Methods and Froblems in Coding Natural language Survey Data

Rodger Knaus,

1. Summary

Experiments with
coding of natural language
that agreement of 80%
achieved between computerized coding and
the codes assigned by experts; such per-—
formance is comparable to that achieved by
entry-level coding clerks. This paper
presents a class of algorithms for com-
puterized coding based on representing
semantic information in natural language
constructs as vectors over the set of
codes to be assigned.

computerized
data indicate
or better can be

2. Overview

Natural language is useful as
a response medium in surveys on subject
areas such as employment, household expen-—

ditures, or health and safety. In areas
such as these, the variable being inves-
tigated, (e.g. what kind of job the

respondent has) set of possible responses

is very large. For such large domains,
natural language has the following
advantages:

ECONOMY IN THE RUESTION SET: No reasonably
sized set of multiple choice or other
artificial response medium questions can
solicit such complete information as
simple natural language questions such as
"Where do you work?" and "What do you
do?";

OBJECTIVITY oF THE SURVEY QUESTIONS:
Artificially structured questions also
impose the surveyor®s view of the subject
upon the respondent to a greater degree
than natural language questions, because
the questions allow the respondent to
answer in a way that reflects the
respondent’s perception of the subject
matter rather than the surveyor s;

GENERALITY OF THE RESPONSE DATA: Should
one wish to reanalyze the survey data,
using, for example, a different partition
of the set of possible responses, natural
language responses contain the information
for such a reexamination, while artificial
response data usually does not;

Natural
respon-—-
be-
are
the

SIMPLICITY FOR THE RESPONDENT:
language reduces the effort for a
dent in completing a questionnaire,
cause both the question and response
in a medium already familiar to
respondent. This allows instructions on
how to complete the survey to be
simplified. Because a single natural
language question captures a large amount
of information, the use of natural lan-
guage responses probably also shortens a
survey.

51

American University

Against the advantages of NL data
above must be weighted the dif-—
in analyzing natural language
data. For responses to multiple choice or
other guestions with a small fixed set of
possible responses, there is a simple
correspondence between the form of a
response and its meaning. No such simple
relation between form and meaning exists
for natural language. Natural
language (NL) data is often coded as a
first step in the statistical analysis of
such data. In the coding process, each
response is assigned a value from some
finite set (call it ©€C) of codes. Each
value, or code, in this code set repre-
sents a distinct response for the purpose
of analyzing the NL dataj; conversely, all
NL. responses mapped to the same member of
C are considered identical for subseguent
analysis of the survey data. Coding is
thus the process of filtering out the
variations of linguistic expression from
responses which, for the purposes of a
survey, represent the same response.

In the past and in most current
surveys, natural language responses have
been coded by persons who assigned codes
to the responses. For the large surveys,
such as the U.8. monthly Current Popula-
tion Survey (about 70,000) or the decen—
nial popul ation census (17 million
responses), this hand codin
time-consuming and error—-prone. These
problems with human coding have motivated
research in computerized coding at statis-
tical agencies in the U.S., Sweden and
el sewhere.

listed
ficulty

Computerized coding of natural
language data can be carried out in the
following way: If C is set of codes which

are to be assigned to survey responses,
each recognizable linguistic construct L
is represented for the purposes of coding
as a vector over € in which the cth com-
penent (for c in) is the expectation
that ¢ should be assigned when L occurs.
Linguistic constructs which can be recog-
nized by computer include word roots,
words, phrases and kernel sentence deep
structures. There is a natural part-whole
relation on these linguistic constructs,
allowing one to find a set of most in~
clusive linguistic constructs for a given
natural language response. The code as-—
signment algorithm given below first
examines the vectors of the most inclusive
structures. If these are sufficient for
coding, a code is assigned. If not, then
the vectors of smaller linguistic struc-
tures are used to construct a vector for
the given NL response. If this constructed
vector implies a code, that code is as-~
signed. Otherwise the process is continued
through all vector combination methods in
the current implementation of the coding
algorithm, and through all linguistic
structures down to word roots, until a

or until all possible
exhausted.
as

code is assigned,
code assignment strategies are
In psuedocode, this is expressed
follows:

function code(
nlrinatural language response):codes
s: set of linguistic constructss
v: vector over codes;
cmax: set of codes
fns: set of functions
from a set of C-vectors
to a C-vector;
cicode;
begin
s:=set of maximal linguistic constructs;
c:=undefined;

var

fns:= set of functions
which combine s-vectors into
a vector for the response
as a whole

repeat

(or other function
which combines)
vectors of members of s
which occur in nlr;
cmax:=set of codes with a maximal
v—component}
if probability
(cmax has a unique max. v—component)
> a predetermined desired coding
reliability
then c:=cmax
else if there is another way of
combining s—vectors,
let fn:= the next such method
else begin
s:=set of linguistic components of
the curtrent members of s;
fns:= set of functions which combine
s-vectors into a vector for
the response as a wholes;
end
until c<rundefined or s=nilj
code:=c;
end;

vi=sum of

we can think of
the codes as a unit vector and
of these code vectors are
perpendicul ar. When given a
we construct vectors repre-
the response in the space spanned
When the resulting
direction suffi-
the code vec—
that vector is
vectors are an

