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1. INTRODUCTION 
A t ranspor ta t ion model is a system of l inear  

constraints over a set of variables { Y i j "  
l<i<p, l<j<q } of the form" 

P 
z Y i j  = c j ,  

i=1 
q 
~ Y i j  = r i ,  

j = l  
q P 
~ s Y i j  = t ,  

j = l  i= l  

l<j<q 

l<i<p (1.1) 

Y i j _  >0, 

r i ,  c j ,  t constant. 

I t  is equivalent and often convenient to re- 
present ( i . i )  by the standard t ranspor tat ion 
array 

(Yi j)pxq (r i )pxZ 

(c j ) Ixq  ( t ) I x l  
(1.2) 

This is a tabular array, i . e . ,  the horizontal and 
ver t ica l  l ines denote the property that detai l  
entr ies along each row or column must add to the 
corresponding row or column to ta l  entry and, 
s im i l a r l y ,  the r_i ( respect ively,  the c j )  must 
add to the grand to ta l  entry t .  

The t ranspor ta t ion problem is that of minimiz- 
ing a l inear  combination of the y 's (cal led the 
object ive funct ion) subject to the constraints 
imposed by (1.2) (Dantzig 1963). Thus, t ranspor- 
ta t ion  problems are l inear  programming problems. 
The special ized tabu la r  structure of the t rans- 
portat ion problem permits solut ion strategies 
which are extremely e f f i c i en t  computat ional ly, 
even for  problems which are large by conventional 
l inear  programming standards (Glover, et a l .  
1974). In addi t ion,  t ransportat ion problems 
enjoy the property that integer-valued __r i and 
c.~ guarantee that optimal solutions are also 
integer-valued (Dantzig 1963, pg. 305). 

The book by Raj (1968) presents some early 
work on appl icat ions of mathematical programming 
theory to s t a t i s t i c a l  problems. In th is  paper, 
we present several appl icat ions of t ranspor tat ion 
theory in s t a t i s t i c s .  Several of these problems 
are solved by s t ructur ing the s t a t i s t i c a l  problem 
as a so-cal led "contro l led rounding problem" 
which, by v i r tue of Cox and Ernst (1982), is 
solvable as a t ransportat ion problem. The 
problems of th is  type solved here fa l l  into two 
categories, general s t a t i s t i c a l  problems which 
involve replacing non-integers by integers in 
tabular  arrays, and the control led select ion 
problem in which survey sampling units which 
are to be selected according to a specif ied 
p robab i l i t y  model also must sat is fy  addi t ional  
constraints (or cont ro ls ) .  

Portions of the or ig inal  paper, p r i nc ipa l l y  the 
l i s t  of references and the proofs j u s t i f y i n g  the 
procedure of Section 4, have been omitted here 
due to lack of space. The complete paper is 
avai lable from the authors. 

2. CONTROLLED ROUNDING AS A TRANSPORTATION 
PROBLEM 
In typ ica l  usage, the term "rounding" connotes 

conventional roundin 9 t__o_o the base I ,  in which a 
real number a is replaced by ("ro-unded to" )  the 
next c losest - ln teger  value (with 0.5 rounded to I 
by convention). Although conventional rounding 
minimizes standard measures of the overal l  d is -  
crepancy between corresponding rounded and un- 
rounded values, i t  has one important shortcoming" 
given a co l lec t ion of unfounded values which add 
to a to ta l  value, the sum of the corresponding 
conventional ly rounded values often f a i l s  to add 
to the conventional rounding of the t o t a l .  For 
example, 0.9+0.5=I.4 but I+ I~ i .  Therefore, to 
maintain a d d i t i v i t y  of rounded detai l  entr ies 
to rounded to ta ls  in base I rounding, the re- 
quirement that values round to the next closest 
integer value must be relaxed. The natural 
re laxat ion of th is  constraint  in base i rounding 
is to allow each entry to be rounded to e i ther  
of the two integer values adjacent to i t .  Under 
these condit ions, the problem of maintaining 
a d d i t i v i t y  in the array of rounded values is 
t r i v i a l  for  the case of one-way tables.  Also 
for  one-way tables,  i t  is somewhat more complex 
computationally but conceptually no more demand- 
ing to require, in addit ion to a d d i t i v i t y ,  that 
the rounding minimize one among several standard 
measures of overal l  discrepancy between the 
rounded and unrounded arrays. Other require-  
ments can be met with re la t ive  ease in one-way 
tables (Fellegi 1975). However, the problem of 
construct ing roundings which are addi t ive and 
achieve minimum discrepancy in two-way tables 
is much more profound. The f i r s t  author to study 
th is  problem was Causey (1979). Causey postulated 
the notion of control led rounding in two-way 
tables and provided a heur is t ic  solut ion which 
maintained a d d i t i v i t y  in some but not a l l  exam- 
ples. The method of Cox and Ernst (1982) solved 
both the a d d i t i v i t y  and minimization of d is-  
crepancy problems completely for both one and 
two-way tables by modelling the so-cal led con- 
t r o l l e d  rounding problem (defined below) as a 
t ranspor tat ion problem. The remainder of th is  
section is devoted to a summary of t he i r  work 
and related questions. The reader unfami l iar  
with t ransportat ion theory should consult 
Dantzig (1963). 

