (I000 
acres each) constituted a superpopulation from 
which simulated stratum populations were 
selected with probability inversely proportional 
to the original probability of selection. 
Compartments were originally sampled with proba- 
bilities proportional to the probabilities that 
the compartments contained woodpeckers ("size"). 
These probabilities were estimated with a 
discriminant analysis based on tree species and 
tree age. The ratio estimator would have been 
the best estimator for this survey based on the 
mean square error. Powever, if more accurate 
predictions of ~odpecker presence had been 
available, Murthy's estimator would have been 
the best. A subroutine to calculate Murthy's 
estimates is included; it is computationally 
feasible to analyze up to I0 samples per 
stratum. 

SURVEY 

We had the task of designing a survey to 
estimate the number of red-cockaded woodpecker 
colonies on National Forests (Lennartz et al. 
in press). This is an endangered woodpecker 
that lives in old pine trees in the Southeastern 
States. It is standard forestry practice to 
harvest pine trees before they are old enough to 
support red-cockaded woodpeckers; therefore a 

conflict has resulted. 
The survey was stratified by ranger 

districts within national forests. The sampling 
units were the approximately 1000 acre compart- 
ments used for managing the national forests. 
There were 30 strata with 43 to 207 compartments 
per stratum (mean=98, s=48). From 4 to 21 
compartments were randomly selected from each 
stratum based on an optimal allocation 
(mean=9.1, s-4.8). Teams o f b io io gist s sear c hed 
selected compartments for red-cockaded wood- 
pecker colonies. Woodpecker colonies are easily 
visible to the searcher because of the white 
gummy substance that cascades from the wood- 
pecker holes in living pine trees. 

We attempted to increase the efficiency of 
the survey by selecting compartments with proba- 
bility proportional to size. "Size" was the 
probability that the compartment contained a 

~odpecker colony. These probabilities ("size" 
of the compartments) were estimated using a 
discriminant analysis based on tree species and 
tree age. If a compartment had been previously 
searched for ~odpeckers, the "size" was 
doubled if woodpeckers had been found and 
halved if they had not. 

Murthy's estimator (cochran, 1977: 263-265) 
was used based on a review by Rao (1978: 75) 
who cited studies "which indicate that Mur thy" s 
method might be preferable over other methods 
... when a stable estimator as well as a stable 
variance estimator are required." Because of 
the computational requirements o f Mur thy" s 
estimator, no more than I0 samples per stratum 
could be analyzed. CPU times on a Hewlett 
Packard 3000 minicomputer were: 
Samples 4 5 6 7 8 9 i0 
Seconds 27 29 30 37 85 533 5231 

CPU seconds can be estimated by 26 + 0.0014339 
n! where n is the number of samples. It took 
about 1.5 hours to analyze i0 samples, and 
would have taken about 16 hours to analyze 11 
samples. While it is clear from the variance 
formula that computational times are related to 
n!, guidelines on reasonable sample sizes are 
not readily available. When more than i0 
samples had been drawn, the national forest- 
ranger district strata were poststratified into 
approximately equal sized substrata. Six of 
the 30 strata had more than i0 samples and had 
to be poststratified, 4 strata into 2 substrata 
and 2 into 3 substrata. Poststratification 
increases the variance because samples are not 
distributed proportionally to the poststrata 
(Cochran 1976: 135). The increase is about 
(L-I)/Ln where L is the number of poststrata 
and n is the mean number of sampling units per 
poststratum. For 2 poststrata with 6 sampling 
units per strata, this is about an 8% 
incr ea se. 

EMPIRICAL STUDY 

With the advantage of hindsight, we compared 
four sampling and analytic methods that we 
could have used for the survey: 
I. Mean per unit estimator with simple 

random sampling, equal probability and 
without replacement (see Cochran 1977: 
21-26). 

YI=N 7. n I Yi/n (i) 

v(YI)=N2 (1-n/N) 7.nI (Yi- y)2 / n(n-l) (2) 

where 
Y = total number of colonies in stratum 
Yi = number of colonies in ith compartment 

y = E l y./n 
N = number of compartments in stratum 
n = number of compartments in sample 
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2. Ratio per pine area with simple random 
sampling, equal probability and without 
replacement (see Cochran 1977: 150-156). 

