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I. INTRODUCTION 
This paper deals with the problem of es t imat ing  

population to ta l s  for a population tha t  is changing with 
t ime.  The problem is to e s t ima te  these  to ta ls  at  each 
t ime  k, where this set  of t imes  may correspond to 
weeks,  months or years.  These population to ta ls  can 
be thought  of as the rea l iza t ion  of a t ime  series.  

This problem of e s t ima t ing  the rea l iza t ion of a 
t ime  ser ies  using only a sample  of the population 
which is i tself  fixed over t ime has been discussed by 
Madow and Madow (1) and Royall  (2). The techniques  
sugges ted  in these  papers assume the ac tua l  population 
to ta l  at  t ime k=l is given. Then the  sample  data  a t  
subsequent  t imes  are  used to make an e s t ima te  of 
change for the en t i re  populat ion.  This e s t i m a t e  of 
change is then used to derive an e s t i m a t e  of the 
cur ren t  population to ta l  from an e s t i m a t e  of a 
previous population to ta l  a t  the preceeding  t ime.  The 
sample  tha t  is used to e s t i m a t e  this change is s e l ec t ed  
a t  t ime k=l and, excep t  for nonresponse,  is the sample 
which is used at  all subsequent  t imes.  

The purpose of this paper  is to inves t iga te  a class 
of e s t ima to r s  and compare  their  mean square errors .  
This class of e s t ima to r s  consists  of weighted 
regression e s t ima to r s  where the weight  is a function 
of a single real  number,  d, in the in terval  (-1, 2). The 
o ther  de termining  variable ,  h, is the amount  of 
his tor ical  da ta  used in the es t imator .  Thus for each 
pair (d,h), where  d ~ (-1, 2) and h is a posit ive in teger ,  
the re  is an e s t ima to r  which will be def ined la ter .  

The purpose of this paper is to demons t ra te ,  for 
the par t icular  sampling s i tuat ion and model  
assumptions  described in this paper,  tha t  there  is one 
e s t ima to r  among the class descr ibed above tha t  is best  
with respec t  to both mean square error  and robustness.  

II. DESCRIPTION OF THE POPULATION AND THE 
ESTIMATORS 
The population is assumed to be changing according 

to the l inear model  descr ibed in this sect ion.  
The following nota t ion will be used to describe the 

s tochas t ic  s t ruc tu re .  
1) Let  Y~(i)Tl~e the random variable assoc ia ted  

with the i " "  population unit at t ime k. 
2) Let yt~(i) be the realization of Y~(i). 

For each t im, 'per iod k we wish to estimate: 
7. Yk ~) 
i~S 

where the summatation is over the entire population 
denoted by S. The model states that, conditional upon 
the realizations up to and including t ime k - l ,  the 
expected value of Y~(i) is proportional to Yt~ ~(i) and 
that the stochastic 15~ocesses Yb(i), Yb(j), k%I~2,--- 
are condit ionally uncorrelated ~ when ~ i /= j .  These 
statements are expressed algebraically in (2.1) below. 

E (Yk(~)/k-l) = 8 k Yk-i 0) (2.1) 

Coy (Yk(i), Yk(J)Ik -1) = Vk(i)if i=j 

0 if~j 
The notation for conditional expectation used 

throughout this paper is E( ' / k - l ) .  Estimators based on 
a variety of models for Vk(i) wi l l  be considered later in 
this section. 

Let Sl~ be the sample at t ime k and let r~ be it's 
complern'6nt in S. Thus S = s U r k . Note ' tha t  in 
spite of the assumption of a ~xed sample over t ime 
subscripts appear on s k and r k. Because of 
nonresponse in the sample there is varmtion within the 
f ixed sample, s, from time period to  t ime period. 