Let [a]  denote the integer part of the real 
number a. Given a tabular  array A 

m 

(aij)mxn (a i . )mxl  
(2.1) 

( a . j ) i x n  ( a . . ) i x l  

112 



and a posi t ive integer B, called the rounding 
base, a control led rounding of A is an array 
R(A) which sa t is f ies  the conditions-: 

for each entry a of A ( including 
the to ta ls  entries~-, the corresponding (2.2) 
entry R(a) of R(A) equals e i ther  B[a/B] 
or B( [a /B]+ I ) ,  v i z . ,  each entry of A is 
rounded e i ther  down or up to an 
adjacent integer mul t ip le of B, 

and, 
the array R(A) is tabular .  (2.3) 
Usually optimal control led roundings are 

sought. These are control led roundings which, 
seeking to minimize the d is to r t ion  to the data 
resul t ing from replacing A by R(A), minimize a 
predetermined measure of -discrepancy between A 
and R(A) such as the sum of squares of d i f f e r -  
ences between rounded and unrounded ent r ies .  

By div id ing al l  entr ies of A by B and sub- 
t rac t ing  the integer parts o-f the-  resul t ing 
in ternal  entr ies a i j  from corresponding to ta ls  
ent r ies ,  an equivalent problem is achieved in 
which O<ai;<l for l<i<m, l<j<n and for which 

J B=I. Throughout the remaind-er of th is section 
we assume that these conditions hold. Cox and 
Ernst (19.82) formulate the control led rounding 
problem in terms of the { 0 , I } -  variables 

x i j  = Rla i j  I, 
x i .  R a i .  - [ a i . ] ,  
x . j  RIa. j  I [ a . j  , ]  
x . .  R a La . . ] .  

(2.4) 

and demonstrate that the existence of an R(A) 
sat is fy ing (2 .2) - (2 .3)  is equivalent to the ex is t -  
ence of a set of { 0 , i }  values in the x-variables 
sat is fy ing the constraints imposed within the 
tabular  array 

(x i j )mxn ( l -x  i .  )mxl ( [ai  .+ l ] )mx l  

The control led rounding problem thus is formu- 
lated as a l inear programming problem which, a 
p r i o r i ,  may not have { 0, I  } - solut ions. 
Transportation theory is then brought to bear 
to demonstrate that { 0, I  } - solutions do ex is t .  
and to produce such solut ions, as fo l lows. 

The tabular array (2.5) represents a system 
of l inear constraints in the x-variables of 
t ransportat ion type, and (2.7) represents a l i n -  
ear object ive function in these variables whose 
minimizing solutions over the set of { 0,I  } 
values for the x's are sought. Because the 
to ta ls  entr ies o f - (2 .5 )  are integer-valued, the 
t r iangu la r  basis property of t ransportat ion 
arrays guarantees tha t  solutions to (2.5) which 
optimize (2.7),  i f  they ex is t ,  w i l l  be integer-  
valued (Dantzig 1963, pp. 303-305). This proper- 
ty is not lost when the authors fur ther  r es t r i c t  
(2.5) to sets of [ 0 , I ] -  values for the x's by 
introducing the capacity constraints 

O<x<l (2.8) 

on the x 's .  Therefore, optimal control led 
n 

roundings of A, i f  they ex is t ,  correspond pre- 
c isely to solutions of the t ransportat ion problem 
(2.5),  (2 .7 ) - (2 .8 ) .  I t  remains to show that 
(optimal) control led roundings of A always ex is t .  
Cox and Ernst accomplish this b y - e x p l i c i t  con- 
st ruct ion of a feasible solut ion to (2.5),  (2.7)-  
(2.8) .  The desired optimal control led roundings 
of A then are simply the integer-valued ( i . e . ,  
{ 0-~i } -valued) optimal solutions of the capa- 
c i t y  constrained transportat ion problem (2.5),  
(2 .7 ) - (2 .8 ) .  

