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1. INTRODUCTION

A prime objective of statisticians at the
Bureau of the Census is to provide accurate and
timely data from censuses and surveys in a
cost-efficient way. Since the majority of the
surveys we conduct are periodic and recurring,
it is also important to us that the data are
comparabte from one time period to the next.
By being extremely careful about methodology
we believe the public will find our data cred-
ible. Since so much public policy is determined

and so mny public funds are distributed on the
basis of data from these recurring surveys,
measures to insure public credibility are very
important.

Survey design and methodological procedures
to insure accurate, timely, comparable, and

cost-effective data go far beyond the selection
of a sampling design, a survey estimator, and a
statistical model for the characteristics of
interest. They must also include such issues
as: selection of a frame, choice of sampling
unit, periodicity for recurring surveys, ques-
tionnaire design, choice of lengths of recall,
collection method, measurement error, non-
response, treatment of outliers, and seasonal
adjustment.

A survey strategy may have excellent
features but the data produced may be completely
incomparable or biased uniess careful attention
is paid to these other features. Though
nonsampling errors in large national surveys
are far more serious than sampling errors,
recognition of the effects of nonsampling

errors have, for the most part, been ignored in
the discussions of the foundations of survey
sampling.

Models play a large role in the design of
surveys at the Bureau. They are used in dif-
ferent ways for the 1large, national, household
surveys which have multiple wuses and multiple
users than in some of the smaller industrial
surveys which tend to have a narrower focus.
Thus, Bureau practice of a probability sampling
design that ensures that confidence intervals
can be computed which will be valid for large
enough samples for a wide range of charac-
teristics 1is important when we cannot specify
ahead of time all the multiple parameters of
interest.

for data that are to
determination of public policy

distribution-free aspects of the
survey data be mintained. Random-
ization and lack of dependence on assumed
models for inference purposes give credibility
to the data.

On  the other hand, in many of the surveys of
establishments, the distribution of establish-
ments by characteristic is highly skewed. Since
there is interest in many characteristics, and
they are not all highly correlated, one cannot
assume a single simple model would be appropri-
ate or meaningful for all the characteristics of
interest. But there are some surveys which do

It is also important
be used in the
that the
Bureau's
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have a more narrow focus and for which the Bureau
uses model-dependent procedures.

As stated by Smith (1976), there is not such a
wide gulf between the advocates of the design-
based and the model-based methods, and there is
probably very 1little disagreement about the
design of large multi-purpose surveys. There is
little disagreement about the role of random-
ization for such surveys for protection against
selection biases. There is no disagreement on
the part of those who favor design based methods
that models play a big part in survey design.
However the design-based methodologists do
believe that estimation to a finite population
should not be dependent on assumed models. Though

this is true for most of the Bureau surveys,
there are some exceptions. .
In the remainder of this paper, we will

examine the uses of randomization, the ways in

which survey practitioners at the Bureau use
models and special procedures used to assure
robustness. In the final section a real popu-

is used to 1illustrate
different types

lation of establishments
the differences among several
of survey estimators.
2. ROLE OF RANDOMIZATION

As stated by Hansen, Madow, and Tepping
(1978), the use of randomization and consistent
estimators, along with a large enough sample
size so that the Central Limit Theorem hoids is
a way of achieving robustness of results. There
are also political reasons to favor the use of

randomization. Randomization removes personal
biases in the selection of a sample and thus
increases public acceptance. It also permits

other data users to reanalyze survey data.

However the use of randomization in sample
selection is usually restricted. No surveys at
the Bureau use simple random sampling over atll
members of the population. A1l of the surveys
in which randomization is an essential element
use stratification to reduce variability. Many
of these surveys include a ‘"certainty stratum"
which contains very large sampling units which
will be drawn into the sample with probability
one. This is true in the household surveys as
well as  establishment surveys. Systematic
sampling is often wused, and in some surveys
controlled selection. The net result is to
restrict the set of samples that are given
positive probahility of selection.
3. ROLE OF MODELS

Most of the discussion on the role of models
in sample surveys has focused on the use of
prior or superpopulation models in inference.
Since we prefer to enlarge the discussion to
total survey design and not just sample design,

we also want to enlarge the scope of models
that we discuss. As stated by Hansen, Madow,
and Tepping (1978), the proper use of models
has much to contribute to survey design,
ordinarily within the framework of probability
sampling.

