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I. INTRODUCTION

This paper deals with the problem of estimating
population totals for a population that is changing with
time. The problem is to estimate these totals at each
time k, where this set of times may correspond to
weeks, months or years. These population totals can
be thought of as the realization of a time series.

This problem of estimating the realization of a
time series using only a sample of the population
which is itself fixed over time has been discussed by
Madow and Madow (1) and Royall (2). The techniques
suggested in these papers assume the actual population
total at time k=1 is given. Then the sample data at
subsequent times are used to make an estimate of
change for the entire population. This estimate of
change is then used to derive an estimate of the
current population total from an estimate of a
previous population total at the preceeding time. The
sample that is used to estimate this change is selected
at time k=1 and, except for nonresponse, is the sample
which is used at all subsequent times.

The purpose of this paper is to investigate a class
of estimators and compare their mean square errors.
This class of estimators consists of weighted
regression estimators where the weight is a function
of a single real number, d, in the interval (-1, 2). The
other determining variable, h, is the amount of
historical data used in the estimator. Thus for each
pair (d,h), where d € (-1, 2) and h is a positive integer,
there is an estimator which will be defined later.

The purpose of this paper is to demonstrate, for
the particular sampling situation and model
assumptions described in this paper, that there is one
estimator among the class described above that is best
with respect to both mean square error and robustness.

II. DESCRIPTION OF THE POPULATION AND THE
ESTIMATORS
The population is assumed to be changing according
to the linear model described in this section.
The following notation will be used to describe the
stochastic structure.
1) LetY (1).1J?_e the random variable associated
with the i " population unit at time k.
2) Lety, (i) be the realization of Y, (i).
For each time'period k we wish to estifmate:
Iy ®
ieS

where the summatation is over the entire population
denoted by S. The model states that, conditional upon
the realizations up to and including time k-1, the
expected value of Y, (i) is proportional to yk l(1) and
that the stochastic processes Yk(l), Yk(]), =1,2,---
are conditionally uncorrelated” when iA. These
statements are expressed algebraically in (2.1) below.
E(Y, @/k-1) = B v,y @ 1)
Cov (Y, (@), Y, ()/k-1) = V (@if isj
0 if 4
The notation for conditional expectation used
throughout this paper is E("/k-1). Estimators based on
a variety of models for Vk(x) will be considered later in
this section.
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Let s, be the sample at time k and let r, be it's
complement in S. Thus S = Note’ that in
spite of the assumption of a tk xed sample over time
subscripts appear on s and r,. Because of
nonresponse in the sample there is variation within the
fixed sample, s, from time period to time period.

The estimator for time period k which is a
function of the samples S S| "7 Sy sl_S is

denoted
= I @
ieS tk

ty (s)
where 1t (i) is the estimator for yk(i).
The estimators that I consider here are primarily
of the type:
tk(S) = tk(sk) + tk(rk)

where t (5) 3 ¥l =y )
since tk(i) = yk(i) or ie 5

nd t5) 1§, G0

That is, tk(S) is the sum of the observed sample
sum at time = k and the sum of estimates t of
nonsample y values at time k. The estimation of this
latter quantity can be classified according to the
variance model and this is discussed next.

An estimate for y {r,) can be sought by f{first
estimating B, (the index of change between time k-1
and time k) and then multiplying this estimate by t, _
(r,). One way to estimate B ,suggested by ordinary
least square regression, would ‘i)e to let its estimator
be that value of ¢ which minimizes:

, b (Yk(i) =-C yk_l(l) )2 (2.2)
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where s = 5.0 This notation for set

mtersechon will be use: 5 tlor the rest of this paper.

When V(Y, (i)/k-1) is independent of y_ ,(i) then
this procedure is reasonable. If however, this is not
the case then some account of this dependence on

Yy needs to be reflected in the above sum. For
example, if V(Y| (i)/k-1) is proportional to y (i) then
the terms in the above sum (2.2) with smallef y, (i)
should be weighted more heavily since the pairs

(1) , ¥Y,(i) ), in such terms, would be expected to
he nearer l%he true regression line than terms with
large y) (0.