In summary, the authors have modelled an 
otherwise complicated combinatorial or integer 
programming problem completely as a feasible,  

(2.5) 

( l - x . j ) i x n  ( x . . ) i x l  

I m ( [ a . j + l ] ) i x n  __Zl[a i . + l ] - [ a . .  Ix 

[ a . j + l ]  - [a . .  I x l  
j = l  

Im n 
=~i [a i '+ l ]+ j= l  }] [ a . j + l ] - [ a . .  i x l "  

The authors choose the conventional __~ norms 
l<p< ~ , as measures of discrepancy between R(Ai 
and A, v i z . ,  / \ 

-- I m  n 1 I /p ~p(R(A),A)= ~Y y I R ( a i j ) - a i j l  p , (2.6) 
=1 j= l  

and proceed to demonstrate that ,  for f ixed p, 
the set of al l  { 0 , i  } - solutions to (2.~) 
which minimize (2.6) equals the set of a l l  
{ 0 , i  } - solut ions to (2.5) which minimize 
the ( l inear )  function 

m n 
Zp= Y z ( ( l - a i j ) P - ( a i j ) P ) x i j .  (2.7) 

i=1 j= l  
In ef fect  ~ is a reformulation of th~ 

norm which is . .near .  In addi t ion, the aut_ors 
obtain an analogous but more complicated reformu- 
la t ion of the ~ norm not reported here (Cox and 

1 

Ernst 1982, pp. 428-429). 

capacity constrained transportat ion problem in 
the x-variables whose optimal solutions neces- 
sa r i l y  take on { 0 , i  } - values. These solu- 
t ions may be computed using standard trans- 
portat ion algorithms and computer software 
which is extremely e f f i c i en t  computationally 
(Glover, et a l .  1974). 

Extending these techniques, the authors also 
solve completely the s t r i c t e r  zero- res t r ic ted 
control led rounding problem which, in addit ion 
to (2 .2 ) - (2 .3 ) ,  requires that ,  for B=I, 

IR(a)-al <I. (2.9) 

This is equivalent to the statement that ,  
whenever an entry a of A is an integer,  R(a)=a 
is required. (NoTe" -In the general case, 
(2.9) becomes IR(a)-al<B and mult iples a of B 
are required to round to themselves.-) Th~ 
zero- res t r ic ted control led rounding problem is 
model led as a t ransportat ion problem by re- 
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placing the indiv idual  capacity constraints of 
(2.8) by the r e s t r i c t i o n  

O<x<O (2.10) 

for  precisely those x-values whose correspond- 
ing entr ies a of A are integers.  Though posed 
a r t i f i c a l l y , - t h e  - res t r i c t i on  (2.10) preserves 
the f e a s i b i l i t y  of the problem. Thus, the zero- 
res t r i c ted  contro l led rounding problem always 
can be solved. The p rac t i ca l  value of a pro- 
cedure which requires that  integer values 
always round to themselves is obvious. I ts 
importance is i l l u s t r a t e d  c lear ly  in terms of 
contro l led select ion in Section 4. 

3. APPLICATIONS OF CONTROLLED ROUNDING IN 
STATISTICS 
In addi t ion to improving the readab i l i t y  of 

data values and enhancing the i r  u t i l i t y  for  
analys is ,  we may apply contro l led rounding to 
several s t a t i s t i c a l  problems. In each of these 
problems, a complete solut ion requires that 
non-integer values ( respect ive ly ,  non-integer 
mult ip les of B) be replaced by integers (re-  
spect ive ly ,  integer mult ip les of B_) with mini-  
mum overal l  d i s to r t i on  to the data. 

An important appl icat ion of cont ro l led 
rounding is that of con t ro l l i ng  s t a t i s t i c a l  
disclosure in tables of frequency counts. Data 
gathered from indiv idual  respondents by organi-  
zations such as the Census Bureau t y p i c a l l y  must 
be kept con f iden t ia l .  The publ icat ion of tables 
of frequency counts which d i r ec t l y  or i n d i r e c t l y  
disclose small counts pose a threat  to ind iv idual  
respondent c o n f i d e n t i a l i t y  because small counts 
permit users to i den t i f y  indiv idual  respondents 
and a t t r i bu te  charac ter is t i cs  to them. The a b i l -  
i t y  of users to in fe r  small counts from the pub- 
l ished data therefore must be thwarted. A solu- 
t ion to th is  problem is to round a l l  entr ies in 
the published tables to a f ixed integer base B, 
e .g . ,  B=5 or I0.  