Models are used extensively at the Bureau in
all phases of survey planning. We agree with



Sarndal's (1978)
pling statistician
run arrive at a

view that "Every survey sam-

would probably 1in the long
philosophy where probability
sampling elements and model-based elements are
mixed, but where emphasis VarieSeeeeosss"
Though we use models extensively, for planning
survey methodologies, we do not depend on them
for purposes of making inferences about the
superpopulation mdels to finite population.
We also do not use them, except in rare cases,

in the selection of sample units.

However, we believe strongly that the
use of models dmproves the choice of survey
designs, and estimators, and other survey
methodologies. We shall describe briefly some
use of models 1in survey design.

3.1 Sample Design
Given the goals and constraints of a survey,

an essential task is to determine the sampling
frame and the sample wunit. Considerable care
must be taken on this point especially if the
survey is to be periodic. Considerations such
as the handling of births and deaths in the
population as well as mergers and divestitures
in the case of business establishments must be
allowed for in the selection of frame and
sampling unit. Sometimes wmodels are wused in
the determination of sample unit such as in
modeling intraclass correlations with respect
to cluster size 1in an area sample. At other
times specific models are not used and the
determination 1is based on knowledge obtained
by practical experience.

In  panel surveys (overlapping or not),
models have been constructed to account for
di fferent proportions of overlap between

successive samples as well as to account for
the amount of periodicity in panel usage. When
overlapping samples are used, models for im-
proved estimator construction are developed for
estimating change over successive occasions.
Superpopulation models are also used 1in the
determination of sample design and estimation;
however, in almost all cases estimators selec-
ted are consistent with respect to the sample
design. To quote Hansen and Madow (1978), "The
specification of the design utilizes substan-
tive and  statistical Jjudgments and varying
amounts of information available concerning the
population and its characteristics, in such a
way that good judgments, including good use of
prior dinformation, will reduce the mean square
error per unit of cost, but poorer judgments,
or larger errors in the prior information,
may lead to larger mean square errors but
the estimator will nonetheless be consistent.”
This statement embodies the view of Bureau
practitioners of sample design  when sample
sizes are large.
3,2 Questionnaire Design

Considerable attention 1is paid to possible
biases arising from the questionnaire. 'It is
fairly well established that the context in

which questions are placed, the length of the re-

call period, and the format of the questionnaire

affects the replies. Models are used in the

development of a survey questionnaire to reduce

the amount of bias in the resuits.

3.3 Collection Methods
Survey practitioners

are eager to reduce
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the cost of surveys. \Using the telephone for
data collection 1is one way to reduce costs.
In fact many surveys 1in marketing and in
academic settings are based on random-digit

dialing methods in which the set of all assigned
telephone nurbers is the frame for the survey.
The fraction of the population having telephones
is about .93 in the US., but those people who do
not have telephones are more likely to be un-
employed, to have acute health conditions, to
suffer criminal victimizations, and to exhibit
several other characteristics of interest in
setting public policy. Therefore, it is essen-
tial that those people be represented in our
surveys. This implies a dual-frame  design
with the sample split between the two frames --
one a frame of telephone numbers and the second

an area sample frame to pick up nontelephone
households. A considerable amount of modeling
work is currently underway to determine the

appropriate sample allocation for the two frames.
3.4 Measurement Error

Measurement errors in sample surveys are
caused by respondents, interviewers, coders,
and the interaction among them. The Bureau

developed a mean-square error model to show the
combined effects of sampling and measurement
error on the estimator of a population mean. The
use of interpenetrated subsamples as suggested
by Mahalanobis has been the basis of the esti-
mation of the parameters of that model. The
results are used to help determine if resources
should be used to increase the sample size thus
reducing sampling error or to reduce sample size
in order to use resources to reduce interviewer
or coder error.

Models have been used to help in interpret-
ing other survey phenomena, one of them being
inconsistencies in what is known as "gross flow"
data from the Current Population Survey. This
phenomenon is fillustrated by 1large changes in
labor force status of people in sample in con-
secutive months. Fuller and Chua (1982) have
developed a model to describe the problem as have
Zellner and Abowd (1982).