Geometrically,
each of
that all
mutually
response,
senting
by these code vectors.
regponse vector has a
ciently similar to one of
tors, the code for
assigned. Since the code
orthonormal basis for the response
vectors, the most similar code vector
under the cosine measure of similarity is
that code vector having the largest com—
ponent in the response vector. The
vector—-combining procedure template
presented so far represents a variety of
actual procedures depending on what lin-
guistic structures are recognized, and how
the vectors are computed and combined. A
series of such particular coding proce-—
dures can be combined into one larger
overall coding program by trying the
particular procedures in sequence on each

52

data record, until some particular proce-
dure in the sequence assigns a code.

One plausible criterion for choos-
ing and ordering procedures in the se-—
quence of particular procedures is to
start with procedures that use a great
deal of linguistic knowledge. The records

which remain unprocessed after applying
this linguistic knowledge may reasonably
be considered to be composed of statisti-
cally independent words, or other small
linguistic units. Therefore the particular
vector-processing procedures which occur
late in the sequence can use statistical
technigues which rely on the assumption of

statistical independence of the small
linguistic units.
2.3 Experiments with Industry Data

Work on automated coding was
performed at the U.S5. Bureau of the Census

Frogramming Research Staff by Eli Heller-
man and the author during the period 1976-
79, as part of the Census Bureau’s ongoing
effort to automate the coding of industry
and occupation data. As an example of
automatic coding on actual survey data,
results of an experiment from this work is
presented.

strateqgy % coded 7 agreement
exact match on IA 32.0 100
exact match on IB 2.4 Z.7
almost exact
match on 1A & IE 16.9 84.46
sum heuristic
weights on IR 40.6 82.7
product
conditional
probabilities
on IB 48.7 62.1
sum heuristic
weights on
IAa & IRB 35.9 S50.0
prroduct
conditional
probabilities
on IA & IB 32.0 S0.0
overall results: 946.4% coded, 82.2% agree-

ment with expert—assigned code on the set
where a code was assigned; the s.d. of
this agreement percentage is about 2.6%.

In
was tried
remained
strategies.

the experiment, each strategy
on &all the records which
uncoded by previously tried
Therefore while this table
presents an ordering of strategies which
was experimentally found to produce good
results on the data, it should not be used
to compare different strategies, because
later strategies get the generally harder
records which earlier strategies fail to
code. The terms used in the above
table are defined as follows:
the method to combine

strategy: used

vectors;

% coded: the part of the sample for which

a strategy assigned a codes

% agreement: on the sample on which a
strategy assigns a code, the fraction
where the automatic code agrees with that
aswiaoned by an expert coder;

The strategies used in this ex-
periment are described briefly below; a
more detailed discussion of coding

strategies appears later in the paper.

exact match: a code is assigned iff the
response exactly matches a phrase in the
coding handbook. Then the code from the
handbook is assigned; Although not imple—
mented on the computer in this manner, we
may think of this as a vector method in
the spirit of the overall algorithm in
which the linguistic units are those
phrases which have only one non-zero
component. When only one of these vectors
appears, that code is assigned. However
the combination of two of these vectors is

the null vector unless the codes are the
same.
almost exact matching: A code is assigned

if there is a unique phrase in the coding
handbook which has the most words in
common with the response. This is a match-
ing strategy which is found useful in
information retrieval, and can be thought

of as a vector computation in which the
vectors represent word occurrences in
phrases in the coding handbook; the set of

vectors to be combined are all such occur-—
rence vectors for words in the response.
These vectors have a 1 for the code of the
phrase and O elsewhere. These vectors are
combined by adding vectors for the same
coding manual phrase. If there is a vector
with a unique highest code for some score,
that code is assigned.

sum of heuristic weights: The linguistic
units are word roots. The vector for each
word occurrence in the response is of the
form HXV where H is a scalar called the
heuristic weight of the word, defined in
the section on weighting, and V is the
vector computed from the conditional
probabilities of codes given the word. If
{plci/w) is the conditional probability of
code ci given word w, the cth component of
V is plci/w)¥%k, where k is around 0.035.
The effect of raising p to this power is
to make HXV into a filter which adds
weights close to H to all codes with
p(c/w) bounded away from O, while adding
weights close to 0 for codes with very
small conditional probabilities. HXV, in
other words, defines a fuz:zy set of codes
which are acceptable when given the word
w. The fuzziness filters out codes for

53

which the non—-zerc probabilities are
probably the result of human coding errors
in the sample used to construct the condi-
tional probabilities.