Conventional rounding f a i l s  to maintain addi- 
t i v i t y  of detai l  items to to ta ls  and also may 
be undone to in fe r  small counts. Nargundkar 
and Saveland (1972) address th is  problem for  
the case of one-way tables by rounding f r e -  
quency count data randomly to a s u f f i c i e n t l y  
large base B. For example, with B=5, the value 
2 rounds to 0 with p robab i l i t y  0.6 and to 5 with 
p robab i l i t y  0.4. Under t he i r  method, although 
the expected value of the sum of rounded values 
always equals the sum of the unrounded values, 
values rounded randomly may f a i l  to add to round- 
ed t o t a l s .  Fel legi (1975) was able to achieve 
both randomness and a d d i t i v i t y  to to ta l s  for  the 
case of one-way tables.  In two-way tables,  
whereas a single contro l led rounding would pre- 
serve the a d d i t i v i t y  condit ion (2.3),  the i nd i -  
vidual entr ies could not be said to have been 
rounded randomly. However, as described in Sec- 
t ion 4, i t  is always possible to choose a set of 
contro l led roundings together with associated 
p robab i l i t i es  of select ion such that the expec- 
ta t ion  of the rounded value for  each entry equals 
the or ig ina l  unrounded value. Therefore, con- 
t r o l l e d  rounding of fers a viable a l te rna t i ve  to 
random rounding as a technique for con t ro l l i ng  
s t a t i s t i c a l  disclosure in frequency count tab les;  

i t  preserves a d d i t i v i t y  and, subject to th is  
condi t ion,  can be made to come as close as pos- 
s ib le  to maintaining conventional rounding 
throughout the table (Cox and Ernst 1982, 
pg. 429). 

Control led rounding may also be used to pre- 
vent s t a t i s t i c a l  d isclosure in microdata release. 
Suppose for the two-way table A that  a i j  is the 
sum of k_ii quant i t ies  a i i k ,  k=l~- . . . .  , k i~,  each 
of wh ich- is  to be rou~e-d to a mul t ip le  J of B. 
Assume as before that  B=I. We perform control le--d 
rounding on the array A, so that each a i i  is re- 
placed by an adjacent Tnteger R ( a i i ) .  -N~xt,  for  
cel l  ( i , j ) ,  we want to round some-of the values 
~ijka'" up and some down, so as to obtain a to ta l  
R(a i j )  for  the c e l l .  To do th is  with a minimum 
of d i s to r t i on  to the cel l  entr ies a i j  k, le t  L 
denote R(ai j  ) - z [ a i j k ] ;  we set the rounded- 

k 
value of a i j  k to [ a i i k ] + l  for the L largest 
values among the k i j  ~uant i t ies a i j  k -Z [ a i j k ]  ' 
and to [ a i j .  k] othe-rwise. As a possible example 
of appl icat ion of th is  method, the quant i t ies  
a i °k  might be personal incomes, to be rounded to 
thJe nearest mul t ip le  of $5000 before presentat ion 
so as to preclude i d e n t i f i c a t i o n  of pa r t i cu la r  
ind iv idua ls  and/or t he i r  exact incomes, with i 
and ~ corresponding to sex and race categor ies.  
For each sex-race ( i , j )  cel l  we would reveal the 
rounded sum, rather than the exact sum, of the 
k__i i incomes for  that  category 

-Contro l led rounding is also appl icable to 
"raked" two-way tables of counts as considered 
by Ireland and Kullback (1968). Given a two-way 
table A of integer counts a i j ,  we seek to 
constru--ct a revised table of 7n teger  counts A 
whose row and COolUmn sums a i and a . j  have been 
predetermined, as to m~-ni'mize d i s to r t i on  to 
the or ig ina l  tab le .  As an example, " i "  might 
correspond otfO "race,"  " j "  to "county,"  a i j  to 
the count persons by race and county accord- 
ing to the 1970 Census • and a to known 
numbers of persons in 1978a--l('based on-'~emography, 
admin is t ra t ive records or otherwise),  and a i j  to 
estimated numbers of persons in 1978. This pro- 
cedure, i t e r a t i v e  proport ional f i t t i n g ,  is based 
upon repeated uniform mu l t i p l i ca t i on  of entr ies 
in each row and then each column to sa t i s f y  the 
desired marginals. In general, th is  procedure 
may resul t  c in non-integer values for  the a i j ' s ,  
in which ase contro l led rounding with B=I can 
be applied to A to obtain an integer array as 
desired. 

For two-way s t r a t i f i e d  random sampling, one 
often uses Neyman a l locat ion or a s im i la r  a l l o -  
cation scheme for  choice of stratum sample sizes 
so as to minimize to ta l  sample size or a derived 
measure of cost subject to sa t i s fy ing  prespeci- 
f ied variance const ra in ts .  In such procedures, 
one obtains a two-way table of non-integer 
values which may l ikewise be opt imal ly rounded 
to integers by means of contro l led rounding. 