Y2 = ~ X (3) 

. 

v(Y 2) : N 2 (1-n/N) lni (Yi - Rxi)2 / 

n(n-I ) (4) 

where 
X = total pine acres in stratum 
x i - pine acres in ith compartment 

n n 
R = Zi Yi / li xi 

Probability proportional to "size" with 
replacement (see Cochran 1977: 252-255). 

n 
Y3 = I i Yi/zin (5) 

4. 

v(Y 3) : Z n (yi/zi - Y3)2/ n(n-l) 

where 
z i = probability of selecting ith 

compartment 

(6) 

Murthy's estimator with probability 
proportional to "size" and without replace- 
ment (see Cochran 1977: 263-265). 

n P(sli) Yi / P(s) Y4 = Zi (7) 

^ n 
v(Y4) : 7 i 7j~i[P(s)P(sli,j)- 

P(sli)P(slj)] ziz j (yi/zi - yj/zj)2/ 

P(s) 2 (8) 

wher e 
n 

P(s) = Zi~j~ k z i zj/(l-zi) 

z k/( I -zi-z j ) 

unconditional probability of 
drawing sample (for n=3) 

n zj/(l_zi ) Zk/(l_zi_zj) P(sli)= Zj# k 

conditional probability of 
drawing sample, given that the 
ith compartment was drawn first 
(for n=3) 

P(sli,j) = 7.~ Zk/(l-zi-zj) 

conditional probability of 
drawing sample, given that the 
ith and jth compartments were 
selected (in either order) in 
the first 2 draws (n=3) 

An empirical approach was used to invest- 
igate these 4 methods for the specific con- 
ditions of the red-cockaded woodpecker survey. 

The actual sampled compartments from all strata 
were used as a combined superpopulation from 
which the artificial stratum populations were 
drawn. A Tausworthe random number generator 
was used (Kennedy and Gentle, 1980: 155). 
Sampling from the super po pul atio n was with 
replacement and inversely proportional to the 
probability that the original compartments were 
selected. This selection reversed the 
over-representation of compartments that were 
originally assigned high selection 
probabilities so that the simulated populations 
were as similar to the real population as 
possible. Fifty trials each with 25 
replications (1250 replications in all) were 
run for 9 situations. The situations included 
combinations of 3 population sizes (20, i00, 
and 500 compartments), and 3 numbers of strata 
(1, I0, and 20); each strata had 4 sample 
compartments. For each trial, the bias, esti- 
mated variance and mean square error, and the 
proportion of 90% and 95% confidence intervals 
that enclosed the true value were output to a 
disk file for summarization. These five values 
were used as criteria for evaluating the four 
sampling and estimation methods. The relative 
bias, relative mean square error and relative 
variance were defined as 

Rel. bias = ~r (Yr -Y ) / Y m (9) 

Rel. MSE : ~r (Yr -Y)2 n / Y2 m (1o) 

Rel. var. = Z r v(Y6 r) n / m (11) 

where r=l,...,m indexes replications. 

Note that the relative mean square error and 
relative variance have been multiplied by the 
number of observations n so that they would be 
comparable over trials with different sample 
sizes. 

Unfortunately the discriminant anaylsis 
predictions o f which compartments contained 
woodpeckers were not as good as we had hoped. 
Additional trials were conducted to see how the 
non-uniform probability methods would perform 
if accurate predictions of the probability that 
a compartment contains ~odpeckers were 
available. In these trials, the sampling units 
contained woodpeckers only when the posterior 
probability from the discriminant analysis was 
greater than 0.5. In that case, the 
probabilities of compar tments containing I, 2, 
..., or II woodpecker colonies were 0.44, 0.17, 
0.14, 0.II, 0.03, 0.05, 0.02, 0.02, 0.01, 0, 
0.01, respectively, based on the observed 
frequency d i str ibutio n. 

