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I. Introduction 

A sample survey is an instrument for making in- 
ferences about a finite population using obser- 
vations on only a part of the elements in the 
population. In order to improve the precision of 
estimates of population parameters and to cor- 
rect for biases caused by problems met in the 
sampling process, often some kind of weighting 
is carried out. Weights are assigned to the ob- 
served elements in such a way that proper esti- 
mates are obtained by simple summation of the 
weighted observations. 

Bailar et al. (1978) describe weighting as a 
currently used adjustment method to correct for 
a possibly existing bias. Also Platek and Gray 
(1980) and LindstrSm et al. (1979) present 
weighting as an important method to correct for 
bias due to non-respons. Even if no problems are 
encountered in the sample survey process it may 
still be worthwhile to perform some kind of 
weighting. Post-stratification (see e.g. Holt 
and Smith, 1979) is a well-known and much used 
weighting method which often produces estimators 
which are much more precise than direct estima- 
tors such as the sample mean multiplied by the 
population size. 

This paper presents a general framework for 
weighting based on estimators constructed from 
linear models. It will be shown that classical 
weighting emerges from the theory as a special 
case. Due to the generality of the theory it 
presents a number of other possibilities for 
weighting which are especially useful in situa- 
tions where classical weighting may cause 
trouble. More details on the theory can be found 
in Bethlehem and Keller (1983). 

In sections 2 and 3 the basic notations are 
introduced. Section 4 presents the regression 
estimator. In section 5 the theory is applied to 
simple random sampling. Section 6 shows that 
post-stratification is a special case of the 
theory. Section 7 offers a solution for the si- 
tuation in which post-stratification causes 
trouble. Applications of the theory are given in 
section 8. In section 9 a computer program is 
discussed and section 10 gives some suggestions 
for models for weighting which are not included 
in the theory. 

2" Population and sample 

Let the targetpopulation U of the sample survey 
consist of N identifiable elements, which may be 
labeled 1,2,...,N. Associated with each element 
k are the (unknown) value ~ of a quantitative 
targetvariable and the p-vector x~=(x~1,x~p,... , 

x k )' of values of p auxiliary "~ari~l~-. Let 
Y=~Y 'Y ' 'YN )' denote the vector of all 

1 2 "'" 
values of the £arget variable. Let X be the Nxp- 
matrix of values of the auxiliary variables, the 
k-th row of X corresponding to x' ~. 

We assume the objective of t~e sample survey 
to be estimation of the population mean 

y = l~y/N , (2.1) 

where i. is the N-vector consisting of one's. 
N 

The p-vector of population means of the p auxil- 
iary variables is denoted by 

x = X'IN/N . (2.2) 

We restrict ourselves to sampling without re- 
placement. In that case a sample from the finite 
population U can be denoted by an NxN-diagonal 
matrix T. The k-th diagonale element t k of T as- 
sumes the value I of the corresponding element 
is in the sample, and t. assumes the values 0 if 
this is not the case. T~e expected value of T is 
equal to 

E(T) = n , (2.3) 

where ~ is the N×N-diagonal matrix of first 
order inclusion probabilities 1[ i- 1[_,...,1[_J For 

2 N 
the computation of the variance 6f estimators we 
will make use of the NxN-matrix A of which the 
ij-th element is equal to 

I[.. 
l] 

13 1[i1[j 
- 1 , (2.4) 

where ~.. is the second order inclusion proba- 
1 

bility a~d 1[.. is to be taken equal to ~.. Fur- 
ii i . 

thermore for variance estimation it is convenl- 
ent to use the NxN-matrix A of which the ij-th 
element is equal to 

I I 

---~-~ ) . (2 5) 
kij= (~.1[. ~.. 