In the area of raking, moreover, one w i l l  
sometimes have a table A with so many zero 

h 

entr ies that the i t e r a t i v e  proport ional f i t t i n g  
algori thm or an a l te rna t i ve  f a i l s  to converge to 
a table A which has the desired new row and 
column su-~s a i .  and a -. These zeros may be 
e i ther  sampling or str-uc~ural zeros. This would 
happen because raking requires zeros to appear in 
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A whenever they appear in A . Under these c i r -  
c--umstances one may use a- t ranspor ta t ion  theory 
approach to attempt to regain s o l v a b i l i t y ,  as 
fo l lows.  Use general t ranspor tat ion theory to 
construct a table A, i f  i t  ex is ts ,  with the de- 
sired marginals and s t ruc tura l  zeros, for  which 
the sum of the internal  entr ies corresponding to 
the sampling zero entr ies of A is minimal. Then, 
i f  th is  sum is nonzero, subtract from a i .  and _~.j 
the entr ies of A corresponding to the sampling 
zeros and t r y  raking A again with the modified 
marginals. I f ,  perhap-s a f te r  repeated appl ica- 
t ions of th is  procedure, the raking algori thm 
converges, a l l  subtracted elements are added to 
the corresponding entr ies of the resu l t ing  raked 
table to produce the f ina l  raked array.  Another 
approach to th is  problem is to "smooth" A by a 
Bayesian technique (Bishop, et a l .  1975, C~. 12). 

4. CONTROLLED SELECTION 
Consider a population s t r a t i f i e d  by two c r i -  

t e r i a  of s t r a t i f i c a t i o n ,  m rows and n columns, 
resu l t ing in a two-way table of mn str-ata ce l l s .  
A sample of size r is to be selected, with s i j  
denoting the expe~ed number of sample uni ts in 
the i j - t h  c e l l .  Let S denote a tabular  array 
w i t h~n te rna l  elements-- (s i j )mx n. We wish to 
l i m i t  the deviat ion from s i of the number of 
sample units in the i j - t h  ~e~l to less than one, 
and also s im i l a r l y  l im i t  the deviat ion for  the 
row and column t o t a l s ,  while s t r i c t l y  maintain- 
ing the requirements of p robab i l i t y  sampling. 
This w i l l  be done by construct ion of a f i n i t e  
sequence ~ ,  l<_k< 4, of ze ro - res t r i c ted  con- 
t r o l l e d  roundings of S (with B=I), together 
with associated p robab i l i t i es  of se lect ion,  
where ni ik. ,  the i j - t h  entry for  the k-th array 
l<i<m,--~#1 j<n, I < ~  4, is the number -of sample 
units in the i j - t h  cel l  i f  the k-th array 
is selected, a n t  sa t i s f i es  E(niJbk--le i , j ) = s i ~ .  

The above condi t ions,  which can general 
ized to dimensions greater than two, are a 
special case of condit ions to be sa t i s f i ed  
fo r  the sampling technique known as cont ro l led 
se lec t ion,  f i r s t  described by Goodman and Kish 
(1950). An example was given in that paper to 
i l l u s t r a t e  the appl icat ion of contro l led selec- 
t ion  but no general method to solve such prob- 
lems was presented. Bryant, Hart ley,  and Jessen 
(1960) developed a simple method for  approaching 
the two-way s t r a t i f i c a t i o n  problem that we de- 
scribed above. However, t he i r  method does not in 
general sa t i s f y  a l l  the requirements stated in 
the previous paragraph exact ly .  Jessen (1970) 
considered the ident ica l  requirements that  we 
have imposed, but presented no general procedure 
fo r  obtaining a set of arrays that sa t i s f i es  
these condi t ions.  Groves and Hess (1975) pre- 
sented a formal algorithm for obtaining solu- 
t ions to the two-dimensional and also the much 
more complex three-dimensional problem. They 
made no claim however, that  t he i r  algori thm w i l l  
always y i e l d  a so lu t ion,  and there are indeed 
simple examples where i t  f a i l s ,  even in the 
two-way case. 

In th is  section we present an algori thm which 
employs the resul ts described in Section 2 to 
completely solve the two-dimensional problem, 
together with an i l l u s t r a t i v e  example, and out- 
l ine  how th is  construct ion may be modified to 

add i t i ona l l y  sa t i s fy  res t r i c t i ons  on subarray 
t o t a l s .  I t  is also shown in the complete paper, 
but omitted here due to lack of space, that the 
three-dimensional problem does not always have 
a so lu t ion .  