RE SULTS 

For the red-cockaded woodpecker survey, 
equal probability sampling with a ratio to pine 
area would have been the best method as judged 
by the mean square error (Table I). Unequal 
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probability sampling with Murthy's method that 
we used for the survey was second best. 
~bwever, Murthy" s method requires extensive 
computations which effectively limit one to i0 
or fewer samples per stratum. Although none of 
the estimators is seriously biased, the ratio 
estimator underestimated the number of colonies 
by about 2 percent. Note that unbiased and 
reduced bias ratio estimators are available 
(see Cochran 1977: 174-177). The variance of 
the ratio estimator underestimated the mean 
square error more than the other methods. 

The disappointing performance o f Murthy" s 
method may be due to our inability to predict 
the presence of woodpeckers (estimate the 
"size") as well as we had hoped. The trials 
with improved "size" estimates showed greatly 
improved performance with Murthy's method. If 
more accurate predictions of woodpecker 
presence had been available, Murthy's estimator 
would have been the best. The squared 
correlation between the probability and the 
number of colonies in the sample was only 9.7%. 
The discriminant function had the following 
classification rates with the original training 
compartments that were available for planning 
the survey and with the National Forest sample 
compartments (using modified probabilities if 
the compartment had been previously searched): 

Observed 
Ab sen t 
Present 
To tal 

Training Compartments 
Pr edic ted 

Absent Present Total 
244(76%) 77(24%) 321 (100%) 
99(39%) 152(61%) 251 (100%) 

343(60%) 229(40%) 572(100%) 

Observed 
Ab sent 
Pr e sen t 
To tal 

Sample Compartments 
Pr ed ic ted 

Absent Present Total 
66(46%) 78(54%) 144(100%) 
21(16%) 109(84%) 130(100%) 
87(32%) 187(68%) 274(100%) 

The 64% correct classification rate for the 
sample compartments compares favorably with the 
69% correct classification rate for the 
training compartments. A1 tho ugh 84% o f the 
sample compartments with woodpeckers were 
correctly classified, only 46% of the 
compartments without woodpeckers were correctly 
classified. The low correct classification 

rates for compartments without woodpeckers 
results in poor overall predictions because few 
compartments have woodpeckers. We can only 
speculate on the reason for our poor 
predictions. It is possible that the 
compartments that were predicted to have 
woodpeckers have good habitat but that much of 
the habitat is not occupied by this endangered 
species. It is also possible that we did not 
have a representative training sample of 
compartments without woodpeckers because the 
training compartments were no t selected 
randomly. 

Confidence interval widths were underes- 
timated especially with small sample sizes. 
With larger sample sizes the widths were 
improved. With 60 degrees of freedom for 
error, the 90% confidence intervals included 
the true value about 87% of the samples. 

The authors would llke to thank Dr. B. Kenneth 
Williams, also of Patuxent Wildlife Research 
Center, for his review of earlier drafts of 
this paper and his many helpful suggestions. 
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Table i. Results of empirical study of red-cockaded woodpecker survey, sampling from a super- 
population consisting of the observed samples. Marginals for population size and number of 
strata (each with 4 samples) are shown. Estimates are followed by their standard errors which 
were calculated among trials each of which had 50 replicates. In some trials, the estimate of 
"size" was improved by generating a monzero number of woodpecker colonies whenever the 
discriminant analysis predicted their presence. 

Po pula- Number Number 
tion size strata trials 

20 
100 
500 

20 
100 
500 

20 
100 
500 

1 

I0 
20 

i 
I0 
20 

1 
i0 
20 

i 
I0 
20 

I 
I0 
20 

1 
10 
20 

1 
I0 
20 

450 
150 
150 
150 
150 
150 
150 

45o 

450 
150 
150 
150 
150 
150 
150 

450 

450 
150 
150 
150 
150 
150 
150 

450 

150 
150 
150 

150 
150 
150 

150 
150 
150 

150 
150 
150 

Equal .... prob ab ili ty Une qual---pro bah il i ty 
Mean per Ratio to Probability Murthy" s 
unit pine area proportional method 

to "si ze" 