3.5 Nonresponse

No survey is fortunate enough that complete
response is realized. There 1is always some
residue of nonresponse from units that could not
be contacted. Models are implicit in all of the
procedures the Census Bureau uses for nonresponse

adjustrent. In recent years we have begun
experimenting with explicit models for  such
adiustments.
3.6 Estimation

The choice of a survey estimator depends
either implicitly or explicitly on the use of
models. But such models are not limited to
superpopulation models used by authors such as
Royall, Godambe, and so forth. Rather, the
models must take into account the total com-

ponents of survey design such as data collection
and processing as well as constraints such as
cost. The existence of an auxiliary variable,
x, correlated with a variable of interest y
may dictate and indeed resuit in the choice of
a ratio or regression estimator whether they
are optimum with respect to a superpopulation
model or not.
4, PROCEDURES TO ENSURE ROBUSTNESS

As we view it robustness in survey work per-



tains to the issue of satisfactory performance
of survey designs and estimators when mod-
els, previously thought to be correct and used
in the survey planning, are not valid at the
time of the survey. A survey strategy is felt
to be robust when despite model failure, the
goals of the survey can still be achieved with
minor loss in precision over that obtainable
with no model failure.

As stated previously, the
zation and design-consistent estimators togeth-
er with large sample sizes tends to provide
robust survey designs. The effect of outliers on
sample estimates can be treated, for example,
in panel surveys, by estimation procedures that
reduce sample weights of such outliers but
requiring additional reporting in successive
panels. We feel that stringent editing routines
that check for logical relationships among data
reported as well as analyst review reinforces
the "robustness" property of our survey methods.

Much effort is expended in maintaining and
updating survey coverage of the target popu-
lation to eliminate biases in the survey esti-
mators. Details such as removing deaths and
adding births permit survey estimates to be
comparable over time. Large per unit costs for
some segments of the population are tolerated
in attaining complete coverage. This nccurs in
poputations of business establishments where
the smaller ones tend to enter and leave fre-
quently and survey estimates for the entire
population are required monthly. Because
coverage is complete it 1is felt that large
changes 1in characteristics can be satisfac-
torily detected. For example, such a survey
will be satisfactory and robust in a severe
recession where many small establishments leave
and few establishments enter in a dispropor-
tionate manner to the entire population.

5. A NUMERICAL EXAMPLE

In the following numerical work, the esti-
mation of a total for several data items
collected ina 1979 annual survey of confection-
ary establishments is considered. The charac-
teristics to be examined are quantity and value
of shipments for chocolate and non-chocolate
confectioners and for their combined totals.
The universe is highly skewed with 40 percent
of the establishments accounting for 90 per-
cent of the total. To simplify the comparison
of methods, the original wuniverse of 250
establishments was reduced to 203 by elimin-
ating establishments that had gone out of
business or had recently come 1into business.
The data file used contained both 1978 and
1979 data for each characteristic of interest.
A sample size of 50 was arbitrarily chosen for
the analysis.

5.1 Cutoff Sample Versus Stratification

In this section we utilize the development
related to the use of cutoff samples as outlined
in Hansen, Hurwitz and Madow (1953) Vol. I, page
486 in which the class of ratio type estimators
r = [Wry + Wor2TX in a two stratum design with
simple random sampling within strata is examined
with respect to mean square error (MSE). Nota-
tionally, in the present context rj, i=1, 2 is
the ratio of sample sums of 1979 to 1978 data

use of randomi-
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for stratum i based on a sample of size ny,
np + n2 =50 and Wy is a weight constrained to

lie in the interval [0,1]. The X represents
the known 1978 total for the characteristic
of interest. The class of ratio type esti-
mators contains the separate ratio estimator.
The strata were formed by assigning all
establishments with 1978 total value exceed-
ing 12  million dollars in stratum 1. The
results for each of the six characteristics
examined (e.g., total gquantity of chocolate,
total value, etc., for 1979) were similar. In
every case, the ME(r) was minimized for
ny = 50 and Wy = 1 indicating the optimality
of a cutoff sample with a ratio estimator.
The mildly interesting observation with

respect to the characteristics was that the

establishments in the cutoff sample repre-
sented only 63 to 90 percent of the total.
Since the data represented two successive
years the overall rates of change differed
little from the rates of change of the cut-
off sample. However, characteristics where
there were some differences in the rates of
change and where the cutoff sample repre-
sented 63 percent of the total yielded
MSE's that were similar in size to designs
specifying samples from both strata. Should
the differences in the rates of change in-
crease over time, the stratified random

sample design would yield the smaller MSE.