4.1 The Algorithm 
For purpose of notat ional s i m p l i c i t y ,  through- 

out th is  section and the Appendix, the i - t h  row 
t o t a l ,  the j - t h  column to ta l  and the grand to ta l  
of a tabula-r- (m+l)x(n+l) array A w i l l  be denoted 
respect ive ly  by a i(n+l),a , a(m+l)Jaandd, a (m+ l ) (n+ l ) '  
as a l te rnat ives  to ~ i .  a . j  an 

We proceed to obtain a solut ion to the con- 
t r o l l e d  select ion problem S by recurs ive ly  
def in ing a sequence of arrays N l = ( n i j l ) ,  
N2=(nij2) . . . .  , N 4 = ( n i j 4 ) ,  and associated 
p robab i l i t i es  Pl, " -  P4, sa t i s fy ing  

N_]< is a zero- res t r i c ted  contro l led rounding 
of S for  a l l  k, (4.1) 

4 
~ Pk=l, (4.2) 

k=l 

4 
E ( n i j k [ i , J )  = }; n i j k  Pk = s i j ,  l<i<m+l, l< j<n+l .  

k=l -- T 4 . 3 )  

To define ~,p_~ we begin with the tabular  
array A k = ( a i i k ) .  A I = S, while for  k>l,  
A_Ak+I w i l l  be defined in terms of N~ P_k 

h i s  simply a zero- res t r i c ted  contro l led 
rounding of A_]<, while to define ~ ,  f i r s t  le t  

d k = m a x { [ n i j k - a i j k [ "  l<i<m+l, l< j<n+ l } ,  (4.4) 

and then le t  
Pk = l -d k i f  k=l ,  

k - I  
: ( I -  ~ Pi )  ( l - d k ) i f  k> l .  (4 .5 )  

i = l  
k 

Now i f  d k : O, then }1 Pi=l and we are done, that  
i= l  

i s ,  N I ,  . . . .  N k together with the associated 
p robab i l i t i es  Pl, . . . .  Pk provide a solut ion to 
the cont ro l led select ion problem. Otherwise, we 
define A_Ak+ I by l e t t i n g  

a i j  k - n i j  k 
a i j ( k + l  ) = n i j  k + (4.6) 

dk 
for  a l l  i , j ,  and then proceed to define ~ + i ,  
Ek+l. 

4.2 An Example. 
For th is  example 

0.4 2.0 0.0 
1.2 0.0 1.0 
0.2 0.0 0.0 

A I = S=I.2 0.4 0.2 
i .0 0.6 0.2 
0.0 0.4 0.4 
0.0 O.2 O.4 
0.0 0.0 0.2 
4.0 3.6 2.4 

d I = .6, Pl = .4, 

2.4 1 2 0 
2.2 1 0 1 
0.2 0 0 0 
1.8 N I = I I 0 
1.8 I I 0 
0.8 0 0 I 
0.6 0 0 0 
0.2 0 0 0 

i0 .0 ,  4 4 2 

3 
2 
0 
2 
2 
i 
0 
0 

I 0 ,  
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0 2 0 
1 1/3 0 1 

1/3 0 0 
A 2 = 1 1/3 0 1/3 

i 1/3 1/3 
0 2/3 0 
0 1/3 2/3 
0 0 1/3 
4 3 1/3 2 2/3 

2 0 2 0 
2 1/3 2 0 1 

1/3 0 0 0 
1 2/3 N 2 = 1 0 1 
1 2/3 i I 0 

2/3 0 0 0 
I 0 1 0 

1/3 0 0 0 
I 0  , 4 4 2 I0,  

d 2 = 2/3, P2 = .2, 

0 2 0 
1 0 1 
0.5 0 0 

A 3 = 1.5 0 0 
i 0 0.5 
0 I 0 
0 0 I 
0 0 O.5 
4 3 3 

2 0 2 0 
2 1 0 1 
0.5 1 0 0 
1.5 N 3 = I 0 0 
1.5 I 0 I 
I 0 I 0 
I 0 0 I 
0.5 0 0 0 

i0  , 4 3 3 I0,  

d 3 = .5, P3 = .2, 

0 2 0 2 
1 0 1 2 
0 U 0 0 

N 4 = A 4 = 2 0 0 2 
I 0 0 I 
0 I 0 i 
0 0 i I 
0 0 I I 
4 3 3 I0, 

d 4 = O, P4 = .2. 

Note that  the so lu t ion given is not unique. 

