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1. INTRODUCTION

A transportation model is a system of linear
constraints over a set of variables {yjj:
1<i<p, 1<j<q } of the form:

p
i=1

q

I Yij = Ti, 1<i<p (1.1)
=1

a P

z X Yij = t,
Jj=11i=1
¥i320,

ri, ¢j, t constant.

It is equivalent and often convenient to re-

present (1.1) by the standard transportation
array
(yij)pxq (ri)pxl
l
(cjlixg [(t)ix1

(1.2)
This is a tabular array, i.e., the horizontal and
vertical Tines denote the property that detail
entries along each row or column must add to the
corresponding row or column total entry and,
similarly, the ry (respectively, the Ej) must
add to the grand total entry t.

The transportation problem is that of minimiz-
ing a Tinear combination of the y's (called the
objective function) subject to the constraints
imposed by (1.2) (Dantzig 1963). Thus, transpor-
tation problems are linear programming problems.
The specialized tabular structure of the trans-
portation problem permits solution strategies
which are extremely efficient computationally,
even for problems which are large by conventional
linear programming standards (Glover, et al.
1974). In addition, transportation problems
enjoy the property that integer-valued r; and
Cj guarantee that optimal solutions are also
integer-valued (Dantzig 1963, pg. 305).

The book by Raj (1968) presents some early
work on applications of mathematical programming
theory to statistical problems. In this paper,
we present several applications of transportation
theory in statistics. Several of these problems
are solved by structuring the statistical problem

as a so-called '"controlled rounding problem"
which, by virtue of Cox and Ernst (1982), is
solvable as a transportation problem. The

problems of this type solved here fall into two
categories, general statistical problems which
involve replacing non-integers by integers. in
tabular arrays, and the controlled selection
problem in which survey sampling units which
are to be selected according to a specified
probability model also must satisfy additional
constraints (or controls).
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Portions of the original paper, principally the
list of references and the proofs justifying the
procedure of Section 4, have been omitted here
due to lack of space. The complete paper is
available from the authors.

2. CONTROLLED ROUNDING AS A TRANSPORTATION

PROBLEM

In typical usage, the term "rounding" connotes
conventional rounding to the base 1, in which a
real number a is replaced by ({'rounded to") the
next closest integer value (with 0.5 rounded to 1
by convention). Although conventional rounding
minimizes standard measures of the overall dis-
crepancy between corresponding rounded and un-
rounded values, it has one important shortcoming:
given a collection of unrounded values which add
to a total value, the sum of the corresponding
conventionally rounded values often fails to add

to the conventional rounding of the total. For
example, 0.9+0,5=1.4 but 1+1#1, Therefore, to
maintain additivity of rounded detail entries

to rounded totals in base 1 rounding, the re-
quirement that values round to the next closest
integer value must be relaxed. The natural
relaxation of this constraint in base 1 rounding
is to allow each entry to be rounded to either
of the two integer values adjacent to it. Under
these conditions, the problem of maintaining
additivity in the array of rounded values is
trivial for the case of one-way tables. Also
for one-way tables, it 1is somewhat more complex
computationally but conceptually no more demand-
ing to require, in addition to additivity, that
the rounding minimize one among several standard
measures of overall discrepancy between the
rounded and unrounded arrays. Other require-
ments can be met with relative ease in one-way
tables (Fellegi 1975). However, the problem of
constructing roundings which are additive and
achieve minimum discrepancy 1in two-way tables
is much more profound. The first author to study
this problem was Causey (1979). Causey postulated
the notion of controlled rounding in two-way
tables and provided a heuristic solution which
maintained additivity in some but not all exam-
ples. The method of Cox and Ernst (1982) solved
both the additivity and minimization of dis-
crepancy problems completely for both one and
two-way tables by modelling the so-called con-
trolled rounding problem (defined below) as a
transportation problem. The remainder of this
section is devoted to a summary of their work
and related questions. The reader unfamiliar
with transportation theory should consult
Dantzig (1963).