5.2 Traditional Estimators and a Stratified
Design

The wuniverse of confectionary
ments described above was
comparing some traditional estimators of total
under a stratified design. The establish-
ments were stratified by size of 1978 total
value of shipments and sample sizes were
allocated to strata using the variables
1978 and 1979 non-chocolate quantity of ship-
ments under Neyman allocation. Four strata
were designated including a certainty stratum
of 17 units. Keeping with a total sample size
of 50, the remaining 33 sample units were
allocated to the other three strata. Five
estimators of total dincluding the usual
stratified estimator denoted Y were examiped.
The other four were the combined ratio, Ycg,
the separate ratio, Ygp, the combined re-
ression, Yeg and the  separate regression,
sGe The estimators can easily be found in
Cochran (1963) so they are not detailed here.
For the stratum sample sizes were 9, 14 and
10 and for the other four they were 10, 11
and 12, In  estimating each 1979 charac-
teristic, the same 1978 characteristric was
used as an auxiliary variable. For every
characteristic of interest, the coefficient
of variation (C.V.) of Y was at least double
that of any of the remaining estimators. It
was also observed that there was almost no

establish-
used further in

difference in C.V. among any of the four
remaining estimators. Finally, note that
the C.V.'s were computed using large sample

approximations to the variance.
5.3 Monte Carlo Investigation

Given  the stratified design described in
the previous section with stratum  sample
sizes 10, 11 and 12 a 1imited Monte Carlo



was  conducted. A total of
samples was generated, each
combinations of  systematic
from within each stratum.
within each stratum were
1978 total value of ship-
sampling. In addition to
the five estimators of total mentioned in
section 5.2 four other estimators were
investigated. Two of the estimators were
motivated by a prediction theory approach
(Royall, 1981) and two from a Bayesian
approach.

The study focused on a single characteristic,

investigation
150 stratified
consisting of
samples selected
The establishments
ordered by their
ments prior to

namely 1979 value of shipments (y) with 1978
total value of shipments (x) as an auxiliary
variable. It was assumed that the super-
population variance of y was proportional to
X. The first prediction theory,. based esti-
mator considered was Ygis where Ygig = Iyj +
ies
BGIS Lx; and BGLS = (Ex ) ]Zy1 The second pre-
jes' ies'  ies N
diction theory  based estimator was_ Yg where
G = Iyj + (N=n)B, + ByIx{ where Bo and By
ies igs

are the usual weighted least squares estimators
under the model yj; =By +B1x5 + €5 1 = 1,
2,¢4..n and the e; are distributed 1ndependent1y
(0, 9%xs). The first estimator is described
in Royall and Cumberland (1981). The second
estimator is a direct application of weighted
least squares estimation of the regression
coefficients.,

The remaining two estimators are derived via
a Bayesian argument and use prior data relation-
ships. That 1is, in addition to a linear model
relating y and x, a relationship between x and
z (where z represents data for a year prior to

that for x) is also used to estimate the re-
lationship between 'y and x. Assyme  that
1} y: = B.x; + a; where a:~N(o, gx:) and
2) x} = CBp121- t Y v)here Yy~ l]lo, 0511}. Hence
the data are assumed to obey a regression rela-
tionship but the regression parameters may
change from year to year. The two point esti-
mators of total presented below minimize the
posterior expectation of the quadratic 1loss

function under separate specifications of prior
distributions of the regression coefficients. In

the first case, B¢ = Bp =B and B is  assumed
to have a noninformative prior. The Bayes esti-
mator of total in this case is Yg = Iy; +
ies