The HXV vectors are combined
by addition. A code is assigned if the
best code is better than the next-best by
an amount determined by a linear function
of the best code score; (a possibly bet-
ter, more statistically motivated
criterion for this “"when to code® decision
is presented below).

product of conditional probabilities: The
linguistic wunits are word occurrences and
are represented by vectors for word roots.
The word root vectors are vectors of
conditional probabilities of codes given
the word root. These vectors are combined
by multiplying their corresponding
components. If there is a component in the
resulting vector greater by some fixed
ratio than all other vectors, then a code
is assigned.

The ordering of these algorithms
conforms to the principle of increasing
statistical independence of the words in
the data record. The exact match strategy
is one which assumes that the response is
an idiom, the most specific sort of lin-—
guistic knowledge. The almost-exact match-

ing is a procedure in which lexical and
semantic rules and transformations are
applied to the data record in an attempt

kernel sentence level case
structure of the response

one of the phrases in a
coding dictionary. In the sum—of-heuristic
weights algorithm, each word may be con-—
sidered as an independent weighted filter
which adds its weight to the total score
of the codes which the word-filter
accepts. Finally, the product-of -~
probabilities procedure assigns each code
a score proportional to its probability
under the assumption that all the words
occurred independently of each other, and
that only one code can be assigned per
data record. A more detailed description
of the algorithms used in the experiment
cited above appears in the 1981 paper by
Knaus. More recent experiments
with better results have been conducted at
both the U.S8. Census Bureau and the
Central Statistical Office of Sweden, and
are described in the papers of Appel and
Lyberg.

to match the
grammar deep
with that of

Z. Semantic Representations for Coding

One of the major problems in
building an automated coding system is to
find a representation of the meaning,
(i.e. a semantic representation) of a
linguistic construct adequate for assign-
ing the right code. Ideally such a seman-
tic representation should be largely free
from the particular surface structure
choices of vocabulary and grammer with
which particular respondents encode their

the same meaning, no matter how
should have the same semantic
representation. Once such a representation
has been selected, the coding of a
response can be broken down into the
following steps:

responsess;
expressed,

map the natural language response into its
semantic representation;

assign a code using the semantic

representation;

3.1

Automatic coding proceeds by
comparing the information contained in a
NL suwrvey response with a database of such
knowledge for the subject area of the
survey (called the knowledge base of the
system in artificial intelligence
terminology). While many semantic repre-
sentations of NL information have been
proposed in artificial intelligence and
linguistics, for automatic coding a repre-
sentation of knowledge must be chosen
which makes the knowledge base largely
constructible by machine. This is because
the domain of discourse of many surveys is
large (e.g. all economic activity for the
census industry data) and because the
range of linguistic expression over dif-
ferent respondents (e.g. a large random
sample of the general population) is also
great. kKnowledge representations requiring

hand work on each different word, word
sense, or meaning are not generally
suitable where these extensive knowledge

bases are required.

3.2 Vectors over Codes

representation used
automatic coding
coding set C.

The semantic
in our experiments with
is a real vector over the
The meaning of each word, phrase, or other
linguistic construct, is, for the purposes
of coding, represented by a vector over Cj;
the wvalue of the ci—th component repre-
sents the tendency of the construct to
represent a response which should be coded

to ci. For example, a phrase which always
is coded to a particular code c0O might
have a c0 component of 1 and all other
components 0. The remainder of this paper

discusses how to build these vectors for
words from hand-coded data, how to combine
the word vectors into vectors representing
the entire NL response, and how to extract
the code from the constructed vector.

The semantic representation vec-—

tors, called semantic vectors, or simply
vectors in the following, can be built
from a hand—-coded sample H of data. Let L
be a linguistic construct for which a

54

vector is to be constructed. L must have
the property that a computer can be
programmed to recognize it reliably,
although 100% reliability is not neces-

sary. Examples of such linguistic con-
structs are words, word roots, phrases and
kernel sentence level deep structures.

For each such construct L a gount

hand-coded responses. This count vector is
a vector over C in which the ci component
is the number of times an occurrence of of
L was observed in responses in H which
were hand-coded to ci. These vectors are
built by passing H through a program which
recognizes the linguistic constructs which
occur in each record, and then increments
the count for the hand-assigned code in a
current count vector for each construct
occurring in the record. From this
count vector a normalization process can
be used to construct the corresponding
semantic vector. One useful normalization
process is

semantic (ci) s=count (ci)
/fsum over ci count(ci)l

code ci when linguistic
feature L occurs. This probability, which
we will write p(ci/lL), will be used exten-—
sively in our attempts at automatic code
assignment. Resides hand-coded
data, another source of information about
how to code are the coding handbooks used
by human coders. These consist of NL
phrases and associated codes; the U.S.
Census industry coding handbook, as an
example, contains about 15,000 such
phrases. This information can be recast
into the above form of a vector over the
codes in the following way: If the code
for phrase P is c, then the cth component
of the vector for P is 1 and all other
components are 0.

of assigning

The count and conditional prob-
ability vectors defined in the previous
section have a direction which expresses
the tendency of the construct they repre-
sent to cause a particular code to bhe
assigned. In this section we discuss a
technigue for varying the length of these
vectors according to their usefulness in
coding. One of the ways in which
vectors of components can be combined into
a vector for the response as a whole is to
add the component vectors. By giving a
greater weight to those components which
have been found to be most useful in
caoding, one reduces coding errors caused
by the random variation among the com—
ponents of vectors for components, such as
the word ‘“company®, which have little
usefulness in coding.