Let [a] denote the integer part of the real
number a. Given a tabular array A

(@i, Jmx1

|
(a.j)lxn I (a, )11

(a3 3 )mxn (2.1)




and a positive integer B, called the rounding

base, a controlled rounding of A 1is an array

R{A) which satisfies the conditions:

for each entry a of A (including

the totals entries), the corresponding (2.2)

entry R(a) of R{A) equals either B[a/B]

or B([a/BJ+1), viz., each entry of A is

rounded either down or up to an -

adjacent integer multiple of B,
and, -

the array R(A) is tabular. (2.3)

Usually optimal controlled roundings are
sought. These are controlled roundings which,
seeking to minimize the distortion to the data
resulting from replacing A by R(A), minimize a
predetermined measure of “discrepancy between A
and R{A) such as the sum of squares of differ-
ences between rounded and unrounded entries.

By dividing all entries of A by B and sub-
tracting the integer parts of the resulting
internal entries ajj from corresponding totals
entries, an equivalént problem is achieved in
which 0<aj:<l for 1<i<m, 1<j<n, and for which
B=1., Throlighout the remainder of this section,
we assume that these conditions hold. Cox and
Ernst (1982) formulate the controlled rounding
problem in terms of the {0,1} - variables

Xij =R(a")s

X}? = Ega}%; - [ai.%, (2.4)
X 5 = a ) - [a ;]

ML

and demonstrate that the existence of an R(A)

satisfying (2.2)-(2.3) is equivalent to the exist-

ence of a set of {0,1} values in the x-variables
satisfying the constraints imposed within the
tabular array

([aj,+11)mx1

(Xij)mxn (1-xi, Jmx1

[T =1
™

(1-x )n (X, )1x1 a, ;411 - [a

The controlled rounding problem thus is formu-
lated as a linear programming problem which, a
priori, may not have {0,1 } - solutions.
Transportation theory 1is then brought to bear
to demonstrate that { 0,1 } - solutions do exist.
and to produce such solutions, as follows.

The tabular array (2.5) represents a system
of 1linear constraints in the x-variables of
transportation type, and (2.7) represents a lin-
ear objective function in these variables whose
minimizing solutions over the set of { 0,1 }
values for the x's are sought. Because the
totals entries of (2.5) are integer-valued, the
triangular basis property of transportation
arrays guarantees that solutions to (2.5) which
optimize (2.7), if they exist, will be integer-
valued (Dantzig 1963, pp. 303-305). This proper-
ty is not lost when the authors further restrict
(2.5) to sets of [0,1] - values for the x's by
introducing the capacity constraints

0<x<1 (2.8)

on the x's. Therefore, optimal controlled
roundings of A, if they exist, correspond pre-
cisely to solutions of the transportation problem
(2.5), (2.7)-(2.8). It remains to show that
(optimal) controlled roundings of A always exist.
Cox and Ernst accomplish this by explicit con-
struction of a feasible solution to (2.5), (2.7)-
(2.8). The desired optimal controlled roundings
of A then are simply the integer-valued (i.e.,
{ 0,1 } -valued) optimal solutions of the capa-
city constrained transportation problem (2.5),
(2.7)-(2.8).

In summary, the authors have modelled an
otherwise complicated combinatorial or integer
programming problem completely as a feasible,

(2.5)

..] 1x1

W~ 3

m
(Ca,541D) 14 21[a1.+1]-[a,,] Ix1if,
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1 j=1

The authors choose the conventional norms,
1<p< = , as measures of discrepancy between R(A)
and A, viz.,

m 1/p

2 (R(A),A)= | 2 le )-a;51P ] s (2.6)
- 1J 1
i=1 j=1

and proceed to demonstrate that, for fixed p,
the set of all { 0,1 } - solutions to (2.5)
which minimize (2.6) equals the set of all

{ 0,1 } - solutions to (2.5) which minimize
the (linear) function
m n b 0
z=1 I ((1-a;;)P-(a::)F)x;:. (2.7)
P21 41 ij INER N

In effect, zp is a reformulation of the
norm which is Tinear. In addition, the authors
obtain an analogous but more complicated reformu-
Jation of the g, norm not reported here (Cox and
Ernst 1982, pp. 428-429).

n
[aj +1]+z [a,

j*-la, Jhixi-

capacity constrained transportation problem in
the x-variables whose optimal solutions neces-
sarily take on { 0,1 } - values. These solu-
tions may be computed using standard trans-
portation algorithms and computer software
which is extremely efficient computationally
(Glover, et al. 1974).