1 j 1 j  

Observe that in this notation the Horvitz-Thomp- 
son (1952) estimator for the population mean for 
y can be written as 

-~ ' -ITy/N (2 6) YHT = INE ' 

with a variance equal to 

A 

V(YHT) = y'Ay/N 2 . (2.7) 

An estimate of the variance by Horvitz and 
Thompson (1952) is equal to 

V(YHT) = y'TATy/N 2 . (2.8) 
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3. Th e regression model 

If auxiliary variables are correlated with the 
target variable, they can be used to construct 
precise estimators. Such a relationship implies 

that for a suitably chosen p-vector B=(BI,B2, 
...,B_)' of regression coefficients, the ele- 
mentsPin the N-vector 

= y- XB (3.1) 

of residuals vary less than the values of target 
variable itself. Observe that all quantities in 
(3.1) are fixed numbers. There are no random 
variables. An obvious criterion to measure the 
variation of the residuals is the residual sum 
of squares 

e'E = (y-XB)'(y-XB) . (3.2) 

Application of ordinary least squares results in 

B = (X'X)-iX'y , (3.3) 

as the value for which (3.2) is minimized. In 
general the vector B will not be known, particu- 
larly because the vector y is unknown. The obvi- 
ous solution to this problem is to estimate B 
from the sample by 

= (X'E-ITx)-Ix'E-ITy . (3.4) 

The estimator ~ is not unbiased, ~ut it can 
be shown that the bias is of order n -~. So ~ is 
approximately unbiased for large samples. 

4. The regression estimator 

It is not our first objective to estimate B. 
What we need is an estimator for the population 
mean y. We define the regression estimator of y 
by 

A 

YR = I~/N = x'~ . (4.1) 

Since ~ is a consistent estimator of B, X~ is a 
consistent estimator of XB. But (4.i) is a con- 
sistent estimator of y if, and only if x'B=y and 
that is the case if, and only if there exists a 
p-vector c of fixed numbers such that Xc=l N. . 

Under the restriction Xc=l the regresslon 
estimator can be written in t~e somewhat differ- 
ent form 

YR = IN ~-ITy/N + (I~X- I~-ITx)~/N . 

(4.2) 

We will call estimator (4.2), or its equivalent 
(4.1) the regression estimator. In case of 
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simple random sampling and use of only one aux- 
iliary variable estimator (4.2) reduces to the 
simple regression estimator as e.g. given in 
Cochran (1977). The estimator presented in (4.2) 

can be considered as a generalized version of 
this simple regression estimator. It is general- 
ized in two ways: more than one auxiliary varia- 
ble can be used and any without replacement 
sampling design may be applied. 

The regression estimator is not an unbiased 
estimator. However, it can be shown that its 
bias is of order i/n. The variance of the esti- 
mator can be approximated by 

A 

V(YR) -" ~'AE/N 2 . (4.3) 

Furthermore (4.3) can consistently be estimated 
by 

V(y R) = ~TAT~/N 2 (4.4) 

where ~=y-X~. 
The use of the proposed regression estimator 

implicitly produces weights which are to be 
assigned to the observations. Introducing the N- 
vector of weights 

w n-I TX(X ' n-i TX) -I- 
---- X , 

^ 

and recalling that YR can be written as 

(4.5) 

A 

YR = x'(X'K-ITx)-Ix'K-1Ty ' (4.6) 

it is obvious that 

A 

YR = w'y . (4.7) 

If we used the weights to estimate the means of 
the auxiliary variables we would get 

w'X = x'(X'~-ITx)-Ix'~ -I TX = x' . (4.8) 

Indeed the weights balance the sample such that 
the sample distribution of the auxiliary varia- 
bles agrees the population distribution of these 
variables. The regression estimator is a proper 
means for computing weights. 

5. Simple random sampling 

The first illustration of the theory, which was 
developed in section 4, is simple random 
sampling. Introducing Ys as the n-vector of 
sampled values of the target variable and X as 

s 
the nxp-matrix of auxiliary variables correspon- 
ding to sampled elements, the regression estima- 
tor reduces to 

A 

YR = Ys + (x - Xs )'~ , (5.1) 

in which y is the mean of the elements in Ys' 
x is the %-vector of sample means of the aux- 
iliary variables, and 
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: (X'sXs)-IX'Yss " (5.2) 

In (5.1) we once more recognize the simple re- 
gression estimator, be it that here x, x and 
are vectors instead of scalars. Working Sout the 
variance (4.13) in this case gives 

A 

V(YR) " inf (y-XB)'(y-XB)/(N-1) . (5.3) 

This result confirms the approximation given by 
Cochran (1977), in case of the simple regression 
estimator. This approximated variance can con- 
sistently be estimated by 

A 

V(YR) l-f = ~ (Ys-Xs ~)'(ys-xs~)/(n-l) • 

(5.4) 

So the search for a precise estimator comes 
down to looking for a linear model which fits 
the data as good as possible. It means that we 
can use the variable selection techniques from 
the theory of linear models. 