4.3 Subarray Rest r ic t ions 
Suppose that  S is pa r t i t i oned  in to  a set 

S I ,  . .  S of subarrays Let A_Ak~, N__kl,, J denote 
the subarra~s of ~ and ~ respec~iv~. j  corre-  
sponding to S j .  I t  is desired to obtain N_]~, ~ ,  
k=l . . . . .  ~, sa t i s f y ing  not only ( 4 . 1 ) - ( 4 . 3 ) ,  
butoalSo the addi t ional  condi t ion that  ~ i  is a 
zer - r e s t r i c t e d  cont ro l led  rounding of ~i for  
a l l  k , j .  Using pre l iminary  resul ts  of Cox, sub- 
j ec t  to one l i m i t a t i o n ,  th i s  may be accomplished 
by proceeding exact ly as in Section 4.1 with the 
fo l lowing two exceptions. F i r s t ,  for  each k__, 
is now chosen so that  not only is ~ a res t r i c ted  
cont ro l led  rounding of A_]<, but also ~ j  is a 
res t r i c t ed  cont ro l led  rounding of A_]<j for  a l l  j__. 
Secondly, d__ k is now defined to maximize the 
absolute value for  N k - A  k not only among a l l  
in te rna l  en t r ies ,  and row and column t o t a l s ,  but 
also for  the row and column subtotals for  each 
subarray of the p a r t i t i o n .  In p a r t i c u l a r ,  th is  
approach y ie lds  a formal procedure for  solv ing 
cont ro l led  se lect ion problems, such as the 
example of Goodman and Kish (1950, pg. 356), in 
which there is control on subadd i t i v i t y  in one 
dimension. 

5. OPTIMAL METHOD FOR MAXIMIZING THE OVERLAP 
BETWEEN SURVEYS 

5.1 In t roduct ion 
Consider a per iod ic  survey with a mul t is tage 

s t r a t i f i e d  design. At some point a redesign is 
undertaken in which the primary sampling uni ts  
(PSU's) remain the same but the s t ra ta  and 
select ion p r o b a b i l i t i e s  change because of new 
data or changes in the design. The new sample 
PSU's may of course be selected independently 
of the i n i t i a l  PSU's. However, general ly addi-  
t iona l  costs are incurred with each change of 
sample PSU. Consequently, i t  may be considered 
desirable that  as many of the i n i t i a l  PSU's 
as possible be retained in the new sample, whi le 
s t r i c t l y  maintaining the requirements of prob- 
a b i l i t y  sampling. 

The f i r s t  resu l t  fo r  the problem of maximizing 
the expected number of retained PSU's was ob- 
ta ined by Keyf i tz  (1951). He presented an optimum 
procedure for  one PSU per stratum designs in the 
special case when the i n i t i a l  and new s t ra ta  are 
i d e n t i c a l ,  with only the select ion p r o b a b i l i t i e s  
changing. For the more general one PSU per 
stratum problem for  which the s t ra ta  d e f i n i t i o n s  
can change in the redesign, Perkins (1970, 1971), 
and Kish and Scott (1971) presented procedures 
that  are not opt imal .  Fel legi  (1966) considered 
a p a r t i c u l a r  type of two PSU's per stratum 
problem, but his procedure also is not opt imal .  

In th is  section a r e l a t i v e l y  simple optimal 
procedure is obtained by formulat ing the problem 
as a t ranspor ta t ion  problem. This procedure is 
very general with no r e s t r i c t i o n s  on changes in 
s t ra ta  d e f i n i t i o n s  or number of PSU's per 
stratum. Raj (1968) had previously employed 
the t ranspor ta t ion  problem approach, but only 
with the r e s t r i c t i v e  assumptions considered by 
Key f i t z .  

5.2 Notation 
For any set T le t  card (T) denote the number 

of elements of 7-. Let S denote a stratum in the 
new design, that- i s ,  S i--s a set of PSU's S I . . . . .  
S r .  Let F, G be ran-dom sets denoting the set 
of PSU's ~ t-he i n i t i a l  and new samples respec- 
t i v e l y  that are in _S, and le t  C I . . . . .  C m, D I ,  
. . . .  D n be the e l i g i b l e  choices for  F__ and G 
respect ive ly .  

F i n a l l y ,  for  1 .<i .<m, 1 .<j <n, 
1 <.k -<r, abbreviate 

P,i = P(F=Ci), ~j= P(G=Di). 
Pk P(SkEF), ~'k = P(S~EG), 

x i j  P(F=C i and G=Dj), c i j  = card (DjCICi). 

5.3 The Procedure 
We are now able to state the overlap problem 

more p rec ise ly .  F i r s t  note that  each new stratum 
S_ represents a separate problem. For each such S_ 
we seek to maximize 

subject to 

and 

E[card (GF~F)], 

P(F=Ci) = Pi, 1.<i <m, 

P(G=Dj) = ~j ,  l< j  .<n. 
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However, t h i s  is equivalent to solv ing the f o l -  
lowing t ranspor ta t ion  problem. Find x i j >  0 which 
maximize 

m n 
E [card (GCIF)] = 7 7 c i j x i j  , (5.1) 

i = l  j : l  
subject to 

n 
~ x i j  = Pi, 1 .<i <m, (5.2) 

j = l  

m 
7 x i j  = ~ j ,  I <j <n. (5.3) 

i=1 

Once the optimal x i - , s  have been obtained, 
the condi t ional  sel-6c~ion p r o b a b i l i t i e s  given 
that  C i was selected o r i g i n a l l y  are simply 

x 
P(G = DjlF = Ci) = i j ,  1 <j <n. 