The estimator for t ime period k which is a 
function of the samples Sk, Sk_ I --~ s2, S l=S is 
denoted: 

tk(S)= 7. tk(~ ) 
~S 

where tk(i) is the estimator for y~(i). 
The estimators that I consider"here are pr imari ly 

of the type: 
tk(S) = tk(S k) + tk(r k) 

where t k(sk) -~_~. Yk (j) = Yk (Sk) 

since tk(i) = Yk(i)~or i~ s k 

and t k(rk) i ~  k t k (:i) 

That is, tk(S) is the sum of the observed sample 
sum at t ime k and the sum of estimates t of 
nonsample y values at t ime k. The estimation of this 
lat ter  quanti ty can be classified according to the 
variance model and this is discussed next. 

An estimate for Yk(rk) can be sought by f i rs t  
estimating B~ (the index of change between t ime k - I  
and t ime k) ~nd then mult iplying this estimate by tu / 
(r~). One way to estimate B~suggested by ordin~r~ 
le'&st square regression, would'be to let its est imator 
be that value of c which minimizes: 

7 ~fk~) - c Yk_l ~ )2 (2.2) 
i~SkSk_ I 

where S~Sk_ I = SkOS~ I • This notation for set 
intersecfion wi l l  be use'd-for the rest of this paper. 

When V(Yt~(i)/k-l) is independent of y~ l( i) then 
this proceduf~ is reasonable. If however,"t l i is is not 
the case then some account of this dependence on 
Yk I (i) needs to be ref lected in the above sum. For 
example, i f  V(Y~( i ) Ik- I )  is proportional to yb ,(i) then 
the terms in the above sum (2.2) wi th smal~eF YI~ I (i) 
should be weighted more heavily since the ~p-~irs 
(Yk I (i) ' Yt~(i) )' in such terms, would be expected to 
lie ~earer  'the true regression line than terms with 
large Yk l(i)" 

Th is -~e ight ing  can be ef fect ively achieved by 
transforming the regression variables so that variances 
are constant. Instead of finding the line through the 
origin (0,0) which is closest to the set of point's 
(Yk_1(i), Yk (~)), i~ s k s~ . "{, f ind that line which is 

o ~ I I  " J  , - - -  • i 

closefft to i ' ~ (Yk-I(~/~/V(Y~O)/k-1) ' 
Yk(%)/JV(Yk(i)/k-l) ) ~ sk sk-i 3" 
Note that V((Yv( i ) /JV(Yu( i ) i l< ' l )  ) I k - l )  = I for all i 
(thus i t  is independent of ~ 10) ). With this lat ter set 
of points the sum to minim~'z~ becomes: 

2 
.Z Sk_(i/V(Y k (i)/k-l)) ~F k (~) - c Yk-i ~) 

In this sum each term is weighted inversely to its 
variance as desired. The value of c which minimizes, 
this is: 
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0 = 

7~ 

~- i  
(i/V(Yk(J)/k-l)) Yk(i) Yk_l ~) 

E 2 
(I/V(Y k (J)/k-l)) Yk_l  O) 

Now if V(Y, (i)/k-1) t en z=hK'y k~l(i)_ for some 
an~ for all i cons tant ,  Kk, 

l - d  2-d (i)) (2.3) 
c = ( r Yk(J) Y k_l(J)) / Cg Y k- I  

sksk_1 sksk_1 

Therefore  if the condit ional  var iance  is 
proport ional  to some power of the ou tcome for the 
preceeding t ime  period then this c in ( 2 . 3 ) i s  an 
unbiased e s t ima to r  for B k . 

The problem of e s t ima t ing  products  of c o n s e c u t i v e  
Bs, is much more diff icult  in general .  This is the 
problem of es t imat ing  change be tween  t ime k-f  and 
t ime  k for £>i. If V(Yt,(i)/k-l) is propori tonal  to 
yb ,(i)  (as above with d=T) t h e n  an easy solution is 
ag~tlable.  This is because,  V(Yb(i)/k-I) proport ional  to 
Yk I (i) implies V(Yt~(i)/k-f) proport ional  to Yt~ ¢(i). In 
tfi'is'case an estimaf% of change is: "'-" 

c = (7. yk(i) /~. yk_~(i) ) 
s k s k_ f Sk s k_ f 

Unfor tuna te ly  for d /= 1 it doe~ not follow tha t  
V(Y~(i)/k-l) proport ional  t°A Y~ 1 (i) implies 
V(Y~c(i)/k-f) is proport ional  to y~ ~ (i~.- In this case the 
expression for c becomes  diffi~:hlt to e s t ima t e  and 
the re fo re  when d ~ I e s t ima to r s  using more than the 
two t ime periods k and k-I  will not be considered in 
this paper.  