Relative mean square error, standard error 
with actual "size" estimates 
2.59, .07 2.20, .06 2.63, .07 2.43, .07 
2.10,.15 1.84, .Ii 2.38,.17 1.89, .13 
2.78,.10 2.34,.10 2.70,.11 2.60,.11 
2.88, .08 2.41,.09 2.80,.09 2.80, .09 
2.56, .14 2.18, .12 2.69, .16 2.48, .14 
2.76, .12 2.38, .11 2.54,.10 2.31,.09 
2.44, .i0 2.04, .07 2.64, .II 2.48, .I0 

with improved "size" estimates 
3.91,.09 2.55, .07 2.35, .06 

Estimated relative variance, standard error with 
actual "size" estimates 
2.81,.07 1.81,.04 2.74,.07 2.52,.06 
2.38, .18 1.54, .08 2.59,.18 2.06, .14 
2.94,.09 1.95,.06 2.81,.11 2.71,.10 
3.10,.08 1.95, .04 2.82,.06 2.80,.06 
3.23, .17 2.03, .08 3.09, .17 2.80, .14 
2.66, .10 1.74,.06 2.57, .09 2.39,.08 
2.52, .09 1.66, .05 2.56,.09 2.38, .09 

with improved "size" estimates 
4.02, .08 2.50, .06 2.29, .05 

Relative bias, standard error with actual 
"size" estimates 
.001,.005 -.018, .005 .010,.005 .011,.005 
.005, .007 -.013, .008 .009, .008 .010,.007 

-.003,.009 -.024,.009 .011,.011 .012,.011 
.002, .009 -.017, .009 .011,.009 .011,.009 
.004,.014 -.010,.013 .038, .015 .036, .014 

-.005, .005 -.025, .007 -.010,.005 -.008, .004 
.005, .003 -.019, .004 .004, .003 .005, .003 

with improved "size" estimates 
-.014, .008 -.006, .005 -.006, .005 
Proportion of 90% confidence intervals with true 
value, standard error with actual "size" estimates 
.945, .008 .909, .007 .792, .009 .796, .009 
.862, .006 .816, .007 .867, .005 .873, .005 
.892, .005 .840, .006 .877,.005 .882, .005 

with improved "size" estimates 
.821, .009 .796, .008 .800, .008 
.877, .006 .873, .006 .871, .006 
.892, .005 .894, .005 .893, .005 

Proportion of 95% confidence intervals with true 
value, standard error with actual "size" estimates 
.990,.004 .962,.004 .849,.008 .847,.009 
.909,.005 .873, .005 .910,.004 .918, .004 
.934, .004 . 900, .005 .928, .004 .929, .004 

with improved "size" estimates 
.886, .008 .854, .007 .858, .007 
.925, .004 .923, .005 .924, .005 
.939, .004 .940, .004 . 942, .004 
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#SUBROUTINE FOR MURTHY'S METHOD 
# 

# Subroutine to calculate Mur thy" s estimates, 
# written in RATFOR (Kernignon and Plauger, 
# 1976), a FORTRAN preprocessor that translates 
# the structured source into a FORTRAN 
# subroutine. A copy of the resulting FORTRAN 
# program in available on request. A "#" 
# indicates that the remainder of the line is 
# a comment. A " " signals the continuation of 
# a statement. "DO I-I,N statement" specifies 
# that the statement is to be executed N times 
# with I=I,2,...,N. Compound statements may be 
# used. They are indicated by "$( statement-I 
# statement-2 ... $)". This construction is 
# similar to the PL/I "DO; ... END;" and the 
# Pascal "BEGIN ... END;". "BREAK" transfers 
# control out of the current loop, while "NEXT" 
# transfers control to the next iteration of the 
# current loop. 

SUBROUTINE MURTHY(NSAMP, Y, Z, ESTIMATE, VARIANCE ) 
# NSAMP = no. of samples (2<=NSAMP<-I0) 
# (input, integer) 
# NSAMP>I0 requires excessive computing 
# Y = array of observed totals for sampling 
# units I, 2, ..., NSAMP 
# (input, double precision) 
# Z = array of probabilities that sampling units 
# i, 2, ..., NSAMP are selected if a single 
# sample was drawn (input, double precision) 
# ESTIMATE = estimated total 
# (output, double precision) 
# VARIANCE = estimated variance of total 
# (output, double precision) 
INTEGER NSAMP,I,II,I2,I3,I4,I5, I6,I7,I8,I9,I10, 