Extending these techniques, the authors also
solve completely the stricter zero-restricted
controlied rounding problem which, 1in addition
to (2.2)-(2.3), requires that, for B=1,

[R(a)-a]<1. (2.9)

This is equivalent to the statement that,
whenever an entry a of A is an integer, R(a)=a
is required. (Note In the general case,
(2.9) becomes |R(a)-a]<B and multiples a of B
are required to round to themselves.] The
zero-restricted controlled rounding problem is
modelled as a transportation problem by re-



placing the individual capacity constraints of
(2.8) by the restriction

0<x<0 (2.10)
for precisely those x-values whose correspond-
ing entries a of A are integers. Though posed
artifically, the restriction (2.10) preserves
the feasibility of the problem. Thus, the zero-
restricted controlled rounding problem always
can be solved. The practical value of a pro-
cedure which requires that integer values
always round to themselves 1is obvious. Its
importance is 1illustrated clearly in terms of
controlled selection in Section 4.

3. APPLICATIONS OF CONTROLLED ROUNDING IN

STATISTICS

In addition to improving the readability of
data values and enhancing their utility for
analysis, we may apply controlled rounding to
several statistical problems. In each of these
problems, a complete solution requires that
non-integer values {respectively, non-integer
multiples of B) be replaced by integers (re-
spectively, integer multiples of B) with mini-
mum overall distortion to the data.

An important application of
rounding is  that of controlling statistical
disclosure in tables of frequency counts. Data
gathered from individual respondents by organi-
zations such as the Census Bureau typically must
be kept confidential. The publication of tables
of frequency counts which directly or indirectly
disclose small counts pose a threat to individual
respondent confidentiality because small counts
permit users to identify individual respondents
and attribute characteristics to them. The abil-
ity of users to infer small counts from the pub-
lished data therefore must be thwarted. A solu-
tion to this problem is to round all entries in
the published tables to a fixed integer base B,
e.dg., B=5 or 10,

Conventional rounding fails to maintain addi-
tivity of detail items to totals and also may
be undone to infer small counts. Nargundkar
and Saveland (1972) address this problem for
the case of one-way tables by rounding fre-
quency count data randomly to a sufficiently
large base B. For example, with B=5, the value
2 rounds to O with probability 0.6 and to 5 with
probability 0.4. Under their method, although
the expected value of the sum of rounded values
always equals the sum of the unrounded values,
values rounded randomly may fail to add to round-
ed totals. Fellegi (1975) was able to achieve
both randomness and additivity to totals for the
case of one-way tables. In two-way tables,
whereas a single controlled rounding would pre-
serve the additivity condition (2.3), the indi-
vidual entries could not be said to have been
rounded randomly. However, as described in Sec-
tion 4, it is always possible to choose a set of
controlled roundings together with associated
probabilities of selection such that the expec-
tation of the rounded value for each entry equals
the original unrounded value. Therefore, con-
trolled rounding offers a viable alternative to
random rounding as a technique for controlling
statistical disclosure in frequency count tables;

controlled
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it preserves additivity and, subject to this
condition, can be made to come as close as pos-

sible to maintaining conventional rounding
throughout the table (Cox and Ernst 1982,
pg. 429).