III. DEFINITION OF ESTIMATORS 
l - d /  2-d 

Le t  a(p,q,d) = r (i) yq ( i ) / ,  r. yq(i) 
ieSpSq yP / ieSpSq 

In s i tuat ions where confusion is possible tt~(S) will 
be prefixed by an abbrev ia ted  name and semi'~olon in 
order  to distinguish be tween  d i f ferent  es t imators .  
With this notat ion the es t ima to r s  tha t  are considered 
c a n  be defined as follows: 

I) An es t ima to r ,  RI ,  based on unweighted 
regression through the origin (d=0) was t e s t ed  
and is defined as follows: 

2) 

RI:  tk(S)=Yk(Sk) + a(k ,k- l ,0)  " tk_l( rk)  

The link re la t ive  e s t ima to r  (1) was also tes ted.  
It is the one cur ren t ly  being used by the 
Bureau of Labor Sta t i s t ics  for es t imat ion  of 
population to ta l s  for the sampling scheme 
outl ined in the second paragraph of the 
Introduction.  

3) 

EO: tk(S) = a ( k , k - l , l )  " tk_l(S) 

The next set  of e s t ima to r s  El through E3 
differ only in the amounts  of past t ime period 
data  tha t  are  used. They correspond to a 
weighted regression through the origin with 
d=l.  

El :  tk(S) = Yk(Sk) + a ( k , k - l , l )  tk_l( rk)  

E2: tk(S) = El:  tk(S) for k = 2 

E2: tk(S) = Yk(Sk) + a(k,k- l , l ) tk_  l(Sk- Irk) 

+ a(k,k-2,1) tk_ 2 (rkrk_ 1) for k > 2 

E3: tk(S) = E2: tk(S) for k=2 & 3 

E3: tk(S) = Yk(Sk) + a(k,k- 1,1)tk_ 1 (rkSk- 1 ) 

+ a(k,k-2,1) tk_ 2 (rkrk_ I Sk-2) 

+ a(k,k- 1 , l ) tk_ 1 (rkrk- I rk-2) for k > 3 

This set  of e s t ima to r s  (El - -  E3) can be 
summar ized  by saying tha t  if possible a unit 's e s t i m a t e  
for t ime k is an update of a known y value from the 
last  t ime it responded but if it hadn' t  been a 
respondent  in the near past then it 's e s t ima t e  a t  t ime 
k is an update  from it 's e s t i m a t e  at  t ime k-1. 

4) The next e s t ima to r  to be considered is the 
only "true" regression type es t imator .  All of 
the above e s t ima to r s  apply a regression 
coef f ic ien t  (update fac tor  a ( ", "9 ")) to an 
e s t i m a t e  of the auxil iary variable.  If an 
e s tma to r  for t ime k is derived by updating 
from the benchmark month (k=l) then the 
auxil iary var iable  is known exact ly .  

R2: try(S) = Yk(Sk) + a (k , l ) l )  " y,(r, .)  
from "~the benchmark  month (k= l ' )~hen  the 
auxil iary variable is known exact ly .  

R2: tk(S) = Yk(Sk) + a (k , l , l )  " Yl(rk) 

5) The Horwi tz-Thompson e s t ima to r  was 
included in this study as an addi t ional  basis for 
compar ing the probabil i ty sampling approach 
with super population models.  It is descr ibed 
in detai l  in par t  V "Descript ion of Simulation." 
It is denoted  as HT. 

