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i. INTRODUCTION. With the usual notation 
let a finite population of size N w±th 
labelled ±nd~vlduals f be denoted by 
P = {i: i =I,...,N}. Let the variate vector 

under study be ~ = (yl,...,y±,...,yN). we want 
N 

to estimate the population total T[~) [ly i 

or the population mean T(~)/N on the basis of 
a sample s, s c P and the observed values 
Yi: i£s. The sample s is drawn from 

S = {s: scP} using a probability distribution 
on S. This probability distribution say p is 
called a sampling design. We assume that the 
prior knowledge concerning the population vector 

can be formalized as a class c(A) of 
distributions ~ on IR as follows: For a 

n 

given vector ~ = (a I ..... a N ) 

C(a) = 

(i) YI'''''YN when distributed as 

are probabilistically 
mutually independent, 

(ii) E~(Yi) = ai +Bxi' 2 

~: (iii) e~(Yi_ai_Bxi ). 2 = o.l, i=l,...,N 

where x = (x 1,2.. 'xN) is 

given and B, g., i=l, .... N 
1 

belong to specified (known) 
intervals 

g~ (-) denoting the expectation under the 

distribution ~. Then 

c(A) = u c(a). 
aEA 

(1.1) 

We shall elaborate on the intervals of B and 
2 

O'l and the set A later. Nx = (x l,...,x N) in 

(i.i) is called the fixed co~ariate vector. 
c(A) in (i.i) would also be called a model. 
Clearly the model c(A) is constructed from the 
usual regression model by taking into account, 
(A) the possible departures from the regression 
line, by the introduction of the variable vector 
a and (B) the possible variations of variances 
of y., i=l,... ,N. The model C (A) was first 
studied in detail by Godambe, (1982). 

2. MODEL BASED ESTIMATION. If in the sub- 
model C(a) in (i.i) g 2 i =i ,N are 

i ' '''" 
specified the least square estimate for the 
population total T (y) is given by 

^ N 

e = I yi +BaX~ +~ai -~a i (2.1) 
iEs ~ 

where X- = Ix i, ~. and I being summations 
S -- 

S S S ^ 

for i ~s and i ~s respectively; B is the a 

usual least squares estimate for B i.e. 
^ 2 2 
Be = (Ixi(Yi-ai)/g2)/(Ixi/Oi)I . (2.2) 

S S 

It ~s important to note that the estimate e a 
N 

in (.2.1) is independent of the sempling design 
used to draw the sample s. Obviously the 
estimate e is very sensitive to (i) the 

variations of a and (±i) the variations in 
2 

gi, i =I,...,N. For a restrictive situation 

when ~ corresponds to polynomial regression 
the variation (i) can be dealt with by drawing 
a su±tably balanced sample, (Royall and Herson, 
1973). To deal with a very restrictive 
variation in (ii), Scott, Brewer and Ho (1978) 
have suggested use of unequal probability 
sampling designs. Royall and Pfefferman (1982) 
have suggested use of a random sampling design 
to draw a sample balanced on unknown factors. 

The above suggestions to supplement model 
based estimation with randomization to achieve 
robustness are interesting. But they are of 
very limited practical value and moreover, they 
contradict the 'likelihood principle' which is 
fundamental for model based estimation (Godambe, 
1966, 1982); thus the use of randomization here 
is adhoc. 

In the above approach the randomization or 
sampling design is given a secondary role to that 
of the model: the estimate (2.1) is obtained by 
considering all linear model-unbiased estimates 
of T and then choosing from them one that has 
smallest variance relative to the model. Thus 
the 'expectations' or 'averages' here are 
exclusively with respect to the model. On the 
other hand the Unified Theory (Godambe, 1955, 
1982) treats distributions generated by 
randomization and those given by the model on an 
equal footing to investigate the optimum esti- 
mation. This approach, as we shall demonstrate 
below, provides in relation to the model c(A) 
in (i.i), a logically far more satisfactory and 
practically far more widely applicable solution 
than those provided by the model-based estimation 
with its adhoc supplement of randomization. 

It is clear that randomization by itself 
provides inferences which are outside the scope 
of parametric model-based theory (Kempthorne, 
1977, Godambe, 1982a). In conjunction with 
parametric models, randomization provides robust 
inference, (Godambe, 1982). 

3. UNIFIED THEORY ESTIMATION. The optimum 
estimation here is defined with respect to the 
model C = {~}, ~ being a probability distri- 

bution on IR n and a class of sampling designs 
D = {p}. For a sampling design p, the inclusion 
probability for the individual i is defined as 

(p) = ~ p(s), i = 1 ..... N. For brevity we 
sgi 

suppress p in 7. (p) and denote it by just 
1 >0 i =i ,N; ~'I" For all p cD, we assume ~i ' '''" 

otherwise the class of estimates B given by 
P 

(.3.2), will be empty. Further we restrict the 
class D to fixed sample size (=n say) designs. 
That is, if ~(s) denotes the size of the 
sample s then [~(s)~n] ÷[p(s) =0, p £D]. For 
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a given sampling design p £D we define a class 
of est±mates e = e(s, y.: i £s), a real function 

with arguments s and ~. : i £s, 
1 

B = {e: EpE~(e-T) =0, ~ £C}. (3.1) 
P 

If C is a complete class of d~'stributions 
(ignoring sets of measure 0 or restricting to 

discrete distributions) we have 

B = {e: E (e-T) =0, Vy}, (3.2)_ 
P P ~ ~ 

(Godambe, 1982). For any fired design p ED, e 
P 

is said to be an optimum estimator for the 
population total T (with respect to the model 

C) if ~ EB and 
P P2 2 

Ep£~% (~p-T) <EpE~% (e-T). for all e E Bp, ~ £ C. 