Pi 
5.4 An Example 

In th i s  example the i n t i t i a l  and new designs 
are both one PSU per stratum, and the sampling 
was done independently in each i n i t i a l  stratum. 
We have r=5 and the fo l lowing p r o b a b i l i t i e s :  

J 
Pi 

o. 
IT 1 

I .  p~'s and ~ ' s  

1 2 3 4 5 

.50 .06 .04 .60 .10 

.40 .15 .05 .30 .10 

We are also given that  $1, Sp, S_~ were a l l  
in a s ingle i n i t i a l  stratum and S_4, _S 5 were in 
a second i n i t i a l  stratum. The C_i's and _D i ' s  
are then labeled" 

Ci=D i={S i } ,  1 <i 45, 
C6={S 1, S4}, C7={S 1, S5}, C8={S 2, S4}, 
C9={S 2, $5},  CI0={$3, $4},  CII={$3, $5},  C12=~). 

The Pi 'S and ~ i ' s  are then as in Table 2. 

2. Pi 'S and ~i 's  

"i 

I 2 3 ~. ~ 6 7 8 g !0 ~.I 12 
, , , , ,  

.15 .0~.8 .0~.2 .2~ .0~. ..~0 .05 .O;Z6 .a06 .02¢ .00¢ .12 

.~0 .15 .OS .~O .!0 

To solve the problem we f ind x i j ' s  > 0 which 
maximize (5.1) subject to (5.2) and (573), with 

I m=12, n=5, and the fo l low ing  c i j  s" 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

3. c i j ' s  

2 3 4 5 
I 0 0 0 0 
0 I 0 0 0 
0 0 I 0 0 
0 0 0 I 0 
0 0 0 0 I 
i 0 0 i 0 
i 0 0 0 i 
0 I 0 I 0 
0 I 0 0 I 
0 0 I I 0 
0 0 I 0 i 
0 0 0 0 0 

An optimal set of x_i j 's is given by Table 4, 
and the corresponding maximum value of the 
ob jec t ive  funct ion is .880. 

4. x i j ' s  which maximize (5.1) 

1 2 3 4 
1 .150 
2 .000 
3 .000 
4 .000 
5 .000 
6 .240 
7 .000 
8 .000 
9 .000 

i 0 .000 
I i .000 
12 .010 

.000 .000 .000 .000 

.018 .000 .000 .000 

.000 .012 .000 .000 

.000 .000 .240 .000 

.000 .000 .000 .040 

.000 .000 .060 ,000 

.000 .000 ,000 .050 

.036 .000 .000 .000 

.000 ,000 .000 .006 

.000 .074 .000 .000 

.000 .000 .000 .004 

.096 .014 .000 .000 

Remark 5.1: Although the previous l i t e r a t u r e  
has only been concerned with the problem of maxi- 
mizing the expected number of retained PSU's, 
there are cer ta in  s i tua t ions  where i t  is desired 
to minimize th is  quant i ty  instead. This could 
occur, for  example, i f  an e n t i r e l y  d i f f e r e n t  set 
of u l t imate sample uni ts is wanted in the new 
sample, but re tent ion of some small PSU's would 
also require the retent ion of some u l t imate 
sample un i t s .  The procedure for  solv ing the 
minimizat ion problem is essen t ia l l y  iden t i ca l  
to the maximization problem, except now (5.1) is 
minimized subject to (5.2) and (5 .3) .  

Remark 5.2: The procedure that  has been de- 
scribed in th is  section requires that  the j o i n t  
se lec t ion p r o b a b i l i t y  in the i n i t i a l  sample 
be known for  any set of PSU's that  are in the 
same stratum in the new design. However, i f  the 
i n i t i a l  sample was not chosen independently from 
stratum to stratum, th is  information may not be 
ava i lab le .  In Ernst (1982) an a l t e rna t i ve  over- 
lap procedure is presented which only requires 
knowledge of the j o i n t  se lect ion p r o b a b i l i t i e s  
in the i n i t a l  sample for  sets of PSU's that  are 
in the same i n i t i a l  and new s t ra ta ,  and which, 
in cer ta in  circumstances, is optimal among a l l  
procedures which require only th is  amount of 
in format ion.  This a l t e rna t i ve  procedure formu- 
lates the overlap problem as a l inear  program- 
ming problem, but not a t ranspor ta t ion  problem. 
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