6) The final e s t ima to r  tha t  is considered here is a 
composi te  of the Horwi tz-Thompson e s t ima to r  
(HT) and E2. The problem of defining and 
measuring var iances  in a meaningful  way for 
both HT and E2 has ye t  to be solved. Since 
the opt imal  weights  of a composi te  e s t ima to r  
are  a function of these  var iances  another  
weighting scheme was tr ied.  When there  are  
re la t ive ly  severe  deviat ions from the 
super population model,  E(Y~ (0 /k- l )  = 
B k y~ 1(1), then the regression tylb% es t imators  
dete?i 'Srate quickly as t ime passes until  their  
mean square errors  are larger  than the mean 
square e r ror  of the Horwi tz-Thompson 
es t ima to r .  
This observat ion suggested the following 
e s t ima to r  for use over a span of M months 
from the benchmark  month k=l.  

E5: tk(S) = (k/M)(HT: ~ (S ) )  + (l - k/M))(E2: tk(S)) 
for k 2, 3, 

These weights init ially (for small  k) give most of 
the weight  to E2 and as k increases  the weight  shifts 
to HT. 
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IV. SOME THEORY ON THESE ESTIMATORS 
Tlaere is a proof in (2) which shows that E0: tk(S) is 
model unbiased with respect to (2.1) . This means 
tha t  E(E0: tk!S) - Yk(S)) = 0 where  

Y k iS) ieZS Y k(i)- 

A very similar argument can be used to show that 
El through E3 and RI and R2 are also model 
unbiased. As an example, the proof of unbiasedness 
for E2: tk(S) follows. 

E(tk(S)- Yk(S)) = E [ E(tk(S)- Yk(S)/k- l )  ] 

= E [E(tk(S k) - Yk(Sk)/k- 1) + 

E ((tk(SkSk_ 1 ) / tk-  1 (SkSk- l ) ) tk-  1 (rkSk- 1 ) 

- Yk(rkSk - l ) /k -  1) 

+ E ((tk(SkSk_2)/tk_2(SkSk_2))tk_2(rkrk_l) 

- Yk(rkrk - l ) /k-  1) ] 

By definition, the f irs t  t e rm in this sum is zero.  
The second te rm is equal to: 

E ((Y k (SkSk_l)/tk_l (SkSk_l)) tk_l (rkSk_l) 

- Y k (rkSk_l)/k-l) 

-B k Yk-l(rkSk-i ) 

= (6 k Yk_l(SkSk_l)/Yk_l(SkSk_l))Yk_l(rkSk_l ) 

- B k Yk_l(rkSk_l ) 

= 6k Yk-i (rkSk-l) - 8k Yk-i (rkSk-l) = 0 

• E(tk(S ) Yk(S)) . , - = third term - 

BkEB (Yk_l (SkSk_2)/tk_2 (SkSk_2)) tk_2 (rkrk_l) 

- Yk_l(rkrk_ I) ] 

= 8k[E (Yk_l(SkSk_2)/tk_2(SkSk_2))tk_2(rkrk_l) 

- Yk_l(rkrk_l ) ] 
Now conditioning on k-2, 

Z (Yk_l(SkSk_2)/k-2) = 8k_ 1 Yk-2 (SkSk-2) 

• , E (tk(S) - Yk(S))= 

( ( )1 ( )) 6 k E(~. (Yk - i  SkSk-2 tk -2  SkSk-2 tk -2( rk rk - l )  

- Yk_l( rkrk_l) /k-2))  

= B k Bk- I E((Yk_2(SkSk_2)/Yk_2(SkSk_2))tk_2(rkrk_ 1) 

-Yk_2(rkrk_l  )) 

= 6k Bk-lEE tk-2(rkrk-1) - Yk-2(rkrk- l )  ] 

It has probably been noted by this point that the 
random variable t and it's realization are used 
interchangeably. 3ust which one t represents should 

be clear from the level of conditioning. The entire 
preceeding agrument can be repeated with 

rkrk_ 1 in place of S to show tha t  E(tk_2(rkrk_l)- 

(rr r r ) Yk_2(rkrk_l )) = 8k_ 2 8k_ 3 E (tk_ 4 k k-i k-2 k-3 
(r r r r )) 

- Yk-4 k k-i k-2 k-3 " Continuing in this fashion 
we f inal ly get: 

P 

° =  

where 

X E [tk_2p(IIt~ - Yk_2P([ ~ ] 

P 

lip= i__~0rk_(2d) rk_(2i+l) 

now for some p, k-2p = 1 or 2. If k-2p = 1 then 
E I t  ! ( I I~  - YI(II t~] =0 by definition. 