One
call

3.4.1 The
way of weighting vectors,

Heuristic Weight.
which we

the heuristic is based on the
entropy of the distribution of codes for a
given component; (in the Census experi-—
ments, the linguistic components for which
the bheuristic weight was computed were
woard roots, but the computation works for
all vectors over C, regardless of what the
vectors represent.) Let CO be the
count vector for the feature “is a survey
response”, i.e. the ci component is the
number of responses in ouw hand-coded
sample which have code ci; let VO be the
corresponding vectors of probabilities of
assigning ci. Now if Ve is the probability
vector for a construct c, Ve represents a
construct useful for coding if Ve is not
similar to VO3 however, if Vc is nearly
codirectional with VO, then Ve is of
little use in coding, because the prob-
ability of c occurring is independent of
what code is assigned. If the cith com-
ponents of V0, Vo are vOi, wvci, then we
form probabilities pi® as follows:

Let voi?i=vei/vOig

pits=veci®/sumlvei®)

The pi® represent the probabilities of
assigning code ci when given construct ¢
under the conditions that the conditional

probabilities of assigning ci when given c

remained the same, but the distribution of
codes in the sample as a whole is made
uniform. As the next step in

computing the heuristic weight, we compute
the entropy E° using the uniformized
probabilities pi”:

E’=sum pi*Xln(pi®)
over all pi?’

This is the entropy of the distribution of
the vector Vo when the non-uniformity of
the overall distribution VO has been
normalized out. E* is a minimum when Vc is
similar to VO and is approaches 0 when Vc
has a large probability for a code which
is is rare in the sample as a whole.

The final step in the heuristic
weight computation is to transform E* in
such a way that constructs that are useful

in coding have a large positive weight,
while those which are useless have a
weight near 0. This means that we want a

transformation which maps the normalized
entropies E’ near O into large heuristic
weightsy conversely, entropies near the
minimum of E?, (which is a constant
In(l/n) depending on n, the number of
codes) are to be mapped into a small
interval around 0. The function

H=(Eu~E*) /E"
has this property, where

Eu is the entropy of the uniform distribu-—
tion over Cj;

modified slightly if
is non-zero.

Ell
necessary to

is the entropy E7,
insure that E"

55

In the case where E° is zero, a small
random error is added to the distribution
Vc. The added error is an estimate of the
probability that ¢ would be encountered in
a response hand-coded to a code different
than that encountered so far. This addi-
tion of a random error is justified by the
nature of the data, because words some-
times appear in unusual contexts as proper
names, as used by persons with limited
English, or as transcription errorsg
therefore a very large sample would con-

tain few if any distributions with zero
entropy.

The heuristic weight computed by
this method appears to agree with our

intuitive notion of how specific a word is
for coding. Where the coding is over a set

of about 250 (U.S. Census—defined) in-
dustry classes, some heuristic weights
defined from a hand~coded sample of around
100,000 are given in the following table:
CO. 1.78 citrus 7.07

plant 1.85 shoes 7.25

service 1.98 hospital 9.17

metal .80 liquor 12.0

medical 4.10 beer 12.3

iron 4.35 airline 58.6

farm 4,60 turbine 60.0

The heuristic weight can be viewed
as a generalization of of the inverse
document frequency weight for terms in
information retrieval. In the information
retrieval case, there are just 2
categories, relevant and irrelevant, into
which documents are to be assigned. In the
case of just 2 categories, the inverse
document frequency and heuristic weight
are approximately proportional for the
case where one of the categories (e.g. the
relevant documents) as very low
probability.

3.4.2 Methads of Weighting
Vectors. Alternatively, one might
weight each vector by the correlation over
all responses in the hand-coded sample
between the hand-assigned weight for a
code and the weight assigned by the vec—
tor. More particularly, for each response
r and code c let h(r,c)=1 iff the hand-
assigned code of r is c, and h(r,c)=0 if
the hand—-assigned code is not c. Let
viry,c)=the cth component of v, i.e. the
probability of code ¢ given the construct
represented by c. Then if there are #C
codes and #R responses, there are #RX#C
(th,v) pairs, over which we compute the
carrelation coefficient: Starting with the
usual formula for the correlation coeffi-
cient and applying some algebra, we get

Other

r=(#Cksum(vckx2)-1) %k (1/2)
codes
/(HC-1) %% (1/72)

This correlation coefficient is seen to be
0 for the uniform distribution, and ocne

for a vector with just 1 non-0
For vectors between the
single-valued extreme, the
coefficient is between ¢]
Just as for the heuristic
previous section,
coefficient should be computed with a
vector of probabilities which have been
uniformized with respect to the distribu-
tion of codes in the sample as a whole, so
that a vector with probabilities similar
to the sample as a whole has a computed
correlation coefficient of ¢. This nor-
malization is important because some codes
may occur much more frequently than
others.

component.
unifaorm and
correlation
and 1.
weights

of the the correlation

4. Constructing Vector Representations

In the overview section of the
paper, the vector representations and the
combination methods actually used in
experiments were described. In this sec-
tion the relation between the methods are
discussed and some refinements are
suggested.