This™ weighting can be effectively achieved by
transforming the regression variables so that variances
are constant. Instead of finding the line through the
origin (0,0) which is closest to the set of point's

E(Yk @, Yk(l) )r 1e S Sk 13 find that line which is
closes ] (yk-l(l)/ VY, /D)
Y /v V(Yk(JJ/k- ) ), ies s
Note that V((Y, (i)/ / V(Y (i)/k-1) )/k 1)=1 foralli
(thus it is mdependent of y (i) ). With this latter set
of points the sum to minimizé becomes:
w2

s s WVEOAD) G -C v, O

In this sum each term is weighted inversely to its
variance as desired. The value of ¢ which minimizes *
this is:



I (]-/V(Yk(l)/k'l)) Yk(i) Yk_l(l')

Sk k-1
¢= : )
S Sk-1
Now if V(Yla (i)/k-1) = K.y k(_il(i) for some

constant, Kk’ and for all 1 then

c=(z yway iwm/e vyl @3
Skk-1 SKk-1
Therefore if the conditional variance is

proportional to some power of the outcome for the
preceeding time period then this ¢ in (2.3) ‘is an
unbijased estimator for 8, .

The problem of estimating products of consecutive
Bs, is much more difficult in general. This is the
problem of estimating change between time k-f and
time k for 1. If V(Y,(i)/k-1) is proporitonal to
y, () (as above with d=lf) then an easy solution is
abé}lable. This is because, V(Yk(i)/k-l) proportional to
y 1(i) implies V(Y, (i)/k-f) proportional to yk_f(i). In
t#‘fs case an estimate of change is:

c= (I yM/t yk_i(i))
Sk Sk-f Sk k-t

Unfortunately for d £ 1 it does, not follow that
V(Yk(i)/k-l) proportional  tg . , (i) implies
V(Yk(i)/k-f) is proportional to y, (ilf._ In this case the
expression for ¢ becomes difficult to estimate and
therefore when d £ 1 estimators using more than the
two time periods k and k-! will not be considered in
this paper.

I, DEFINITION OF ESTIMATORS

1-d
i i
ies s ypqu() iszss yq()
P4q Pq
In situations where confusion is possible t, (S) will
be prefixed by an abbreviated name and semicolon in
order to distinguish between different estimators.
With this notation the estimators that are considered
can be defined as follows:

1) An estimator, RI, based on unweighted
regression through the origin (d=0) was tested

and is defined as follows:

2-d

Let alp,q,d) = I

R1i: tk(s) = yk(sk) + a(k,k“l,o) * tk-l(rk)

2) The link relative estimator (1) was also tested.
It is the one currently being used by the
Bureau of Labor Statistics for estimation of
population totals for the sampling scheme
outlined in the second paragraph of the
Introduction.

EO: 1,(S) = alkk-1,1) * t,_,(S)

3) The next set of estimators El through E3
differ only in the amounts of past time period
data that are used. They correspond to a
weighted regression through the origin with
d=1.
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El: 1,(9) = y(s) + alkk-1L,1)t, ()

E2: tk(S) = El: tk(S) for k=2
E2: tk(S) = yk(sk) + a(k,k-l,l)tk_l(sk_lrk)

+ a(k,k-2,1) t o (rkrk_l) for k>2
E3: tk(S) = E2: tk(S) for k=2 & 3
E3: tk(S) = yk(sk) + a(k,k-l,l)tk_1 (rksk_l)

+alkk-2,1) 1, (r
+ alik-1,1)t

K k-15k-2)

ket ko1 k-2 for k>3

This set of estimators (El -- E3) can be
summarized by saying that if possible a unit's estimate
for time k is an update of a known y value from the
last time it responded but if it hadn't been a
respondent in the near past then it's estimate at time
k is an update from it's estimate at time k-1.

4) The next estimator to be considered is the
only "true" regression type estimator. All of
the above estimators apply a regression
coefficient (update factor a ( *, *, ")) to an
estimate of the auxillary variable. If an
estmator for time k is derived by updating
from the benchmark month (k=1) then the
auxillary variable is known exactly.

R2: t,(S) = yk(sk) + alk,1,1) * y,(r)
from the benchmark month (k=11) Ifhen the
auxillary variable is known exactly.

R2Z: 1,(9) = y,(s) + aloL,l) * y ()

5) The  Horwitz-Thompson estimator  was
included in this study as an additional basis for
comparing the probability sampling approach
with super population models. It is described
in detail in part V "Description of Simulation."
It is denoted as HT.