If k-2p = 2 then use the model  unbiasedness of E1 
to see t h a t  E(tk(S) - Yk(S)) = 0. 

V. DESCRIPTION OF SIMULATION 
These e s t ima to r s  (and combinat ions  of them) were  

t e s t ed  on a universe of 300 units each having data  for 
20 months.  A sample of 52 units was se lec ted  
according to an opt imum s t ra t i f i ed  simple random 
sampling plan. This sampling plan was opt imal  with 
respec t  to the data for each unit at  month one. The 
data  for month one were gene ra t ed  from a lognormal 
distribution.  

The density funct ion for the lognormal is: 
f(x) = ( l /((ax -~b) ~ ) ) E X P  (-( l /2aL)) 

• LOG" ( (x -  b)/c) 
where x > b 

References (3) (t4) and (5) indicate that  certain 
economic data are described by the lognormal. For 
the constants a b and c, I used the fol lowing 
constants which are maximum likelihood estimates 
derived from an employment survey data set. 

a = 1.392, b = .5 , c = 3 .158 .  

Thus 300 random numbers were generated from 
this density for the ini t ial  month's universe data, Yl(i)• 
The Yk(i) for k - 2 ,  3, 20 and i  = I, 2, . . . .  300 
were generated from the fol lowing model. 

Yk (i) 6kYk - I  (i) +N(0'  2 D ( i ) . C ) + B  
= Yk-I 

where N(0, Yk-12D (i)" C) is the normal  distr ibution with 

m e a o  0 v r .o e 0)'c. 

The triples, (B, C, D), of constants were choosen in 
a variety of ways and complete simulations were run 
for each set of triples. This gave some indication of 
robustness in the eight estimators. For example, 
a non zero B gives a deviation from the model (I) and 
the noise level increases with C and D. 

The sample o f  52 units was selected at month one 
and used for estimation at each subsequent month• 

This strat i f ied simple random sample was choosen as 
follows. 

Nine s t r a t a  were defined using the cumula t ive  
rule (6) on the set  y l(i) i (6=)I' 2, .... 300. Then 
Neymann al locat ion was used to divide the sample 
size of 52 among t h e  s t ra ta .  Finally a simple random 
sample was se lec ted  in each s t ra tum.  This s t ra t i f i ed  
sample was the basis for the Horwi tz-Thompson 
e s t ima to r  tha t  was ment ioned in sect ion Ill• This 
sample was also used for the o ther  es t imators .  

553 



Nonresponse was added to these  s imulat ions as 
follows. The same 52 sample  units were  kept  
throughout  the 20 months,  but a simple random 
subsample of respondents  were  se l ec t ed  each month 
f rom among the 52 sample  units. This occasional ly 
resu l ted  in no respondents  in some of the sparser  
s t r a t a  so, for the Horwi tz -Thompson  e s t ima to r ,  s t r a t a  
were  col lapsed and nonresponse was adjus ted by unit 
counts  of respondents  and sample  members .  

In summary ,  these  e s t ima to r s  were  t e s t ed  on a 
universe  of 300 units each having data  for 20 months.  
A sample  of 52 units was se l ec t ed  by an opt imal  
s t r a t i f i ed  simple random sampling plan. The set  of 
respondents ,  st,, is a simple random subsample of these  
52 units whicH'is s e l ec t ed  a t  each t ime k. From these  
samples ,  st,, the e s t ima to r s  were  computed  for each of 
the 20 mdfiths. This p rocedure  was then rep l ica ted  20 
t imes  and the resul ts  were  compared  to the t rue  
population to ta ls  a t  each t ime k. Thus the mean 
square e r ro r  was e s t i m a t e d  for each e s t ima to r  and 
used as the basis for comparison.  

