
VARIANCES FOR SUBDOMAINS OF MULTISTAGE CLUSTER SAMPLES: 
THE DELTA AND BOOTSTRAP METHODS 

Alan B. Forsythe, BMDP/UCLA 
Richard Hough, UCLA 
Audrey Burnam, UCLA 

It is often not practical to form a 
sampling frame by listing all the people 
in the population. When taking a sample 
from a city, for example, it is much more 
economical to draw a sample of city 
blocks, list and sample the houses within 
the chosen blocks, and then to select a 
person at random from each household. 
One advantage is that we need only enu- 
merate the houses within the selected 
blocks rather than all blocks. Further, 
only the selected houses have to have 
their members listed for possible inclu- 
sion in the sample. This form of samp- 
ling is called multistage cluster samp- 
ling and is described in many textbooks 
(Kish, 1965; Cochran, 1977). The blocks 
are the clusters and are also called the 
primary sampling units. 

It is often interesting to form separ- 
ate estimates for subgroups of subjects 
in the population. The subgroup of males 
from 30 to 50 years old is a subdomain of 
all people. If the characteristic being 
estimated is the presence or absence of a 
given event, then the rate for middle- 
aged males might be the statistic of in- 
terest. Of course, it is also very valu- 
able to know the variability of the rate 
and not just the rate itself. 

In this paper we consider the question 
of estimating the variance of a rate es- 
timated for a subdomain in multistage 
cluster samples. The Taylor Series 
(delta) method gives an asymptotic esti- 
mate of variance and is inexpensive and 
easy to implement (Cochran, 1977). A 
relatively new technique for variance 
estimation has been defined by Bradley 
Efron (1979; 1981a,b) and is called the 
Bootstrap method. Although it is not as 
economical to implement, it has a strong 
intuitive appeal and conceptual simplic- 
ity. 

In broad terms one can imagine what 
could be done to estimate the variance of 
any statistic. If we know the probabil- 
ity distribution function, all we need to 
do is sample from that distribution over 
and over again. Each sample yields a 
value for our statistic and the variance 
is the variance of those values. What if 
we do not know the distribution function? 
One possible solution is to assume a dis- 
tribution and use that as the basis of 
our calculations. The normal distribu- 
tion is often assumed. Efron's approach 
is to take the sample data values as an 
empirical estimate of the distribution 
and then sample from that distribution. 
This amounts to drawing a sample of the 
same size as the original sample -- with 
replacement. Each resample is used to 

estimate the statistic of interest, and 
the collection yields the estimated vari- 
ance. There are enhancements to the 
method that include having each point 
represent a smear of points and also 
Bayesian mixing of prior information or 
belief about the distribution with the 
observed sample distribution. 

In this paper we restrict our atten- 
tion to the simple bootstrap and the del- 
ta method. We will not discuss other 
resampling schemes such as the jackknife, 
interpenetrating samples, balanced re- 
peated replicates, or random subsamples 
(Tukey, 1958; McCarthy, 1966; Deming, 
1956, 1960; Frankel, 1971; Kish and 
Frankel, 1974; Hartigan, 1969; Forsythe 
and Hartigan, 1970; Miller, 1974; and 
Quen0u|11e, 1949). 

The motivating example for this re- 
search is the estimation of depression 
rate in middle-aged males. We let X be 
the number of middle-aged males (about 
20% of the population in this example) 
and Y be those middle-aged males who are 
depressed. The depression rate is P = 
Y/X. A depression rate of 5% and 20% 
will be used in this empirical comparison 
of variances of estimated subdomain 
rates. One can anticipate problems if 
the sample value of X could be close to 
zero. This might happen if X has a large 
coefficient of variation or a moderate 
coefficient of variation with a skewed 
distribution. 

Methods 

This paper reports a Monte Carlo (sim- 
ulation) study of sampling from a hypo- 
thetical population of 2065 persons. 
There are 4.13 persons per household and 
there is an average of 5 houses per block 
(cluster). The distributions of persons 
per household and houses per cluster are 
given in Tables 1 and 2. There are 413 
middle-aged males of the 2065 persons 
(20%) and we shall consider estimation of 
the depression rate when the population 
is generated at 5.085% and 9.677%. We 
shall examine two sample sizes: 

i) Sample 30 clusters, 4 houses per 
cluster, 1 person per house. Of these 
120 people, 24 are expected to be mid- 
dle-aged males. 