(3.3) 
Further a pair (e,p) of an estimator e and 
design ~ is said to provide optin~n estimation 
(w.r.t. C and D) iff 

E~£~ (~-T) 2 <Ep£~ (e-T) 2 - , e £B , p £D, ~ 6C. (3.4) 
P 

In (i.i) the class C(A) is complete if 
= {a} is an N-dimensional interval, Godambe, 

1982). Note [E~(e-T) =0, ~ EC] ÷[e-T =0, a.e.] 

if C is complete; that is here model based 
unbiased estimation is non-existent. Surely a 
small N-interval A in (i.i) does not constitute 
a big departure from the classical regression 
model obtained from (i.i) by putting 

a I = a 2 = ... = a N (unknown). Yet for such a 

departure model-unbiased estimation does not 
exist at all! Nor does mode l-~ased estimation 
contain a built in mechanism which can provide 
practically satisfactory and we ll-de fined 
approximations to optimum estimation. Such a 
mechanism is provided by an appropriate sampling 
design within the frame-work of the Unified 
Theory: 

For any sampling design p £D and any distri- 
bution ~ £ C (A) 2 

N O. N 
Ep£~(e-T) 2 > 7 1 { 2 

-- 1 --~-- Oi (3.5) 
I 

for any estimate e £B, in (.3.2), (Godambe and 
P 

Joshi, 1965). Further for any specific a, 
and sampling design p £D, the estimator 

N 
e* = ~ Yi-ai-Sxi +TCa +Sx ) (3 6) 

7. i i " 
s • 1 

is in B of (3.2) and for the submodel 
P 

Cs(a) c C(a) obtained by fixing [3 in (i.i), e* 

attains the lower bound in (3.5). That is, 
2 

N ~. N 
l -~U .2 

l~Ep(e*-T)  2 = [1 ~ 1 m ' ~ eCs (~) '  (3.7) 

(Godambe, 1982) . Thus the estimate e* is 
locally i.e. for specified a and 8 optS'mum. 
Now we try to find an estimate, independent of a 
and 13, which provides a good approximation (in 
the following well defined sense) to e* under 
the model C(A). Let ~ be the estimate obtained 
from e* by putting in it a. = 0, i = I,...,N 

l 
and 8 = 0. Then it is easy to see that 

where 
e* = e .-a (3.8) 

a. N x. N 

A:[~" ai ~ 1 1 ' 
S S 

(3.9) 
= £~ ~£:~T, ~ £C8(~)  . 

Fur the r, 

Ep£~ (e-T) 2 = Epe_£ (e*-T) 2 2 +EpA , ~ ~C6(a) . 

(3.10) 

It is also easy to see that 

'a i N x N 2 2 
< - ~a.) 2 +8 E ( -~x.) 

EA2p P ({ ~i 1 ± P ~i 1 I 

(3.11) 

4. APPLICATIONS. Several important 
conclusions, with far reaching practical impli- 
cations follow from (3.5)-(3.11). Let us 
suppose that the sampling design p employed 
to select a sample s has inclusion probabili- 
ties 7., i = I,...,N and is such that with 

1 

respect to the given model C(A) in (i.i) 
N 

E A2/(~U. 2 _[~.21, (4.1) 
p 1 i /7i 1 I 

(see (3.8), (3.11)) is sufficiently small. In 
this situation the use of the estimate ~ is 
justified, for by (3.8)-(3.11), and (4.1), the 
expected variance of e and that of the locally 
(i. e. or given a and 13) optimum estimate e* 
differ very little; so do the two estimates e 
and e* themselves differ a little on most 
probable samples s. Note here the model-based 
estimate e in (2. i) cannot be computed 

a ^ 

because of the dependence of 13 in (2.2) on 
2 

~. , i = I,...,N and a which are not 
1 

specified. Can the model-based approach suggest 
some well defined approximation here? 