ISU(IO) 
DOUBLE PRECISION Y(10),Z(10), 

ESTIMATE, VARIANCE, TOTALZ, DENt, 
DEN2, DEN3, DEN4, DEN5, DEN6, DEN7, DEN8, DEN9, 
DEN10, 
PROB, PI,P2,P3,P4,P5,P6,P7,PS,P9,PI0, 
P, PIJ(10, I0) 

LOGICAL INSAMP (i 0), EOF I0, 
NSAMP 2, NSAMP 3, NSAMP 4, NSAMP 5, NSAMP 6, NS AMP 7, 
NSAMP8, NSAMP 9, 
NSAMPI0 # TRUE IF SAMPLE SIZE 

IF (NSAMP>I 0) 
$( 
WRITE (6,*) " NSAMP FOR MURTHYS METHOD', 

NSAMP, " RETURN ZEROS " 
E ST IMATE =OD0 
VARIANCE=0D0 
RETURN 
$) 

IF (NSAMP==0) 
$( 
WRITE(6,*) " NSAMP=0 FOR MURTHY'' S METHOD" 
ESTIMATE =0.0D0 
VARIANCE =0 . 0D0 
RETURN 
$) 

IF (NSAMP==I) 
$( 
WRITE(6,*) " NSAMP=I FOR MURTHY'" S METHOD" 
ESTIMATE=Y (i)/Z( I ) 
VARIANCE=0.0D0 
RETURN 
$) 

IF (NSAMP==2) NSAMP2 =.TRUE- 
ELSE NSAMP2=. FALS E. 

IF (NSAMP==3) NSAMP3 =.TRUE. 
ELSE NSAMP3=. FALSE. 

IF (NSAMP==4) NSAMP4 =.TRUE. 
ELSE NSAMP4=. FALSE. 

IF (NSAMP==5) NSAMP5 =-TRUE- 
ELSE NSAMP5=. FALSE. 

IF (NSAMP==6) NSAMP6 =-TRUE. 
ELSE NSAMP6=. FALSE- 

IF (NSAMP==7) NSA MP7=.TRUE. 
ELSE NSAMP7=. FALSE. 

IF (NSAMP==8) NSAMP8 =.TRUE. 
ELSE NSAMP8=. FALSE. 

IF (NSAMP==9) NSAMP9 =. TRUE. 
ELSE NSAMP9=. FALSE. 

IF (NSAMP==I0) NSAMPI0=.TRUE. 
ELSE NSAMP I0 =. FALSE. 

DO I=I ,NSAMP 
$( 
INSAMP (I)=.FALSE. 

DO J=l ,NSAMP 
$( 
PIJ(I, J)=0.0D0 

$) $) 

# Start sample loops to compute Murthy's 
# estimator with probability proportional 
# to "size", without replacement (see 
# equations 7 and 8 in text). There is 
# 1 nested loop for each sampling unit. 
# INSAMP(i) is true if the ith 
# sampling unit is already in the sample and 
# control should be transferred to the next 
# iteration of the loop. NSAMPn is true if 
# there are n sampling units and the inner loops 

# should be skipped. 
PI-0.0D0 
DO II=I, NSAMP 

$( 
INSAMP (I 1 )=. TRUE. 
DEN i=I. 0D 0-Z( I 1 ) 
P2=0.0D0 

DO 12=1 ,NSAMP 
$( 
IF ( INSAMP (I 2) ) NEXT 
IF (NSAMP2) 

$( 

P2=Z(12) 
PIJ(I, 2)=I.0D0 
BREAK 
$) 

INSAMP (I 2 )=. TRUE. 
DEN2 =DEN I-Z ( 12 ) 
P3=0.0D0 

DO 13=1,NSAMP 
$( 
IF (INSAMP(13)) NEXT 
IF (NSAMP3) 

$( 
P3=Z(I3) 
BREAK 
$) 

INSAMP (I 3)=. TRUE. 
DEN3=DEN2-Z(I3) 
P4=0 • 0D0 

DO 14=1,NSAMP 
$( 
IF (INSAMP(14)) NEXT 

148 



IF (NSAMP4) 
$( 
P4=Z(14) 
BREAK 
$) 