4.1 Relative Coding Effectiveness

4.1.1 Phrase Matching. There isg
a saying in the advertising industry that
a smart dime never beat a stupid dollar.
The same applies here: nothing beats
phrase matching, where exactly the entire
response, at least up to trivial varia-—
tions, is matched against an entry in a
coding lexicon. This method is fast and
reliable. It was not used to maximum
effectiveness in the Census experiments,
because of an unwillingness to add to the
coding manual online. In a production
system, one should constantly add new
phrases to the online coding handbook
because new phrases are constantly coming
into use; the coding handbook used in the
experiment reported above, for example
contained *tourist cottage® but not “com-
puter store’. One method of iden-
tifying new phrases to add to the coding
handbook is to write out to a special file
the complete text of responses which are
not phrase—coded. One may sort these to
identify common phrases not in the coding
handbook and present the list to experts,
who can identify phrases and associated
codes that should be added to the lexicon.

Phrase matching as an initial
coding method also increases the statisti-
cal independence of words in the residue
of records not coded by phrase matching.
This independence is an assumption behind
the product scoring and the error estima-
tion for linear scoring.

4.1.2 Addition versus Multiplication.
In the experiment, both addition
and multiplication were used to combine

56

vectors for words into vectors for
phrases. Weighted sums generally were good
at identifying possible codes but were
more error prone, swayed by a single word
which was strongly associated with a
particular code. The product of condi-
tional probabilities method, on the other
hand, avoided these errors, but sometimes
failed to identify codes that should be
assigned, because the ration between best
and next codes failed the coding
criterion. Although not tried in
the above experiment, it would be
repasonable to try these two methods
together in a generate—and-test algorithm
similar to that used in many artificial
intelligence programs. The weighted sum
would be used to suggest one or a small
set of possible codes. If one code were so
suggested, it would be assigned only if
the product score was sufficiently good
relative to the product scores of other
codes. This would eliminate weighted sum
assignments which were based on only part
of the response which was highly related
to a particular code. If several codes
were suggested, same function of sum and
product codes would be required to pass a
criterion function before coding occurs.

4.2 Linguistic Refinements

In the experiment, only phrases
and word stems were used. However, other
linguistic features can be reliably recog-
nized by computer and might improve the
performance of the code assignment
strategies.

Case Grammar. In a seman—
tic theory that has become widely used in
computerized language processing, Fillmore
noted that simple sentences consisted of a
verb and a set of arguments, expressed as
noun phrases, which stand in fixed seman-—
tic relations to the verb. Viewed in this
way, a simple sentence has the following
semantic parts

4.2.1

action: the action that takes
described by the sentence verb;

place,

object: the thing which is affected or

changed by the actiong

source: the environment or state, par-
ticularly of the object, before the
actions
location: the environment or state, par-
ticularly of the object, during the
actiong;
destination: the environment or state,
particularly of the object, after the
actiong

agent: the thing which causes the actiong

instrument: the thing which is used in

carrying out the actiong

We note that this list of case con-
stituents is typical and suitable for
automatic coding, but that linguists

differ on exactly what the cases are and

how they are defined; Natural
languages use word order, word endings,
function words and standardized patterns
of case cooccurrence to mark the case of

noun phrases in a sentence. For example,
in English the object in a simple sentence
appears after the verb without a preceding
preposition.

4.2.2 Word Uses.
can be applied to sentence fragments as
well as sentences. The grammar of such
fragments, however, is a function of the
question which the fragments answer. As is
true most linguistic data, respondents
choose a grammatical form which eliminates
redundant information and which places
information known to the questioner and
present in the response before information
in the response new to the questioner;
(this ia the '"given-new" principle in
linguistics.) For example, in response to
the question *Where do you work?’, the
answer is often a free-standing noun
phrase which is a location in the sentence
which would describe the activity of the
worksite. Another common response to this
question is a nominalized verb plus
object. Inspection of the data confirms
the general linguistic observation that

Case grammar

the form of the question very tightly
constrains the grammatical form of the
response; in the case of the industry

census questions, a few grammatical forms
cover all but a few records.
Survey responses are typically

very short sentence fragments; 4 words or
less were typical in the industry data of
the experiment. Computer programs which
make use of endings, word order and other
syntactic features can identify the case-—
grammar function of most words in the
response. Furthermore these programs can
decide if a word in a noun phrase is a
head noun or a modifying word. We will
define a word use as a triple {(w,c,hb),
where w is a word, ¢ a case grammar func-
tion and hb either head-noun, modifying
word, or not applicable (for verbs). After
processing with the appropriate linguistic
analysis programs, a response may be
considered to be a set of word uses.