Controlled rounding may also be used to pre-
vent statistical disclosure in microdata release.
Suppose for the two-way table A that ajj 1s the
sum of ki; quantities ajik, k=1, «e.s, kij» each
of which s to be rounded to a multiple” of B.
Assume as before that B=1. We perform controlled
rounding on the array A, so that each aj; is re-
placed by an adjacent integer R(a1J). Next, for
cell (i,j), we want to round some of the values
ajjk up and some down, so as to obtain a total
Rzaij) for the cell. To do this with a minimum
of distortion to the cell entries ajjk, let L
I [aijk]' we set the rounded

value of 3 jk to [a1 ik ¥l for the L largest
values among the Kkjj quant1t1es ajjk - [ajjkds
and to [ajjk] otherwise. As a posSible example
of application of this method, the quantities
ajjk might be personal incomes, to be rounded to
the nearest multiple of $5000 before presentation
so as to preclude identification of particular
individuals and/or their exact incomes, with i
and j corresponding to sex and race categories,
For each sex-race (i,j) cell we would reveal the
rounded sum, rather than the exact sum, of the
kij incomes for that category.

Controlled rounding is also applicable to
“raked" two-way tables of counts as considered
by Ireland and Kullback (1968). Given a two-way

denote R(aij) -

table A of integer counts ajj, we seek to
construct a revised table of integer counts A
whose row and column sums aj, and a_ j have been

predetermined, so as to minimize distortion to
the original tab]e. As an examp]e, "1" mi ght
correspond to "race," "j" to "“county," ajj to
the count of persons by race and county accord-
ing to the 1970 Census, aj and a_i to known
numbers of persons in 1978 (based on &emography,
administrative records or otherwise}, and a;; to
estimated numbers of persons in 1978. This pro-
cedure, iterative proportional fitting, is based
upon repeated uniform multiplication of entries
in each row and then each column to satisfy the
desired marginals. In general, this procedure
may result 1in non-integer values for the s 's,
in which case controlled rounding with B=1"can
be applied to A to obtain an integer array as
desired.

For two-way stratified random sampling, one
often uses Neyman allocation or a similar allo-
cation scheme for choice of stratum sample sizes
so as to minimize total sample size or a derived
measure of cost subject to satisfying prespeci-
fied variance constraints. In such procedures,
one obtains a two-way table of non-integer
values which may likewise be optimally rounded

to integers by means of controlled rounding.
In the area of raking, moreover, one will
sometimes have a table A with so many zero

entries that the iterative proportional fitting
algorithm or an alternative fails to converge to
a table A which has the desired new row and
column sums a;,  and a These zeros may be
either sampling or struc%ura] zeros. This would
happen because raking requires zeros to appear in



A whenever they appear in A . Under these cir-
cumstances one may use a transportation theory
approach to attempt to regain solvability, as
follows. Use general transportation theory to
construct a table A, if it exists, with the de-
sired marginals and structural zeros, for which
the sum of the internal entries corresponding to
the sampling zero entries of A is minimal. Then,
if this sum is nonzero, subtract from aj, and a,

the entries of A correspond1ng to the samp11ng
zeros and try raking A again with the modified
marginals. If, perhaps after repeated applica-
tions of this procedure, the raking algorithm
converges, all subtracted elements are added to
the corresponding entries of the resulting raked
table to produce the final raked array. Another
approach to this problem is to "smooth" A by a
Bayesjan technique (Bishop, et al. 1975, Ch. 12).

4, CONTROLLED SELECTION

Consider a population stratified by two cri-
teria of stratification, m rows and n columns,
resulting in a two-way table of mn strata ce]]s.
A sample of size r is to be selected, with s;
denoting the expected number of sample units 1in
the ij~th cell. Let S denote a tabular array
with internal elements (sji)pxn. We wish to
limit the deviation from sj; of the number of
sample units in the ij-th cell to Tess than one,
and also similarly Timit the deviation for the
row and column totals, while strictly maintain-
ing the requirements of probability sampling.
This will be done by construction of a finite
sequence Ny, 1<k< g, of zero-restricted con-
trolled roundings of S (with B=l), together
with associated probabilities of selection,
where Ny ks the ij-th entny for the k-th array
1<i<m, 1<J<n, 1<k< 2, is the number “of sample
units in the ~ij-th cell if the k th array
is selected, and satisfies kli,3)