This procedure  was r e p e a t e d  for a var ie ty  of 
models.  These s imulat ions  were  done with a response 
r a t e  of 70% and the set  of mixed Bs. 

Vl. TABULAR AND GRAPHICAL RESULTS 
Tables 1,2, and 3 show the e s t i m a t e d  mean square 

e r ro r  in thousands for each e s t ima to r  s tudied in a 
var ie ty  of models  (B,C,D). These e s t i m a t e d  mean 
square  er rors  are  the ave rage  over 20 repl icat ions  and 
20 months of the squared deviat ions be tween  the 
ac tua l  population to ta l  and its e s t imators .  B=0 in each 
of these  tables  (i.e. the  model  (2.1) holds). D=0 in 
table  1, D=.5 in table  2 and D=.7 in table  3. C is the 
column var iable  in each of these  tables  and var ies  
f rom .1 to .8 in table  1 and f rom .1 to .4 in tables  2 
and 3. 

TABLE 1 

MODEL (O,C,O) 

ESTIMATED TOTAL MEAN SQUARE 

ERROR IN THOUSANDS 

C .1 .2 .3 .4 .5 .6 .7 .8 

EST 

E 0 0 .6  1.3 1.4 3 .0  2 .3  3 .4  3 .6  3.9, 

E 1 0 .4  0 .9  1.0 1.8 1.7 2 .4  2 .4  2 .6  

E 2 0 .4  0 .9  1.3 1.4 1.8 2 .4  2.1 2 .8  

E 3 0 .3  0 .9  1.0 1.6 1.9 2 .4  2 .4  2 .8  

E 5 9 .3  13.8 19.4 26.7  21.6  34.5  38.8  39.3  

HT 25 .6  31.7 41 .5  56.1 48 .9  66.7  81 .5  85.1 

R 1 0 .3  0 .8  0 .9  1.2 1.4 1.8 2 .5  2 .3  

R 2  0 .4  1 .0  1.3 1.5 2.1 2 .6  2 .6  2 .3  

The f i rst  thing that should be noted is that when 
D=0, Vt'(i) is independent  of x k /(i) ,  then R I 
generalI~ ou tpe r fo rms  the other  e~t imators .  This is 
exac t ly  what  one would expec t  since if D=0 then R1, 
based on d=0, is the e s t ima to r  suggested by leas t  

squares regression theory out l ined in Sect ion II. Table 
1 also shows tha t  El through E3 do near ly  as well as 
R1 when D=0. Recal l  tha t  the regress ion theory  of 
Sect ion II suggests  these  e s t ima to r s  when D=.5. 

TABLE 2 

MODEL (0,C,.5) 

ESTIMATED TOTAL MEAN SQUARE 

ERROR IN THOUSANDS 

C .1 .2 .3 .4 

EST 

IE0 13.5 34.5  45.1 76.1 ! 

El 7 .2  17.7 26.3  38.3  

E2 7 .9  18.0 28 .0  33.0  

E3 7.1 17.1 25.8  36.5  

E5 39.8  67 .5  143.7 193.2 

HT 83 .0  121.2 251.1 339.1 

RI 12.3 25.4  32.0  42.2  

R 2  8 .9  19.8 29 .0  40.4,  
When D=.5 ( table  2), then E1 through E3, based on 

d=l ,  dominate  as the theory would suggest .  RI does 
not do par t icu lar ly  well  in this case  however .  Tables 1 
through 3 suggest  tha t  the e s t ima te s  based on the 
assumption tha t  d=l a re  qui te  robust  for large 
deviat ions from d=l (i.e. f rom D=.5) and tha t  RI ,  
based on d=0, does not seem to share this proper ty .  