6) The final estimator that is considered here is a
composite of the Horwitz-Thompson estimator
(MT) and E2. The problem of defining and
measuring variances in a meaningful way for
both HT and E2 has yet to be solved. Since
the optimal weights of a composite estimator
are a function of these variances another
weighting scheme was tried. When there are
relatively severe deviations from the
superpopulation model, E(Yk(i)/k—l) =
B, v, 1@, then the regression type estimators
deteriorate quickly as time passes until their
mean square errors are larger than the mean

square error of the Horwitz-Thompson
estimator.
This observation suggested the following

estimator for use over a span of M months
from the benchmark month k=1.

E5: 1, (S) = (k/M)HT: t
Sk =23, - M

These weights initially (for small k) give most of
the weight to E2 and as k increases the weight shifts

to HT.

(S + (1 - K/M)E2: ()



IV. SOME THEORY ON THESE ESTIMATORS

There is a proof in (2) which shows that EO0: t, (S) is

model unbiased with respect to (2.1) . This means

that E(E0: t,(S) - Y, (S)) = 0 where

Yk(S) =z Yk i).

ies

A very similar argument can be used to show that
El through E3 and Rl and R2 are also model
unbiased. As an example, the proof of unbiasedness
for E2: t,(S) follows.

E(t,(S) - Y, (S) = E[ E(t,(S) - Y, (S)/k-1) ]
=E [E(tk(sk) = Y (s )/k-1) +
E ((tlsys_ 1 Gysp Mty (opsy )
- Y (ry s k-1
+ EC sy s, Iy o(sy sy oWty o(rry ()
- Y (rn k-1 ]

By definition, the first term in this sum is zero.
The second term is equal to:

B (s 1)/ 1 G811 P
- ¥y s )/k-D)

B Y1 Sek-175-1 G- -1 TSk
=Bk Yk-pOuS-1)

B V-1 G- V-1 EcS-1¥kc-1 ExSc-1)
= By Vi1 OS-1)

By Yk-1 ExSk-1) ~ Bk Yk-1 @xSk-1) =0

" E(t,(S) - Y, (S) = third term =
BB @1 S22 S 2 -2 Bk
™ Y10y
= BE (Y (s D/ oSk by o FiTiy)
- Yy ey ]

Now conditioning on k-2,

B Yy 1 GS0/k=2) =By g Yip &S0

S EE© - Y, 6=

B BE Yy Bc8c-2/52 52 52 Ek-1)
- Yk—l(rkrk—l)/k_z))

By By-1 B0 o8 /Yy o &S N oEry )
Y2 Eli—1)

B Br-1(E oy y) =~ Yy olery_y)]

It has probably been noted by this point that the
random variable t and it's realization are used
interchangeably. Just which one t represents should

be clear from the level of conditioning. The entire

preceeding agrument can be repeated with

Nkt in place of S to show that E(tk—z(rkrk—l)_

Yi-20kTk-1)) = Bx o B3 B (g (pry_yTy ory3)
- Y, (rkrk_lrk_zrk_3)). Continuing in this fashion
we finally get:
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P
E (tk(S)-Yk(S))=i]=TO B—(21)Pk—(2i+1)

XE [ty opl) = Yy op()]

P
where 0 52 Tk-aivy

n =
P =0

now for some p, k-2p =1or 2. If k-2p =1 then
E [tl(np) - Yl(IIp)] =0 by definition.

If k-2p = 2 then use the mode! unbiasedness of El
to see that E(t,(S) - Y, (S)) = 0.

V. DESCRIPTION OF SIMULATION

These estimators {and combinations of them) were
tested on a universe of 300 units each having data for
20 months. A sample of 52 units was selected
according to an optimum stratified simple random
sampling plan. This sampling plan was optimal with
respect to the data for each unit at month one. The
data for month one were generated from a lognormal
distribution.

The density function for the lognormal is: 2

£(x) = (1/((ax ~b) JZT NEXP (-(1/2a%))
* LOG” ({x - b)/c)

~ where x>b
References (3) (4) and (5) indicate that certain
economic data are described by the lognormal. For
the constants a b and ¢, I used the following
constants which are maximum likelihood estimates
derived from an employment survey data set.
a=1.392, b=.5, c=3.158.

Thus 300 random numbers were generated from
this density for the initial month's universe data, y, (i).
The yk(i) for k=2,3,----20andi =1, 2, ---- 300
were geénerated from the following model.