The above conditions, which can %e genera?
ized to dimensions greater than two, are a
special case of conditions to be satisfied
for the sampling technique known as controlled
selection, first described by Goodman and Kish
(1950). An example was given in that paper to
illustrate the application of controlled selec-
tion but no general method to solve such prob-
lems was presented. Bryant, Hartley, and Jessen
(1960) developed a simple method for approaching
the two-way stratification problem that we de-
scribed above. However, their method does not in
general satisfy all the requirements stated in
the previous paragraph exactly. Jessen (1970)
considered the identical requirements that we
have imposed, but presented no general procedure
for obtaining a set of arrays that satisfies
these conditions. Groves and Hess {(1975) pre-
sented a formal algorithm for obtaining solu-
tions to the two-dimensional and also the much
more complex three-dimensional problem. They
made no claim however, that their algorithm will
always yield a solution, and there are indeed
simple examples where it fails, even in the
two-way case.

In this section we present an algorithm which
employs the results described in Section 2 to
completely solve the two-dimensional problem,
together with an illustrative example, and out-
line how this construction may be modified to

additionally satisfy restrictions on subarray
totals. It is also shown in the complete paper,
but omitted here due to lack of space, that the
three-dimensional problem does not always have
a solution,

4,1 The Algorithm

For purpose of notational simplicity, through-
out this section and the Appendix, the i-th row
total, the j-th column total and the grand total
of a tabular {m+l)x(n+l) array A will be denoted
respectively by aj(n+1), a(m+1)j and A(m+l)(n+1),
as alternatives to a; , a .j and a_ .

We proceed to obtain & solution to the con-
trolled selection problem S by recursively
defining a sequence of arrays N1=(n1j1),
Np=(njjp)seees Ny = (nj52 ), and associated
probabilities pj, ..., Py, satisfying

N¢ is a zero-restricted controlled rounding

of S for all k, (4.1)

L
L p=l, (4.2)

k=1

' L
E(njsklisd) = T njsk Pk = Sij, 1<i<m+l, 1<j<n+l,
J k=1 ' J T4.3)

To define N, we beg1n with the tabular
array Ay = (ajj E§ S, while for k>1,
A4 will be defined 1n terms of Ny bk

N¢ is simply a zero-restricted controlled
rounding of Ay, while to define py, first let

di = max{|njjk-ajjk|: 1<i<m+l, 1<j<n+l}, (4.4)

and then let
pk = 1l-dg if k=1,

k-1
= {1 -1 py) (1-dyg) if k>1, (4.5)
i=1
k
Now if dy = 0, then & pj=1 and we are done, that
i=1

is, Nis «eey N together with the associated
probabilities py, ..., px provide a solution to
the controlled selection problem. Otherwise, we
define Ay4q by Tetting

3ijk = Mgk
Milkel) T Mgkt T (4.6)
for all i,j, and then proceed to define Ny4i,

Pk+1-

4.2 An Example.
For this example

0.4 2.0 0.0 2.4 1 2 013
1.2 0.0 1.0 2.2 1 0 1] 2
0.2 0.0 0.0 0.2 0 0 070
Ay =S=1.2 0.4 0.2 | 1.8 Ny=1 1 012
1.0 0.6 0.2 | 1.8 1 1 0} 2
0.0 0.4 0.4 0.8 0o 0 171
0.0 0.2 0.4 0.6 0 0 010
0.0 0.0 0.2] 0.2 0 0 o]0
4,0 3.6 2.4 |10.0, 4 4 2110,
dl = .6, pl = .4,