Next  note  tha t  HT, E5 and E0 are  not compe t i t ive  
when any of the models tha t  a re  t abu la ted  in tables  1 
through 3 hold. R2 does reasonably well but seems to 
be slightly inferior  to El ,  E2 and E3. 

TABLE 3 

MODEL (0,C,.7) 

ESTIMATED TOTAL MEAN SQUARE 

ERROR IN THOUSANDS 

C .1 .2 .3 .4 

EST 

E0 63.2  174.5 226.5 387.9  

El 32.4  86.3  126.4 193.3 

E2 34.1 78 .8  121.3 173.5 

E3 35.4 80.3  122.9 189.4 

E5 108.0 168.6 431.9  652.6  

HT 198.7 282.5  707.3  1028.0 

RI 78.1 157.5 193.9 277.9  

,R2 43.0  86.7  133.3 216.8  
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Figure 1 is a graph by month of the e s t i m a t e d  
mean square e r ro r  in hundreds f rom 20 repl ica t ions  for 
t h ree  e s t ima to r s  E0, El and E2. It begins at  month 
and goes to month 20. In this example  it is c lear  tha t  
El is very nearly a two fold improvemen t  over the link 
re la t ive  e s t ima to r ,  E0, with r e spec t  to mean square  
error .  Although E2 has a lower ave rage  mean square 
e r ro r  than El ,  it develops a disturbing osci l lat ion in 
l a t t e r  months.  This behavior  is common with E2 in 
o ther  models and the reason for this is not  ye t  known. 
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Figure 1 also shows the diminishing re turn  in the 
use of his tor ical  data ,  E2 is b e t t e r  than El but the 
improvemen t  is not very substant ia l .  Compare  this 
improvemen t  to the d i f fe rence  be tween  E1 and E0. 

Tables ~ and 5 are  summary  tables  tha t  show which 
e s t ima to r  pe r fo rmed  best  in a wider var ie ty  of models.  
Table ~ runs through combinat ions  of D and C with 
B=0. The model  (2.1) holds in all these  cases  (B=0). 
The condit ional  var iance  s t ruc tu re  is a function of 
C&D. When D=0 the theory  suggests  R1 should do best  
and table  ~ shows c lear ly  tha t  this is the case.  It also 
shows tha t  for any value of D near  .5 (d near  1) then 
the E type e s t ima to r s  a re  qui te  robust.  It should also 
be noted tha t  when D=.5, E3 domina tes  but when D=.3 
or .7, El or E2 usually dominate .  This behavior  is also 
pred ic ted  by the theory  in Section II where  it is shown 
tha t  for d /: I the e s t ima t ion  of changes  be tween  non 
ad jacen t  months is a diff icul t  problem which is not  
handled opt imally by the E type es t imators .  Thus the 
e s t ima to r  which uses the most  historic  da ta  (E3) does 
not hold up well when d devia tes  from 1 because  it is 
not using an opt imum update  f ac to r  for linking 
fo rward  f rom month k-2 to month k. 

The e s t ima to r s  which use less historic da ta  (El & 
E2) suf fer  less from this problem when d differs  from 
1. 

Table 5 shows what  happens if an in t e rcep t  t e rm is 
added to the model  ( that  is B /: 0). In this case  B=.I. 
When this happens the composi te  e s t ima to r  E5 does 
quite well  for small  values of D and C. As D and C 

become larger then the situation that B--.I contr ibutes 
proport ional ly less than C&D to the overal l  between 
month change and as a result the regression estimators 
based on d=I dominate. 

TABLE 

MODEL (0,C,D) 

BEST ESTIMATOR BY MODEL 

D/C .1 .2 .3 .4 

0 R I / E 3  RI RI RI 

.3 E3 E1 E3 E2 

.5 E3 E3 E3 E2 

.7 El E2 E2 E2 

*Tie be tween  RI & E3. 