Using such marking of word occur-—
rences with case function and head-noun or
modifying word for noun phrase words, we
can build and use conditional probability
vectors for word uses in the same way in
which such vectors were built and used for
word stems. However, for many words,
informal bhand inspection of the data
suggests that such vectors for the same
word but different uses would vary con-
siderably in direction from one another.
For example “farm®™ ags a head noun in a
free-standing noun phrase answering *Where

57

is for industry coding very
heavily associated with the agriculture
code. On the other hand, *farm® as a
modifying noun is much more commonly used
in responses which code to machinery and
supplies used by farms, i.e. responses
with codes other than agriculture. It
would appear, from this and other similar
examples, that word uses are better
predictors of codes than word roots.

do you work?

Features Based on Word Uses.
The basic principle of the coding
algorithm presented in the ‘overview’
section is that when a large constituent
determines a .code then it is assigned
before proceeding to smaller constituents.
This principle can be employed for word
uses by building a coding dictionary in
which the entries are sets of cooccurring
word uses and an associated code. Such a
dictionary would be consulted before
attempting to code using sums or products
of word use vectors. This dictionary would
be similar to the ordinary coding diction-
ary but would allow for more variation in
linguistic surface structure in responses
which can be successfully matched against
the dictionary. Another refinement
based on word uses is to subdivide the
head-noun versus modifying word distinc-
tion. One might classify modifying words
in noun phrases according to the sum of
the weights of the words which come after
them in the noun phrase. Alternatively,
one might define an inclusion relation on

4.2.3F

vectors such that V1<=V2 if every code
that is plausible given V1 is plausible
given V2; then one might distinguish

between modifying words which precede a
more inclusive word and those which do
not. The motivation for this distinction
is +found in phrases like °grocery store®,

in which “grocery® functions as if it were

a head noun; generally, those words fol-
lowed by more inclusive words have a
behavior which is more like that of head

words than is the behavior of words which
precede words that do not include them.

5. Assigning Codes to Survey Responses

I+ V is a vector which represents
the response r using the set of linguistic
constructs, and c is a code, then the cth
component of V is a real number which we
will «call the score of ¢ in V for r using
s. The vector V will sometimes be called a
scoring vector. A code with the highest

score among the c in C will be called the
best code. Our basic code assignment
algorithm assigns the best code to a

survey response represented by V if this
best code has a score sufficiently better
than the other scores. In this section we
consider some methods for making the
decision about whether the best code is
sufficiently better-scoring than the rest.

In deciding whether an automated
coder has assigned the right code, our

only available criterion is agreement with
a hand—assigned code. This is in fact a
correct criterion only when the hand-
assigned code is correct. In research on
automatic coding, it is important to have
a sample of hand—coded responses contain-—
ing as few errors as possible. By having
the sample hand-coded by experts, or even

a panel of experts, the number of wrong
hand codes (perhaps definable as codes
later rejected by the same or other
experts), can be reduced hut not

eliminated for an area as complex as
industry and occupation codings indeed,
for some responses, there is more than one
acceptable code. In assessing the actual
accuracy of an automated coder, one must
decide in cases of disagreement with the
hand code, which code is correct or bet-
ter, or if both are acceptable. Preferably
this evaluation should be done by experts
who are blind to which code is auto-
matically assigned, to eliminate any
prejudice against the automatic codes.
While keeping the above limita-
of hand coding in mind, we will use
_________ shorthand for
*the hand—assigned code® and wrong code as
a shorthand for "a code not equal to the
hand-assigned code®.

tions

5.1 When to Assign a Code

5.1.1 Kinds of Scoring Errors.
One problem in automatic coding
deciding when the score of the best code

is sufficiently better than that of the
athers to justify assigning a code. In
general it is observed that as the spread
between the scores for the best code and
next-best code increases, the probability
of the best code agreeing with the hand
code increases, but that there are a few

wrong codes with high scores. These dig—
agreements with the hand codes are of
several types. In some cases the hand

codes are in error. Another source of code

the probability that in our particular
hand—coded sample, the true best code
appears as the next-best. Stated another
way, the statistical scoring error is the
probability that the various sample prob-
abilities are such that the sample score
of the true best code (i.e. the one that
would score best were the probabilities
camputed over the entire population of
responses) is not the highest sCore.

In the early experiments performed
while the author was at the Census Bureau,
a fixed linear function involving the best
and next-best codes was used as a coding
criterion for all records in a given
sample. There was no clear relation be-
tween these when—-to-code functions and the

resulting fraction of coding errors.
However, some statistical and computa—
tional techniques allow one to get a

record-dependent estimate for that part of

58

the chance of miscoding that related to
statistical errors in the best and next-—
best scores. We can use these estimates in
the code assignment process to control the
level of errors due to statistical scoring
errors; this is done by assigning a code
when and only when the probability of an
error due to a statistical scoring error
is below some preset level of errors.