6.0neTway-stratification 

The use of the regression estimator is not res- 
tricted to quantitative auxiliary variables. In 
this section and the sections 7 and 8 we will 
explore the case of qualitative auxiliary varia- 
bles. In this section we will consider the use 
of one such variable. 

In order to include a qualitative variable in 
a linear model, it is replaced by as much dummy 
variables as it has categories. Suppose our aux- 
iliary variable has p categories. Then it in- 
duces a division of the population into p non- 
overlapping sub-populations (strata). To each 
category there corresponds a dummy variable 
which assumes the value i if the particular ele- 
ment is contained in that stratum, and otherwise 
it assumes the value 0. So, for every element 
only one dummy variable assumes the value I; all 
other values are 0. Consequently the matrix X 
consists of N rows, each row of which contains 
exactly one i. The columns of X sum up to the 

sub-population totals NI,N2,...,Np, where NI+N2+ 
...+N =N. 

FrOm the thus structured population a simple 
random sample without replacement of size n is 
selected. So we can keep on using the notation 
of section 5. The columns of X will sum up to 

s 
the (random) sample totals nl,n2,...,n in the 

I 
strata, where n1+n~+...+n =n. The ~ector of 

I g 
population means of the a~iliary variables is 
equal to x=(NI,N2,...,N )'/N and the correspon- 
ding vector of sample p means is equal to ~ = 

(nl~,... ,~h~),/n" s 
to special structure of the matrix X 

the matrix X'X is a diagonal matrix with diag- 
onal element~ ~qual to nl,n2,...,n . Substitu- 
tion in (5.2) results in P 

: (y(1) -(2) -(p)), 
s 'Ys ' "" " 'Ys 

(6.1) 

where -( ~y~hj is the sample mean of the target 
. 

variable zn stratum h (h=l,2,...,p). Substitu- 
tion of (6.1) in (5.1) gives as the regression 
estimator in this case 

P A 

-~h)/N = yp , (6 2) YR = E NhY s S " 
h=l 

A 

in which YPS is the traditional post-stratifica- 
tion estimator. So post-stratification is a spe- 
cial case of the regression estimator. Since 
only one qualitative variable is used we will 
call this case one-way-stratificati0n. Section 7 
will deal with multiway stratification. 

The estimator YPS is only defined if there is 
at least one observation available in every 
stratum. The same applies for the regression 
estimator. If there are no observations in one 
or more strata, then some of the diagonal ele- 
ments of X'X are zero, in which case X'X is 

S S S S 
singular. 

Application of (5.3) gives an approximated 
variance equal to 

V(YR). l-f P Nh-i 2 
--~- ~ Sh , 

h=l 
(6.3) 

2 
in which S is the variance (with denominator 
N -I) in subpopulation h. This is a somewhat 
d~fferent expression than given by e.g. Cochran 
(1977), p. 135. The differen_~e is mainly due to 
leaving out terms of order n in (6.3). 

7. Multiway stratification 

Application of post-stratification is not res- 
tricted to the use of one qualitative auxiliary 
variable. The theory is equally well applicable 
for more than one qualitative auxiliary varia- 
ble. Suppose we have m such variables with num- 
bers of categories equal to ~,p~f..,p~ Now 
every combination of values L,= auxlliary 
variables induces a stratum, the total number of 
strata being equal to p=PlXppx...xp . If the m 
qualitative auxiliary variabXes ar~ replaced by 
p dummy variables then the theory of section 6 
can be applied. 

If the theory of linear models is restricted 
to use of qualitative independent variables it 
is usually called analysis of variance. That is 
why the terminology we are going to introduce 
has its roots in the analysis of variance. The 
auxiliary variables correspond to factors and 
the strata to cells. Stratification in which 
strata are constructed on the basis of all poss- 
ible combinations of values of the auxiliary 
variables corresponds to an analysis of variance 
in which the model contains the highest order 
interaction. That is the reason why we call this 
type of post-stratification complete muZtiway 
st ratificatipn. Complete multiway stratification 
is not always practicable. Two major problems 
may be present itself. 