A A A #
s?izi where Bg = ABc + (1-0)8,

Be = D17 zyy, By = [22,0715x and

’ 1es ies 1es jes
A ([22 170+ Tax 1) [z 2,177,

1es i

The second estimator is hased on the prior
distribution specifying that 8. given B is
ngrmaﬂy distributed with mean B, and variance

and that B has a noninformative prior.
The estimator Por total Jdno this  case | is
¢ = Ly; + BMIxy where Bm = 98¢ + (1-0)Bp,
A IES i¢s
Be and Sp are as previously defined,
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N
[62 + (87222;)71 + (5-25x;)7177]
i 1es

¢=

N
182+ 3'2221-] and 82 = (n-1)-12£y1"6cx1')zx1ﬂ'

i ie
A prior was not formulated for §2, In-
stead 62 was estimated in a rough manner by

using published totals from previous years and
computing the sampling variance of ratios of
current to previous year data for eight succes-
sive years.

The nine estimators together with their vari-
ance estimators were applied to each of the 150
samples in the Monte Carlo investigation. In the
case of the prediction based estimators, esti-
mates of their error variances (see Royall and
Cumberland (1981)) were computed. The variance
estimators of the traditional estimators men-
tioned in section 5.2 can be found in Cochran
(1963) and will not be repeated here. We let
v(Ysg) denote the estimator of variance of the
separate regression estimator and use similar
notation for the other traditional estimators
in the graphs below. Three estimators of the

error variance of Ygig were considered. The
first two estimators, vi(Ygi5) and vp(Y¥gs)
are denoted v and vy respectively by Royall
and Cumbertand (1981). The third, v3(Ygi5),

is similar to vy when the lower order term is
omitted. It is sometimes used as an estimator
of variance of a ratio estimator of total under
a simple random samph’ng design. The estimator
of the error variance of Y is straightforward

and is denoted v(Yg). Finally, the est1m%tors
for Yy and Yo are v(Yg) = (N-n)o
N
o%lzz; + Ix;17V (%1% and v(Ye) = (N-n)o? 4
i 1ss 1¢s
N
o2y, + (82« {o7222;3 711371 2,72
ies 1 1¢s
where o2 has been previously defined.
5.4 Discussion
Figures A-D present results for the esti-

mators Ysg, Ygis. Yg and Yo. The others were
eliminated because of space limitations but are
included in the discussion. The results repre-
sent calculations based on a 21-term sliding
window. They are similar to centered 21-term,
moving averages, except some of the results are
not averages. For a given estimator of total
Y and a given estimator of its variance v(Y),
the terms  ERROR (Y), (MSE(Y ))1/2 and
(v(Y))/2  denote ERROR (Y) = 21-1 1 (Y-Y),
(NBE(Y?)l’Z = (-1 & (y-v)2)1/2, and
(viYN'2 = (2171 v(Y))Y/2,  respectively,
where the summations are over the 21 consecu-
tive samples in_a given window. These data are
plotted versus xo = 217 Z x, where once again
the summation 1is over the 21 samples in the
window. The samples were ordered by value of
Xg prior to these calculations. See Royall and
Cumberland (1981) for a more complete descrip-
tion of this type of graphic.

A's expected, the simple stratified estimate
did not perform as well as the other four tradi-
tional estimators. Of the four estimators Ycr,
Ysp and Ygg behaved similarly with Ygg tending



to have marginally sma]ler error. The combined
regression, estimator, Y.z and the first Bayes
estimator Yg were downward biased. This behav-
jor deserves further study. The smallest errors
occur, for the prediction-theory estimators Ygis
and Yg and for the second Bayes estimator Y¢.
The empirical behavior of all three estimators
is similar.

The estimators of
track (MSEYY/Z fairly
zation theory estimators Ycr, Ygs, Ysg. Once
again, however, there are some problems with
the combined regression estimator, particularly
for samples with sma}l xg. For, the prediction
theory estimators Ygis and Yg the variance
estimators tend to be too large, but only
marginally so. For the first Bayes estimator
the variance estimator tends to be too large,
but the estimated standard error for the second
Bayes estimator tracks (MSE)'/2 extremely well.

Obviously these results are favorable to the
prediction-theory and Bayes-theory estimators.
We are concerned, however, about whether the re-
sults are sustained when longer time lags occur
between model specification and rmodel estima-
tion or when multiple characteristics are in-
volved in the survey. We intend to look at some
of these questions in future work.