If d=l then E type e s t ima to r s  (El ,  E2, E3) a re  good 
with E3 slightly b e t t e r  than El .  If d # I then the use 
of more than 2 months of da ta  (k ,k- l )  is hazardous 
because  of the problem of e s t ima t ing  products  of B's. 
Thus if d is unknown, which it is for p rac t i ca l  
purposes,  then the E type e s t ima to r  using 2 months of 
data  (k ,k- l )  is suggested.  These fac t s  lead to the use 
of El because  it uses only 2 months of data  but 
remains  robust  when d devia tes  f rom 1. 

TABLE 5 

MODEL ( . I ,C,D)  

BEST ESTIMATOR BY MODEL 

D/C .i .2 .3 .¢ 

0 E5 E5 E5 E5 

.3 E5 E5 R2 E2 

.5 R2 E3 R2 E2 

• 7 R2 E3 E2 E2 

VI. CONCLUSIONS 
Before the conclusions a r e  s t a t ed  the set  of 

e s t ima to r s  tha t  were  considered will be reviewed.  
Except  for the Horwi tz -Thompson  e s t ima to r  and the 
compos i te  e s t ima to r  tha t  conta ins  the 
Horwi tz -Thompson  es t ima to r ,  all the o thers  can be 
classif ied according to points of the two dimensional  
a r ray ,  (d,h), tha t  was ment ioned  in the Introduction.  

If the hor izonta l  axis indicates  the number  of 
months of da ta  used by a par t icu la r  e s t ima to r  and the 
ver t ica l  axis indicates  the value of d then the 
e s t ima to r s  tha t  were  considered correspond to points 
in the fol lowing graph: 
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As an example consider the point labeled E2 in the 
table. E2 is the regression est imator that uses data 
from times k, k - I  and k-29 3 times periods, and is 
based on d=l. 

When d is not one i t  is d i f f i cu l t  to use a regression 
est imator that uses more than two months of data (k, 
k - I )  because of the d i f f i cu l ty  in est imating products 
of B's. This problem was pointed out in Section II. If 
an est imator such as E2 or E3 is used when d is not 
one, the tabular results indicate that more is lost when 
products of B's are incorrect ly  estimated than is 
gained by the use of data from months k-2 and k-3. 
For pract ical  purposes d is never known exactly. Thus 
for reasons of both accuracy and s impl ic i ty  i t  is 
recommended that an est imator which uses data from 
only t ime k and k - I  be used. This narrows down the 
set of estimators to those corresponding to points that 
lie on l j ,  in the graph. 

It may be possible to estimate d and although this 
est imator, d, may~not be very good) a regression 
est imator based on d and using data from times k and 
k - I  is recommended. If d is not estimated then a good 
rule of thumb, as shown by the computer simulations) 
is to choose El .  El is the regression est imator based 
on d=l and remains quite robust for large deviations of 
the true value of d from one. 

The monthly survey of employment )hours ,  and 
earnings at the Bureau of Labor Statistics is 
undergoing revision. The work that is summarized in 
this paper is part of this revision. El is a simple 
modi l icat ion of E0, the est imator that is current ly 
being used in the this survey. This modif icat ion can be 
described by saying that El lets the sample of 
respondents represent i tself .  To show expl ic i t ly  what 
this means recall that E0 can be wr i t ten 

EO: tk(S) - (Yk(SkSk= l)/Yk- I (SkSk- l))tk= I (Sk) 
+ (Yk(SkSk - l)/Yk- I (SkSk- l))tk- I (rk) 

E1 replaces the first term of this sum with the 
observed sample values at time k. 

E1: tk(S) -- Yk(Sk) +(Yk(SkSk_ 1 )/Yk= 1 (SkSk- l))tk- 1 (rk) 

This simple modification of the current system 
should be a good choice among the possible estimators 
studied in this paper. 

El, like the other estimators that correspond to 
points of 11 or 12 is unbiased with respect to model 
(2.1). 

The problem of estimating variances for the 
estimators considered here has yet to be looked a t .  

My thanks are due to Wesley L. Schaible, Alfreda 
Reeves, Sandra West and Bennett Brady for their help 
in preparing this thing. 
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