The first problem is the problem of empty 
strata. If there is so much auxiliary informa- 
tion available that it allows complete multiway 
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stratification, the resulting number of strata 
may be so large that there exists a risk of 
empty strata in the sample. In daily practice 
this problem is usually solved by collapsing 
strata. As this is frequently done by hand it is 
a time consuming process. 

The second problem is created by lack of aux- 
iliary information. Sometimes there is auxiliary 
information available, but is not detailed 
enough to allow complete multiway stratifica- 
tion. For instance, complete multiway stratifi- 
cation by sex, age, marital status and region 
requires knowledge of the population totals for 
each combination of sex, age, marital status and 
region. If the totals are known for each combi- 
nation of sex, age, marital status and separate- 
ly for each region, than complete stratification 
is not possible. 

Inc0mplete mu!tiway stratification offers a 
way out of the situations described above. If 
the highest order interactions are removed from 
the model and replaced by lower order interac- 
tions then in many cases the problems disappear. 
To describe an incomplete multiway stratifica- 
tion it is convenient to use a simple notational 
language. Complete multiway stratification by 
sex, age, marital status and region is denoted 
by SEX×AGE×MARITAL STATUSxREGION. In incomplete 
multiway stratification which uses the popula- 
tion totals for each combination of sex, age and 
marital status on the one hand and the popula- 
tion totals for each region on the other hand is 
denoted by (SEXxAGE×MARITAL STATUS)+REGION. The 
rows of the matrix X will in this last example 
not contain one I, but two l's. One set of dummy 
variables indicate the combination of sex, age 
and marital status, and another set of dummy 
variables denote the region. A consequence of 
such stratification designs is that the matrix 
X'X can become singular. However, this singu- 
l~r~ty can easily be removed by deleting redun- 
dant columns from X. 

Stratification comes down to estimation of 
the parameter vector 8. The number of parameters 
to be estimated is smaller in incomplete strati- 
fication than in complete stratification. So 
incomplete stratification decreases estimation 
problems. For instance, if sex has 2 categories, 
age i0 categories, marital status 4 categories 
and region ii categories, then SEX×AGE× MARITAL 
STATUS×REGION comes down to estimation of 880 
parameters, whereas (SEXxAGE×MARITAL STATUS)+ 
REGION requires at most 91 parameters to be 
estimated. On the other hand the model behind 
the incomplete stratification might not fit as 
well as the model behind the complete stratifi- 
cation. However, we believe that in practical 
situations the incomplete stratification model 
is still based on so many parameters that this 
model fits nearly as well as the complete stra- 
tification model. 

8. Examples 

The theory was tested on census data of a Dutch 
municipality. Availability of data on the total 
population enabled us to compute variances. For 
the population two auxiliary variables are 
known: sex (2 categories) and age (5 catego- 

ries). Complete multiway stratification (SEXx 
AGE) would result in 5x2=i0 strata. In incom- 
plete stratification (SEX+ AGE) there would in 
fact be two stratifications, one by sex and one 
by age. The design matrix has 6 columns. The 
first column indicates the constant term in the 
model, the second column indicates sex and the 
remaining four columns age. The matrix X'X not 
only contains the sample sizes in the i~ ~oss- 
ible combinations of sex and age but also the 
marginal sample totals of sex and age. In gener- 
al X'X contains interactions of order I higher 
thanSt~e matrix X . The population vector x only 
contains the 6 marginal means corresponding to 
the column means of X, i.e. unity, the propor- 
tion of of male, the proportion of people under 
20, etc. The auxiliary information was used to 
estimate the number of people with a job, based 
on a simple random sample without replacement of 
size i00. 

Tabel 8.1 contains the (approximated) vari- 
ances of 5 different types of stratification. If 
possible, variances from the classical theory 
are also given. In case of normal stratification 
the differences between the variances are mainly 
created by leaving out terms of order i/n in the 
regression estimator. When this term is also 
left out in the classical variance the resulting 
variance is very close to the variance of the 
regression estimator. It is obvious that with 
regard to the variance, incomplete multiway 
stratification takes a position between complete 
multiway stratification and oneway stratifica- 
tion. 