We note that all of the 150 samples consid-
ered in this study might be viewed as both
"realistic" from a randomization-theory point
of view, and "balanced" from a prediction-
theory point of view, That 1is, each sample
consists of a certainty stratum and a strati-
fied-systematic sample from the balance of the

tend to
randomi -

standard error
well for the

population. Our sample space does not contain
any abberant samples as presented, e.g., by
Royall and Cumberland (1981), and thus we did

not observe a wide range of differences between
the various estimators. Evidently well-chosen
probability sampling designs impart a robust-
ness quality to the survey estimators whether
they be randomization-, prediction-, or Bayes-
theory based.
Table 4 " presents

for the cutoff sample
for the best-fit sample

results for ?(Gls and \?G
(50 1largest units) and
(a centered systematic

sample from the entire population). The error
in the estimator of total is quite small for
both samples, certainly competitive with the

tevel of error in the estimators displayed in
Figures B and C., It 1is interesting to note
that the estimated standard errors for the
best-fit sample are much larger than for the
earlier 150 samples, while the estimated
standard errors for the cutoff sample are
much smaller than for the earlier samples.
Finally, Figure E displays results for ,.the
studentized statistic t = [v(Y)~ }/23(Y-Y)
for the separate regression estimator and the
two prediction-theory estimators. The figure
plots the empirical distribution function of t
for each of the three estimators, along with
the distribution function of a standard normal
variate. The t associated with the randomi-
zation-theory estimator Ygg behaves nicely,
being reasonably well approximated by the
standard normal distribution. This is not the
case, howeyver, for the two prediction-theory
estimators Ygig and Yg, where the corresponding
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t's show important departures from normality.
These resuits are interesting because they run
counter to the earlier results in Figure A to
D, where the prediction~theory estimators per-
formed better than the randomization-theory
estimators. If the present results are sus-
tained by additional empirical work, they
surely suggest that inferences from the pre-
diction-theory approach tend to be conserva-
tive. Th‘i t-distributions associated with

QGLS and Yg are evidently shorter tailed than
the standard normal distribution, and if normal

theory confidence 1intervals were constructed
using such methods the actual rates of coverage
of the true Y should exceed the nominal con-
fidence levels.
6. SUMMARY

Obviously this paper is incomplete. When we

began the empirical work we wanted to look at
how well the models held up over time and how
well the models constructed for one variable
worked for other variables in a survey. Unfor-
tunately, time ran out. We have learned some-
thing from this work, though, and will continue
our research.,

The Bureau uses a fairly large number of cut-
off surveys in the industrial area. Part of the
reason for doing that is that most of the
monthly surveys are voluntary, not mandatory,
and the small establishments have a poor record
of responding. That 1is partly the Bureau's
fault because we expend our greatest efforts in
getting responses from the larger establish-
ments, but even on studies where strenuous
efforts have been made, it is difficult to get
the small establishments to report. When the
Bureau uses cut-off surveys, we publish no
estimates of uncertainty with the estimates
of totals and means. The work in Section 5
leads us to believe that there may be better

ways of using model-based designs for these
small universes that would also permit us to
inform users about variances.

The work in Section 5 also suggests that

additional research is required in the treat-
ment of births and in the treatment of universes
that require estimation of several character-

istics and where mdel specifications do not
hold everywhere.
In summary, the Bureau uses models 1in many

phases of its survey work, but we believe that
for our large, national, multi-purpose surveys
the practice of probability-sampling designs
is necessary.
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E. MONTE CARLO DISTRIBUTION OF STUDENTIZED STATISTICS AND N(0,1)
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Table 4. Errors and Standard Errors in Cutoff and Best-Fit Samples of n = 50

_ N ~ 1/ ~ 1/ ~ 1/ ~ ~ 1/,
2 2 2 - z
Sample Xs (Yars-Y)  vql¥gs) v3(Yers) va(YgLs) (Yg-¥) v(Yg)
Cutoff 53.7+43  -4.143 22.2+3 17.9+3 35.7+3 -67.7+43  110.043
Best-Fit  13.8+3  -0.6+3  115.743 92.6+3 84.1+3 - 4.7+43  116.243

(MSE)]‘/2 corresponds to the Monte Carlo results for the separate regression estimator.