7, D) =B, v, @ + N, y2D, )" C) + B

where N(0, yil_)l(i) * C) is the normal distribution with
. 2D ..
mean 0 and variance y, ~ (i) C.

The triples, (B, C, D), of constants were choosen in
a variety of ways and complete simulations were run
for each set of triples. This gave some indication of
robustness in the eight estimators. For example,
a non zero B gives a deviation from the model (1) and
the noise level increases with C and D.

The sample of 52 units was selected at month one
and used for estimation at each subsequent month.

This stratified simple random sample was choosen as
follows.

Nine strata were defined using the cumulative ./f—
rule (6) on the set y, (i) i = 1, 2, .... 300. Then
Neymann allocation was used (6) to divide the sample
size of 52 among the strata. Finally a simple random
sample was selected in each stratum. This stratified
sample was the basis for the Horwitz-Thompson
estimator that was mentioned in section III. This
sample was also used for the other estimators.



Nonresponse was added to these simulations as
follows. The same 52 sample units were kept
throughout the 20 months, but a simple random
subsample of respondents were selected each month
from among the 52 sample units. This occasionally
resulted in no respondents in some of the sparser
strata so, for the Horwitz-Thompson estimator, strata
were collapsed and nonresponse was adjusted by unit
counts of respondents and sample members.

In summary, these estimators were tested on a
universe of 300 units each having data for 20 months.
A sample of 52 units was selected by an optimal
stratified simple random sampling plan. The set of
respondents, s, , is a simple random subsample of these
52 units which'is selected at each time k. From these
samples, s, , the estimators were computed for each of
the 20 months. This procedure was then replicated 20
times and the results were compared to the true
population totals at each time k. Thus the mean
square error was estimated for each estimator and
used as the basis for comparison.

This procedure was repeated for a variety of
models. These simulations were done with a response
rate of 70% and the set of mixed B8s.

VI. TABULAR AND GRAPHICAL RESULTS

Tables 1,2, and 3 show the estimated mean square
error in thousands for each estimator studied in a
variety of models (B,C,D). These estimated mean
square errors are the average over 20 replications and
20 months of the squared deviations between the
actual population total and its estimators. B=0 in each
of these tables (i.e. the model (2.1) holds). D=0 in
table 1, D=.5 in table 2 and D=.7 in table 3. C is the
column variable in each of these tables and varies
from .1 to .8 in table 1 and from .l to .4 in tables 2
and 3.

TABLE |
MODEL (0,C,0)
ESTIMATED TOTAL MEAN SQUARE
ERROR IN THOUSANDS

c .1 .2 3 R o5 .6 7 .8

EST

EO 0.6 1.3 1.4 3.0 2.3 3.4 3.6 3.9
El 0.4 0.9 1.0 1.8 1.7 2.4 2.4 2.6
E2 0.4 0.9 1.3 1.4 1.8 2.4 2.1 2.8
E3 0.3 0.9 1.0 1.6 1.9 2.4 2.4 2.8
E5 9.3 13.8 19.4 26.7 21.6 34%.5 38.8 39.3
HT 25.6 31.7 41.5 56.1 48.9 66.7 8l1.5 85.1
R1 0.3 0.8 0.9 1.2 1.4 1.8 2.5 2.3
R2 0.4 1.0 1.3 1.5 2.1 2.6 2.6 2.3

The first thing that should be noted is that when
D=0, V,(i) is independent of x _ (i), then R1!
generalK/ outperforms the other es%imators. This is
exactly what one would expect since if D=0 then R1Y,
based on d=0, is the estimator suggested by least
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squares regression theory outlined in Section II. Table
1 also shows that El through E3 do nearly as well as
Rl when D=0. Recall that the regression theory of
Section II suggests these estimators when D=.5.

TABLE 2
MODEL (0,C,.5)
ESTIMATED TOTAL MEAN SQUARE

ERROR IN THOUSANDS

C A 2 3 .4
EST

‘EO 13.5 3.5 45.1 76.1"
El 7.2 17.7 26.3 38.3
E2 7.9 18.0 28.0 33.0
E3 7.1 17.1 25.8 36.5
ES5 39.8 67.5 143.7 193.2
HT 83.0 121.2 251.1 339.1
RI1 12.3 25.4 32.0 42.2
R2 8.9 19.8 29.0 40.4,

When D=.5 (table 2), then El through E3, based on
d=1, dominate as the theory would suggest. Rl does
not do particularly well in this case however. Tables 1
through 3 suggest that the estimates based on the
assumption that d=1 are quite robust for Ilarge
deviations from d=1 (i.e. from D=.5) and that RI,
based on d=0, does not seem to share this property.