2) Sample i0 clusters, 3 houses per 
cluster, 1 person per house. This sample 
of 30 people would have an average of 6 
males. The samples are self-weighting 
with probability proportional to size. 

Each trial of this computer experiment 
consisted of fabricating the population, 
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Table i. Distribution of Number of 
Persons per Household. 

Table 2. Distribution of Number of 
Houses per Cluster. 

Number of Proportion Number of Proportion 
People of Houses per of 

in House Population Cluster Houses 

1 .05 1 .00 
2 . i0 2 .00 
3 .20 3 .00 
4 .35 4 .50 
5 .15 5 .30 
6 .05 6 .06 
7 .03 7 .05 
8 .03 8 .04 
9 .02 9 .03 

i0 .02 i0 .02 

drawing a random sample from the popula- 
tion, calculating the ratio estimate of 
the depression rate (P), the variance of 
P as estimated by the delta method (D), 
and the bootstrap estimate of variance 
(B) based on 128 resamplings. These 
trials were repeated many times, enabling 
the calculation of the variance of P, the 
average estimate of variance from the 
delta method, D, and the average estimate 
of variance from the bootstrap method, B. 
This program was run on a Digital Equip- 
ment Corporation VAX/780 using an IMSL 
random number generator. 

Results 

The results are given in Table 3. 
There are four experimental conditions 
reflecting two sample sizes and two popu- 
lation depression rates. The variances, 
as calculated by the delta and bootstrap 
methods, are expressed as a percentage of 
the observed variance across trials. A 
value of 100% would represent an unbiased 
estimate of variance, while values less 
than 100% indicate that the estimate is 
biased to give variances that are lower 
than the true variance. Thus, the delta 
method estimated variance that is only 
74% as large as it should be in the 
10,000 trials of the first experimental 
condition. Both methods give a false 
sense of greater precision of estimation 
than warranted. The delta method is sig- 
nificantly more biased than the bootstrap 

Table 3. Results of Simulation Study. 

in each of four experiments. All four 
matched t tests yielded p values less 
than 0.0001. The magnitude of the bias 
does not vary strongly with the popula- 
tion rate, but the bias does decrease 
with greater sample size. 

Conclusions and Suggestions for Future 
Work 

In the conditions of this "simulation 
study the delta method is found to be 
substantially and significantly more bi- 
ased than the bootstrap in the estimation 
of the variance of a subdomain percent- 
age. The variance as estimated by the 
delta method ranged from 66% to 74% of 
the observed variance. The bootstrap 
also gives estimated variances that are 
downward biased, but to a lesser extent 
(86% to 94%). See Table 4. 

The conditions of these experiments 
are very stringent since the subdomain 
sample sizes are at most 24, on the av- 
erage. Since the bias appears to de- 
crease with increasing sampl e size, one 
might feel much more comfortable if the 
subdomain had a denominator in the hun- 
dreds. There is, perhaps, a tendency to 
subdivide a sample into many subgroups 
(such as age, gender, socio-economic sta- 
tus, and geographic location) without 
looking carefully at effects on variance. 
Unfortunately, the very variance we might 
want to consider might be giving us a 

Number of Depression Depression 
Number of Houses per Rate in Rate in 

Clusters in Cluster Population Sample R 
Sample in Sample % % 

B Number 
Var(R) Var(R) Var(R) of Times 

% % 

30 4 5.085 5.016 

30 4 20.097 20.531 

10 3 5.085 5.135 

i0 3 20.097 20.162 

0.264 74 94 i0,000 

0.904 71 94 200 

1.087 66 84 i0,000 

3.459 68 86 I0,000 
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false sense of security, since it is bi- 
ased downward. Such problems may also be 
present in biomedical research where, for 
example, a very large sample of births 
can be divided into categories for indi- 
rect standardization. The mechanical 
tools enable one to simultaneously con- 
sider birth weight in 50 gram intervals, 
gestational age, ethnic group, and gen- 
der. Soon, some cells might contain so 
few observations that they cast doubt 
upon the estimated variances. 

Further work in this area might look 
at other resampling schemes such as the 
jackknife. Perhaps one could jackknife 
the variance estimate itself to reduce 
its bias. It would also be interesting 
to know the consequences of subdomain 
rates that are much smaller than the 5.1% 
con sidere~ in this paper. 

BOOTSTi~.P  
DELTA 
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