In addition, however, there is an
additional error of miscoding which is not
included in these estimates, i.e. the
error that the highest scoring code is
truly the highest scoring code but is
still wrong. This component of the coding
error can be estimated experimentally by
comparing the ocbserved coding error after
running an automated coder on a large
sample of data with the expected level of
statistical scoring errors. In
estimating the statistical error in
coding, we will reduce the problem to that
of estimating the error in assigning the
best instead of the next-best code. In the
case where there are more than 2 close
contenders, the pairwise error estimates
can be used to get an error estimate for
one of a small set of next—best codes, and
in the case of a large set of such next-
bhest codes, coding is obviously very
risky.

S5.1.2 Estimating Errors as a Linear Sum
of Random Variables. In the case
where the scoring vector is a weighted sum
of conditional probabilities (of codes
given constructs) vectors, then a par-
ticular code is highest-scoring when and
only when some weighted sum of conditional
probabilities is > 0. In particular let
b.n be the best and next-best codes,
V=sum(ai*Vi) and vib, vin the conditional
probabilities af b and n in Vi. b is
assigned when

sum(aiXxvib)-sum{aiXvin) >0.

When the
above are such that no one of

probabilities in the
them is

close to 1, the ai coefficients, if they
were computed either as heuristic weights
or as correlation coefficients, are such

that they are stable under changes in the
probabilites {vib,vin}, provided that such
changes are such that the probabilities
stay out of some interval around 1. There-
fore we can approximate the statistical
coding error in the above inequality by
assuming that the a’s are constants and
looking at the expression on the left as a
linear sum of random variables {vib, vinl.
The variance of the linear sum is comput-
able in terms of the a’s and the variances
and covariances of the random variables.
In the region of stability we may assume
that the covariances are 0. The variance
of the left side of the inequality is then

var (b over n)
=gum(ai Xk2% (var {vib) +var (vin))

The variances of the {vib,
computed using formulas for the

vin} can be
variances

of proportions in a binomial or ap-
proximating normal distribution, so that
the variance of the inequality expression

is computable from available information.
This variance allows us to estimate the
probability that the score of n would be
»» that of b, which is an estimate of the
statistical coding error in assigning the
code b rather than n. While the
above variance and associated probability
estimate is often best left to a computer,

the method is illustrated in this simple
example: Suppose the response is ®auto
repair?, both words have a heuristic

weight of 4 computed from a sample of 1000

occurrences, and the probabilities of
various codes are given by

Table of p(code/word)
code *auto’ ‘repair?’
auto mfg. .3 @)
auto service .3 3
electrical repair O .13
Then the best code is “auto service®™ when

wt (auto) Xp (auto service/auto)
+wt (repair) ¥p (auto service/repair)
~-wt({repair)ip(electrical repair/repair)
>0

The variance of the value of that expres-
sion is

wt (auto) Xx2xvar (auto service/auto)
+wt (repair) X¥2%var (auto service/repair)
+wt {(repair) xXx2
¥var (electrical repair/repair)
=TK16X(2%2. 1% (10%%—-4) + 1.3%x(10%%x-4))
=2.64%10%X%x~-2

80 the standard deviation of the value
this expression is 0.143.
about 6.7 s.d.’s from the
of 1.1, so that the statistical error in
this code assignment is very small.
However, if one had a similar set
of probabilities but the number of obser-
vations per word was only 25 (for example
with a word pair like ‘canvas awnings?®),
then the s.d. is increased by a factor of
sqrt (40), and becomes 1.03. Then the value
0 is about 1.07 s.d.’s from the observed
value of the expression, and the statisti-
cal coding error is about 14%4.
While this example is a made-up
one, the numbers are typical of the sample
sizes and probabilities which arise when
constructing conditional probability
vectors from a large sample of actual
responses. The example illustrates the
extreme variation in statistical coding
error based on the sample probabilities
used in coding. By illustrating this
variation in statistical error between
records, the example strongly suggests
that coding performance can be improved by
using a boolean "when-to-code" function in
the computerized coder which estimates the

of
The value O is
observed value

59

statistical coding error.

5.1.2 Error Estimates in the Unstable
Region. When the distribution of
probabilities in a vector is such that one
probability is near 1 while the others are
very small, the coefficient (heuristic
weight or correlation coefficient, for
example) may be significantly affected by
small changes in the large probability. In
this case, the above method, which assumed
that the coefficients were for practical

purposes constant under changes in the
probabilities, does not apply. As
an alternative method for the unstable
case one may

Estimate from the given vector V the
probability p that the next occurrence of
the construct represented by V will not

have the single high-probability code;

If p is sufficiently small, ignhore the
possibility of a change in the large
probability;

Otherwise compute the statistical error as
the probability—-weighted average of the
case where the large probability remains
unchanged and the case where the greatest
other probability is incremented by the
addition of a single occurrence to the
sample with that next-highest code in V.
In the two subcases, the statistical error
is computed by with V assumed constant,

but vectors other than V which have not
been assumed constant at some previous
subdivision of the computation allowed to
vary.