A more realistic situation is obtained when 
the model (i.I) is a small departure from the 
usual regression model obtained by putting in 

(I.i), a I = a 2 = ... = a N (unknown). Here for 

g±ven inclusion probabilities z., i = i,... ,N 
1 

reduce the value of E A 2 in (4.1), we should 
P 

choose a sampling design p £D which provides 
with large probability samples s for which 
simultaneously 

N 

l~xi/7 i -~xil and I[i/7 i -N I are very small. 

s s (4.2) 

One way of achieving the balancing in (4.2) is 
to choose from D a sampling design which, for 
given 7., i = I,...,N, consists of stratified 

1 

sampling with strata as homogeneous as possible 
in x. and 7. simultaneously. Then use the 

1 1 

estimate e. 
For, let the population P be divided into 

strata, Pj, i = 1 ..... k, P = U.P.3 3 and 

s. = s N ~ then in (4.2) [ = ~ x /7 . 
3 J sXi/Ti . s. i' i 

3 3 
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Further because of the homogeneous stratification 

in x and 7 ~ .xi/~i -~n (~s).'~. x i i' s j j P. i l [p.  i 
] ] ] 

n. (s) denoting size of s.. But stratified 
3 3 

sampling implies fixed size sample from each 

stratum that is nj[sj) = nj = ~P zi" Hence in 
N j 

(4.2) Ix /7 ~-[x , Similarly ~i/z.-~N. 
s i i 1 i s l 

Finally we discuss the factors that should 

govern the choice of the inclusion probabilities 
z., i = 1 ..... N. From (3.7) and (3.11) it 
l 

follows that if in the model (i.i), 8 is cop- 
siderably larger than (;. 2 and I a. { we might 

i 1 ~ 
N N 

ignore the factors ~O1 i 2 / 7  - ~Oi 2 and  

N - ~ a . )  2 
E (~ai/Zi- 1 and just minimize 
P s 1 

N 
- ~ x . )  2 E (~x i /T i~  1 ; t h e  m i n i m u m  v a l u e  n a m e l y  0 i s  

P s 1 N 
achieved by 7i ~xi i.e. ~i = nxi/[x i. On the 

± 
2 

other hand if o. , i = I,...,N are much larger 
1 

than 8 and fail then (.even if their values 

are only approximately known) we should have 
N 

7 ~O i.e ~ = nO./~O.. Further with 
i i " i 1 1 1 

~. ~O. we should choose a stratified random 
1 1 

sampling design with as sharp as stratification 

in x./7. as is possible, if fail are ignor- 
1 1 

2 
ably small. If U. are unknown but are known 

1 
to be very large, applying some kind of mini- 

N N 

~ca~ity arg~J~ent* to the factor ~U.2/7 -~.CYi 2 
1 1 i 1 

in (3.7) and (3.10), we may choose 7., 
1 

i = 1 ..... N all equal to n/N. Then again use 

stratified random sampling with as sharp a 
stratification in x./z. i.e. x. as is 

1 1 1 
possible. In any case the estimate is e. If 

2 
O. , i = I,...,N are known then as indicated 
1 

above we choose a design peD with 
N 

= nO./[O, admitting stratified sampling with 
7i i 1 l 

stratification in x./O., assuming fail a sharp 
1 1 

are ignorably small• If such a sharp stratifi- 

cation is unavailable but a plausible value of 

8 say ~0 is available then we may improve on 

the estimate e by 
N 

~O. N 
= 1 i yi- 0xi8 
e - ~ + ~ IX. 

n O. 0 1 l 
s 1 

A minimaxity argument similar to one 

mentioned before also suggests that in a 
commonly occurring practical situation when one 
is required to estimate from the same sample s, 
population totals of many variates satisfying 

different regression models with different co- 

variates, one should employ a design with all 

inclusion probabilities 7. = n/N, i = 1 ..... N, 
1 

involving a sharp stratification on all the 

covariates. 

5. GENERAL REMARKS, One important dis- 

tinction between the Unified Theory approach and 

the model-based approach brought out by the 

above analysis is this: In the former one tries 

to2el~minate the nuisance parameters like ~, 
while in the latter one tries to esti- 

mate them. Evidently the 'elimination' pro- 
cedure is more widely applicable than the 

'estimation' procedure; no model based esti- 
2 

mates of o. or a are at all available 
1 

excepting under a restrictive assumption that 
2 

all ~. (i =i, .... N) are equal and so are 
1 

all a.. 
1 

It should be clear from the forgoing dis- 

cussion that the estimation based on the 

Unified Theory is available for many situations 
(broader models) for which model based esti- 

mation (even with its supplement of randomiza- 

tion) has no solutions. Further the robust 
estimation provided by the unified theory has 

two components: (i) 2 The sampling design for 
which in (3.10) , E A is small produces, 

P 
because of (3.8), more often samples on which 
the estimates e* and ~ agree. Thus 
criterion robustness is achieved. (ii) The 

small value of E A 2, by (3.10) implies that 
2 P 2 

C~Ep(e-T) and E~Ep(e*-T) do not differ 

much. Hence efficiency robustness. A 

definition of robustness can be satisfactory 
only if it is satisfied in relation to both 
criterion and efficiency (Box and Tao, 1962). 
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*Theorem. Let (71 (P) ..... 7. (P) ..... 7 N (P)) 
1 

be a permutation P of a fixed vector 

7 = (71-1 . . . . .  7 i ,  . . . .  ~N ) . F u r t h e r  l e t  

N 
M(7) = max ~ 2/7 (P) O 2 being fixed Then 

Pl i i ' i 

N N 

= M(~) = (N/n)-~i 2 subject to ~zi n Min 7 
1 1 
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