Table 8.1. Variance of the estimator of the num- 
ber of people with a job for several 
types of stratification (n=100) 

stratification variance of classical 
the estimator variance 

no stratification 34816 34816 
SEX 30488 30799 
AGE 24302 25389 
SEX+AGE 20007 
SEXxAGE 17378 15819 

We also illustrate our approache with a small 
example from sampling practice. The Dutch Crimi- 
nal Victimization Survey 1982 estimates, among 
other things, the percentage of crime victims in 
the Netherlands. From one of the strata, the 
city of Rotterdam, a simple random sample was 
selected. The number of observations was 540. 
Three auxiliary variables were available for 
weighting purposes: age (11 categories), sex (2 
categories) and marital status (2 categories). 
Complete multiway stratification (agexsexxmari- 
tal status) was not possible due to a number of 
empty cells. The next best stratification was 
obtained by simultaneous consideration of 
crossings of two variables. Since agexmarital 
status also produced some empty cells, incom- 
plete stratification (AGExSEX)+(SEXxMARITAL 
STATUS) was carried out. So only the population 
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totals are needed for every combination of age 
and sex, and every combination of sex and mari- 
tal status. Table 8.2 contains the results for a 
number of possible stratifications. As the stra- 
tification uses more auxiliary information the 
precision of the estimates increases. This was 
to be expected. However, there is also an in- 
creasing shift of the estimate. Weighting does 
not only increase the precision, but apparently 
is also able to reduce a bias caused by non- 
sampling errors such as non-response. 

Table 8.2. The percentage of victims in Rotter- 
dam in the Dutch Criminal Victimiza- 
tion Survey 1982 

. . . . . . .  . 

stratification estimate stimated 
standard 

error 
,, . .  . ,..,.. , . . 

no stratification 40.74 2.11 
AGE 42.11 2.03 
SEX 40.73 2.11 
MARITAL STATUS 40.82 2.11 
AGE×SEX 42.45 2.02 
SEX×MARITAL STATUS 40.82 2.11 
AGE+SEX×MARITAL STATUS 42.10 2.03 
(AGExSEX)+(SEXxMARITAL STATUS) 42.40 2.02 

9. A cpmputer program 

At the moment the Netherlands Central Bureau of 
Statistics is implementing the theory of weigh- 
ting. The program LINWEIGHT automatically se- 
lects a suitable stratification. To be able to 
do this, the program requires two data files: a 
file with sample data (target variables, auxili- 
ary variables, selection weights) and a file 
with available population information. Further- 
more the user must specify the sampling design. 
The program can handle stratified two-stage 
samples. Given the population data and the spe- 
cified minimal number of observations per post- 
stratum the program selects a proper weighting 
scheme and computes estimates of population 
means and their estimateds standard errors. 

The deck-setup of LINWEIGHT agrees to a large 
extend to the SPSS-conventions. This facilitates 
use of the program in an environment where SPSS 
is the most important data analysis package. An 
example of a deck-setup is given below. 