6. Computer Implementation

At the time these experiments
conducted, hardware was considerably

expensive and the hardware options
fined to large computers. Processing

was expensive, and the concern

processing time per record, about 1 sec.
for the algorithm in the experiment,
prevented more elaborate coding experi-
ments. In addition, development and ex-
periment with the program was hindered by
the 1long waits and down time associated
with a heavily loaded time~-shared
computer.

were
more
con-
time
with

6.1 Coding on a Local Area Network

Today, all of these limitations
can be overcome. 16-bit micros in a local
area network could be used to code during

the data entry task. For example we
use the following system:

might

shared hard disk: The storage requirements
would be around 40 million bytes for word-
use vectors for industry coding, plus
another few million bytes for the coding

handbooks. & 70 mb. hard disk
has recently been announced.

for $7000

work station micros: These are
micros; if used only for coding, floppy
disk drives would not be needed, so that
the cost per micro would be around $2500.

16-bit

additional ram
electronic disk is added to
tion micros so that common phrases and
words can be stored locally to reduce
network traffic and improve response time.
Currently 1 mb. of ram is available for
$1600, and prices should continue to drop.

for the micros: A large

the worksta-

communications hardware: For each worksta-
tion and for the disk controller, a net~
work interface board, about $1000, is
needed.

mainframe link: A link
needed to get data to
offload coded records.
consist of a high speed
interface hardware; a
estimate might be
dollars.

with a mainframe is
be coded and to
This link might
data line and
very rough cost
several thousand

A local area network
above should be able to support
with a response time
almost instantaneous, assuming that as
each word was entered, some processing
occurred while the user typed the rest of
the record. The per—user cost would be
around %6000, The fast response time and
sophisticated programming language
software available in this environment
would also be ideal for developing coding
software.

like the
20 users
that would appear

Advantages of

6.2
Entry

6.2.1 Elimination of Errors.
There appear to be several advan-—
tages to coding during data entry. For one
thing, the entry clerk can use some judge—
ment in the order in which parts of the
response are entered, entering what appear
highly descriptive before usually meaning-
less parts, such as proper names. If
coding occurs before the whole record is
entered, the reaest never has to he
keyboarded. This discretionary entry also
prevents the machine from being distracted
by proper names which it, in its limited
ability to understand language, does not
recognize as such. Additionally, the
computer can catch many probably spelling
errors at a time when the entry clerk can
correct them. In the experimental data,
some records were not coded correctly by
the machine because of such coding errors.

60

7. References

Appel, Martin, and Eli Hellerman. Census
Bureau Esxperiments with Automated Industry
and Occupation Coding. Joint Statistical
Meetings, Toronto, August, 1983.

Biggs, J. Coding performance in the 1970
census. in Evaluation and Research program
PHC(E) -8, 1970 Census of Population and
Housing, U.S. Bureau of the Census, 1974.

Freund. J.
Statistics.
Cliffs, N.J.,

and R.
Prentice
1980,

Walpole.
Hall.,

Mathematical
Englewood

Hellerman, Eli. Overview of the Hellerman
I%0 Coding System. draft memo, Bureau of
the Census, Washington, D.C., 1982,

Janas, J.M. Automatic recognition of the
parts of speech for English texts. Inf.
Proc. Man. 13, 205-213, 1977.

Knaus,

decision
Empirical
W. Germany,

Rodger. Fattern—-based
making. in Rieger, B.

Semantics. Brockmeyer,
1981.

semantic
(ed.):
Bochum,

Lyberg, Lars
tion in > i
Statistiska Cen
1980.

Lyberg, Lars.
tics Sweden.
Toronto,

Automated Coding at Statis-
Joint Statistical Meetings,
August, 1983.

Mendenhall, W. The Design and Analysis
Experiments. Duxbury Press,

(Div.
Wadsworth Fublishing), Belmont, Ca.,

of

of
1968.

W.
in

Moskovich,
techniques

Distributive-statistical
computational linguistics:
problems and perspectives. 7th Interna-
tional Conference on Computational Lin-—
guistics, Bergen, Norway,1978.

Rieger, B. Feasible fuzsz
International

semantics. 7th
Conference on Computational

Linguistics, Bergen, Norway,1978.

Rustin, G. (ed.). Natural Language
Processing. Algorithmics Press, N.Y.,
1973,

Salton, G. Dynamic Information and Library
Processing. Prentice Hall., Englewood
Cliffs, N.J., 1975,

Sneath, P, and R. Sokal. Numerical
Taxonomy. W.H. Freeman, San Francisco,
1973,

Winograd, Terry. Language as a Cognitive
Process. Addison Wesley, Reading, Mass.
19873,