0 2 0 2 0 2 0|2
11/3 0 1 21/3 2 0 113
1/3 0 0 1/3 0 0 0O
A =11/3 0 1/3 12/3N =1 0 142
1 1/3 1/3 12/3 1 1 0|2
0 2/3 0 2/3 0 0 00
0 1/3 2/3 1 01 01
0 0 1/3 1/3 0 0 0] 0
4 31/3 2 2/3]10 s 44 2110,
do = 2/3, p2 = .2,
0 2 0 2 0 2 0 2
1 0 1 2 1 0 1 2
0.5 0 0 0.5 1 0 © 1
Az = 1.5 0 0 1.6 N3=1 0 0 1
1 0 0.5| 1.5 1 0 1 2
0 1 0 1 o 1 0 1
0 0 1 1 0 0 1 1
0 0 0.5] 0.5 0 0 0 | 0
4 3 3 10, 4 3 3 10,
d3 = .5, p3 = .2,
0 2 0] 2
1 0 12
0 0o 00
Ng = Ag =2 0 0 2
1 0 o0]1
0 1 01
o 0 1]1
0 0 1411
4 3 3 {lo,
dg =0, pg = .2.
Note that the solution given 1is not wunique.
4.3 Subarray Restrictions
Suppose that S 1is partitioned into a set
S1s +ees Sg OF subarrays. Let Ay denote

the subarrays of Ay and Ng respec%1ve1y corre-
sponding to S;. It is desired to obta1n
—§4 3)

k=1, ..., %, satisfying not only
but also the additional condition that Ny s a
zero-restricted controlled rounding of f for

all k,j. Using preliminary results of Cox, sub-
ject to one limitation, this may be accomplished
by proceeding exactly as in Section 4.1 with the
following two exceptions. First, for each k, N¢
is now chosen so that not only is Ny a restricted
controlled rounding of Ag, but also Ngi is a
restricted controlled rounding of Ay y for-all j.
Secondly, dy is now defined to maximize the
absolute value for Ny - Ag not only among all
internal entries, and row and column totals, but
also for the row and column subtotals for each
subarray of the partition. In particular, this
approach yields a formal procedure for solving
controlled selection problems, such as the
example of Goodman and Kish (1950, pg. 356), in
which there is control on subadditivity in one
dimension.
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S represents a separate problem.

5. OPTIMAL METHOD FOR MAXIMIZING THE OVERLAP
BETWEEN SURVEYS

5.1 Introduction

Consider a periodic survey with a multistage
stratified design. At some point a redesign is
undertaken in which the primary sampling units
(PSU's) remain the same but the strata and
selection probabilities change because of new
data or changes in the design. The new sample
PSU's may of course be selected independently
of the initial PSU's. However, generally addi-
tional costs are incurred with each change of
sample PSU. Consequently, it may be considered
desirable that as many of the initial PSU's
as possible be retained in the new sample, while
strictly maintaining the requirements of prob-
ability sampling.

The first result for the problem of maximizing
the expected number of retained PSU's was ob-
tained by Keyfitz (1951). He presented an optimum
procedure for one PSU per stratum designs in the
special case when the initial and new strata are
identical, with only the selection probabilities
changing. For the more general one PSU per
stratum problem for which the strata definitions
can change in the redesign, Perkins (1970, 1971),
and Kish and Scott (1971) presented procedures
that are not optimal. Fellegi (1966) considered
a particular type of two PSU's per stratum
problem, but his procedure also is not optimal.

In this section a relatively simple optimal
procedure is obtained by formulating the problem
as a transportation problem. This procedure fis
very general with no restrictions on changes in
strata definitions or number of PSU's per
stratum. Raj (1968) had previously employed
the transportation problem approach, but only
with the restrictive assumptions considered by
Keyfitz.

5.2 Notation

For any set T let card (T) denote the number
of elements of T. Let S denote a stratum in the
new design, that is, S 7s a set of PSU's Sqp,...,
Spe Let E_ G be random sets denoting the set
of PSU's in the initial and new samples respec-
tively that are in S, and let Cyp,..., Cms D1
be the e11g1b1e choices for F and G
respectively. - -

vees Dy

Finally, for 1 <i <m, 1 <j <n,
1 <k <r, abbreviate

pi = P(F=Cy), mj= P(G=Dj).
P = P(SKEF), 7% = P(Si€G),
Xij = P(F=C; and G=Dj), cjj = card (ujnci).