RUN NAME ESTIMATION OF THE MEAN 
INCOME 

SAMPLE FILE PROV, MUN, MUNWGT, SEX, AGE, 
INCOME, WGT 

N OF CASES 10240 
POPULATION FILE VARIABLES=PROV, SEX, TOT / 

FREQUENCY=TOT / CASES=22 / 
VARIABLES=PROV, AGE, TOT / 
FREQUENCY=TOT / CASES= 110 

SAMPLING DESIGN STRATUM=PROV / 
CLUSTER=MUN / 
CLUSTER SAMPLING=PSS / 
CLUSTERWEIGHT=MUNWGT 

SAMPLING=SRS / WEIGHT=WGT 
STRATIFICATION FILLING=I5 / 

AUXILIARIES=PROV(II), 
SEX(2), AGE(10) / 

TARGETS=INCOME 
OPTIONS i, 2, 3 
READ INPUT DATA 
FINISH 

The RUN NAME card specifies an identifying text. 
The SAMPLE FILE card gives the names and order 
of appearances of the variables in sample file. 
N OF CASES gives the number of cases in the 
sample file. The POPULATION FILE describes the 
structure of the population information. In the 
above example apparently population totals are 
available for each combination of province and 
sex, and for each combination of province and 
age (and not for each combination of province, 
sex and age). The variable TOT contains the 
population total for each combination of values 
of the auxiliary variables in the population 
file. The SAMPLING DESIGN card specifies the 
sampling design. In this case a stratified two- 
stage sample is selected. Strata are identicated 
by the variable PROV, clusters by the variable 
MUN. Clusters are selected with unequal proba- 
bilities and the selectiod weights are contained 
in the variable MUNWGT. Within clusters elements 
are selected simple random without replacement 
and the selection weights are contained in the 
variable WGT. The STRATIFICATION card indicates 
how the weighting scheme must be selected: PROV, 
SEX and AGE are auxiliary variables (number of 
categories within brackets), and each post-stra- 
tum must contain at least 15 observations. For 
the target variable INCOME estimates of the mean 
and standard error are computed. 

The program is written in PASCAL. It is still 
in development. Interested readers may contact 
the authors. 

I0. Other models 

The optimal value of B in (3.3) is determined by 
ordinary least squares. This method assumes the 
order of magnitude of the residuals in E to be 
roughly of the same magnitude. In cases where 
the order of magnitude of residuals differs in a 
known way, 8 can better be estimated by the 
method of generalized least squares: 

B (X' V-Ix)-Ixv -I = y , (10.1) 

where V is an NxN-diagonal matrix of known 
constants such that the residuals in 

± 
y = XB + V 2e (10.2) 

are of roughly the same size. The theory of the 
regression estimator can be developed in the 
same way as the theory in the previous sections, 
where now 

= (X'V-I~-ITx)-Ix'v-IH-ITy . (10.3) 
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The ratio estimator is a special case of the 
generalized regression estimator. Using one aux- 
iliary variable and assuming that the order of 
magnitude of the residuals is proportional to 
the square root of the value of the auxiliary 
variable, turns the estimator into the ratio 
estimator. Approximated variance and estimated 
variance agree to the results given in e.g. 
Cochran (1977). 

Another approach to weighting based on linear 
models is given by Bethlehem and Keller (1982). 
If practical problems affect the inclusion pro- 
babilities, it is better to estimate the true 
inclusion probabilities on the basis of the 
sample. To that end a model is estimated which 
relates the inclusion probabilities to the 
available auxiliary information. An estimator of 
the population mean is now obtained by replacing 
the true, but unknown, inclusion probabilities 
in the usual Horvitz-Thompson estimator by the 
estimated inclusion probabilities. 

The previous approaches are based on the use 
of linear models. There is no reason to restrict 
weighting to linear models. In ' fact, since 
weights should be non-negative, a multiplicative 
model might be more appropriate. Examples of the 
use of such models can be found e.g. in Chapman 
(1976) and Bailar et al. (1978). In the litera- 
ture on sampling theory this method is usually 
called 'raking', but in other statistical lit- 
erature the method based on the multiplicative 
model also appears under the names 'RAS-tech- 
nique' and 'iterative proportional fitting'. 
Just as the concept of post-stratification can 
be extended to linear models for weighting, can 
the concept of raking be extended to loglinear 
models for weighting. 

11. C o n c l u s i o n s  

In this paper we proposed a general method for 
the computation of weighting schemes. The theory 
not only includes all standard estimation tech- 
niques, but also offers possibilities for sol- 
ving the problem of empty strata or the problem 
of the lack of too detailed auxiliary informa- 
tion. 

Since the weights are the result of applica- 
tion of the theory of linear models, techniques 
for selection of variable can be used to select 
the best possible stratification. Efficient 
application of these weighting methods in prac- 

tice requires a computer program for the selec- 
tion of the best auxiliary variables and the 
best model based on the selected auxiliary vari- 
ables. If computation of weights can be per- 
formed automatically, time is saved and the cost 
of analysis of the sample survey data is re- 
duced. 

The theory is developed for treatment of one 
target variable. The extension to estimation of 
the mean of a vector of target variables is 
straightforward. Instead of a variance of the 
estimate it will produce a covariance matrix of 
the estimates. This extension is particularly 
useful if the sample data is used for multivari- 
ate analysis. 
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