INSAMP (14)=. TRUE. 
DEN4=DEN3-Z ( 14 ) 
P5=0.0DO 

DO 15=1, NSAMP 
$( 
IF (INSAMP(I5)) NEXT 
IF (NSAMP5) 

$( 
PD=Z(I5) 
BREAK 
$) 

INSAMP(15)=. TRUE. 
DEN5=DEN4-Z ( 15 ) 
P6=0.0D0 

DO 16=1,NSAMP 
$( 
IF (INSAMP(16)) NEXT 
IF (NSAMP6) 

$( 
P6-Z(16) 
BREAK 
$) 

INSAMP (I 6 )-. TRUE. 
DEN6--DEN5-Z(16) 
P7=0.0D0 

DO 17=1 ,NSAMP 
$( 
IF (INSAMP(17)) NEXT 
IF (NSAMP7) 

$( 
PY=Z(17) 
BREAK 
$) 

INSAMP(17)=. TRUE. 
DEN7=DEN6-Z(17) 
PS=0.0D0 

DO 18=I, NSAMP 
$( 
IF (INSAMP(18)) NEXT 
IF (NSAMP8) 

$( 
P8=Z(I8) 
BREAK 
$) 

INSAMP (I8)=. TRUE. 
DEN8 =DEN7-Z ( 18 ) 
P9=0.0D0 

DO 19 =I , NSAMP 
$( 
IF (INSAMP(I9)) NEXT 
IF (NSAMP9) 

$( 
Pg=z(I9) 
BREAK 
$) 

INSAMP ( I9 )=. TRUE. 
DEN9=DEN8-Z (I9) 

DO II 0=I, NSAMP 
$( 
IF ( INSAMP (I 10 )) NEXT 

BREAK 
$) # 110 

P9 =P 9+Z ( 19 )/DEN9* Z ( II0 ) 
INSAMP ( 19 )=. FALSE. 

$)#I9 
P8=P 8+Z (18)/DEN8*P 9 
INSAMP (I 8 )=. FALS E. 

$) #i8 
P7=P7+Z(17)/DEN7*P8 
INSAMP ( 17 )=. FALSE. 

$) # 17 
P6=P 6+Z ( 16 )/DEN6*P 7 
INSAMP(16)=. FALSE. 

$) #16 
P5=P 5+Z ( 15 )/DEN5*P 6 
INSAMP ( 15 )-. FALSE. 

$) # i5 
P4=P4+Z(14)/DEN4*P5 
INSAMP (14)=. FALSE. 

$)#14 
P3=P 3+Z (13)/DEN3*P 4 
INSAMP (I3)=. FALSE. 

$) # I3 
P 2-P2+Z ( I2 )/DEN2*P 3 
P I J( I I, I2 )-P 3/DEN2 
INSAMP (I 2 )=. FALSE. 

$) #12 
e I=P I+Z( I 1 )/DENI*P2 
PIJ(II, II )=e 2/DEN1 
INSAMP (I 1 )=. FALSE. 

$) # END OF II LOOP 

# Calculate estimate of total and its variance 
# PROB = unconditional probability of drawing 
# sample. 
# PIJ(I,I) = conditional probability of drawing 
# sample given that the Ith sampling unit was 
# drawn first. 
# PIJ(I,J) = conditional probability of drawing 
# sample given that the Ith and Jth sampling 
# unit were drawn first. 
ESTIMATE=0 
DO I=I ,NSAMP 

ESTIMATE =ES TIMATE+P IJ ( I, I )*Y (I) 
PROB=P 1 
VARIANCE =0 
DO I=I,NSAMP-I 

$( 
DO J=l+l ,NSAMP 

$( 
P=Y (I)/Z( I )-Y (J)/Z(J ) 
VARIANCE=VARIANCE + 

(PROB*PIJ (I, J)-elJ(l, l)*elJ(J, J) ) * 
Z(1)*Z(J)*P*P 

$) $) 
E ST IMATE =E S TIMATE / PROB 
VARIANCE=VARIANCE / PROB/PROB 
RETURN 
END 
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