5.3 The Procedure

We are now able to state the overlap problem
more precisely. First note that each new stratum
For each such §
we seek to maximize -

E[card (GNF)],
subject to
P(F=Cy) 1<i

= Pis <,

and
P(G=Dj)

s 1< «n.



However, this is equivalent to solving the fol-
towing transportation problem. Find xjj> 0 which

maximize
m n
E [card (GNF)] =3¢ = CijXijs (5.1)
i=1 j=1
subject to
n
T oXjj = pis 1 i am, (5.2)
J=1
m
IoXjj = omy, 1< o<n. (5.3)
i=1
have been obtained,

Once the optimal xjjts
the conditional se]ec%ion probabilities given
that C; was selected originally are simply

X, . .
Ci) = i, 1 « «.
Pq
5.4 An Example
In this example the intitial
are both one PSU per stratum,
was done independently in each

and new designs
and the sampling
initial stratum.

We have r=5 and the following probabilities:
1. p%'s and n§'s
i 1 2 3 4 5
o .50 .06 .04 .60 .10
L .40 .15 .05 .30 .10

We are also given that Sj, Sp, S3 were all
in a single initial stratum and S4, Sy were in
a second initial stratum. The Ci's and Dj's
are then labeled:

Ci=Dj={S;}, 1 <i <5,
Cg=151> Sa}s Cy={S1, S5}, Cg=1{Sp, Sy},
C9=152, S5}, C10=1{53, S}, C11=183, S5}, Cyp=0.

The pj's and wj's are then as in Table 2.

2. pj's and mj's

1 2 3 4 5 6 7 3 § 10 11 12

p¢j.l5 .018 .012 .24 .Q¢ .20 .0S .036 .CO6 .Q2¢ .QQ4 .12
*il.40 .15 .08 .30 .10

To solve the problem we find xjj's > 0 which
maximize {5.1) subject to (5.2) and (5.3), with
m=12, n=5, and the following gjj's:
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3. cij's

—

N = C WO O WN |~
QOO CORHOOOORF
OCOoOCHHRPRPOOOOORFOIN

O CODOOOOoO—~,OOoOjw
OCHOROFROFOO O
OO, OFRP OO O

An optimal set of §jj's is given by Table 4,

and the corresponding maximum value of the
objective function is .880.
4, xij's which maximize (5.1)

i 1 4 3 4 5

1 .150 .000 .000 .000 .000

2 .000 .018 .000 .000 .000

3 .000 .000 .012 .000 .000

4 .000 .000 .000 240 .000

5 .000 .000 .000 .000 .040

6 .240 .000 .000 .060 .000

7 .000 .000 .000 .000 .050

8 .000 .036 .000 .000 .000

9 .000 .000 .000 .000 .006

10 .000 .000 .024 .000 .000

11 .000 .000 .000 .000 .004

12 .010 .096 .014 .000 .000

Remark 5.1: Although the previous literature

has only been concerned with the problem of maxi-
mizing the expected number of retained PSU's,
there are certain situations where it is desired
to minimize this quantity instead. This could
occur, for example, if an entirely different set
of ultimate sample units is wanted in the new
sample, but retention of some small PSU's would
also require the retention of some ultimate
sample units. The procedure for solving the
minimization problem is essentially identical
to the maximization problem, except now (5.1) is
minimized subject to (5.2) and (5.3).

Remark 5.2: The procedure that has been de-
scribed in this section requires that the joint
selection probability in the initial sample
be known for any set of PSU's that are in the
same stratum in the new design. However, if the
initial sample was not chosen independently from
stratum to stratum, this information may not be
avaitable. In Ernst (1982) an alternative over-
lap procedure 1is presented which only requires
knowledge of the joint selection probabilities
in the inital sample for sets of PSU's that are

in the same initial and new strata, and which,
in certain circumstances, 1is optimal among all
procedures which require only this amount of

information. This alternative procedure formu-
lates the overlap problem as a linear program-
ming problem, but not a transportation problem.