Next note that HT, E5 and EO are not competitive
when any of the models that are tabulated in tables |
through 3 hold. R2 does reasonably well but seems to
be slightly inferior to El, E2 and E3.

TABLE 3
MODEL (0,C,.7)
ESTIMATED TOTAL MEAN SQUARE

ERROR IN THOUSANDS

C .1 .2 3 A

EST

EO 63.2 174.5 226.5 387.9
El 32.4 86.3 126.4 193.3
E2 34.1 78.8 121.3 173.5
E3 35.4 80.3 122.9 189.4
E5 108.0 168.6 431.9 652.6
HT 198.7 282.5 707.3 1028.0
R1 78.1 157.5 193.9 277.9
‘R2 43.0 86.7 133.3 216.8



Figure | is a graph by month of the estimated
mean square error in hundreds from 20 replications for
three estimators EO, El and E2. It begins at month 4
and goes to month 20. In this example it is clear that
El is very nearly a two fold improvement over the link
relative estimator, EO, with respect to mean square
error. Although E2 has a lower average mean square
error than El, it develops a disturbing oscillation in
latter months. This behavior is common with E2 in
other models and the reason for this is not yet known.

FIGURE 1
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Figure 1 also shows the diminishing return in the
use of historical data. E2 is better than El but the
improvement is not very substantial. Compare this
improvement to the difference between El and EO.

Tables 4 and 5 are summary tables that show which
estimator performed best in a wider variety of models.
Table 4 runs through combinations of D and C with
B=0. The model (2.1) holds in all these cases (B=0).
The conditional variance structure is a function of
C&D. When D=0 the theory suggests Rl should do best
and table 4 shows clearly that this is the case. It also
shows that for any value of D near .5 (d near 1) then
the E type estimators are quite robust. It should also
be noted that when D=.5, E3 dominates but when D=.3
or .7, El or E2 usually dominate. This behavior is also
predicted by the theory in Section II where it is shown
that for d £ 1 the estimation of changes between non
adjacent months is a difficult problem which is not
handled optimally by the E type estimators. Thus the
estimator which uses the most historic data (E3) does
not hold up well when d deviates from 1 because it is
not using an optimum update factor for linking
forward from month k-2 to month k.

The estimators which use less historic data (El &
E2) suffer less from this problem when d differs from
1.

Table 5 shows what happens if an intercept term is
added to the model (that is B £ 0). In this case B=.l.
When this happens the composite estimator E5 does
quite well for small values of D and C. As D and C
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become larger then the situation that B=.1 contributes
proportionally less than C&D to the overall between
month change and as a result the regression estimators
based on d=1 dominate.

TABLE 4
MODEL (0,C,D)

BEST ESTIMATOR BY MODEL

D/C . 2 3 b

0 R1/E3 R R1 Rl
*

3 E3 El E3 E2

5 E3 E3 E3 E2

7 El E2 E2 E2

*Tie between R1 & E3.

If d=1 then E type estimators (El, E2, E3) are good
with E3 slightly better than El. If d £ 1 then the use
of more than 2 months of data (k,k-1) is hazardous
because of the problem of estimating products of B's.
Thus if d is unknown, which it is for practical
purposes, then the E type estimator using 2 months of
data (k,k-1) is suggested. These facts lead to the use
of El because it uses only 2 months of data but
remains robust when d deviates from 1.

TABLE 5
MODEL (.1,C,D)
BEST ESTIMATOR BY MODEL

D/C .1 .2 3 R

0 E5 E5 E5 E5
3 E5 E5 R2 E2
5 R2 E3 R2 E2
7 R2 E3 E2 E2

VI. CONCLUSIONS

Before the conclusions are stated the set of
estimators that were considered will be reviewed.
Except for the Horwitz-Thompson estimator and the
composite estimator that contains the
Horwitz-Thompson estimator, all the others can be
classified according to points of the two dimensional
array, (d,h), that was mentioned in the Introduction.

If the horizontal axis indicates the number of
months of data used by a particular estimator and the
vertical axis indicates the value of d then the
estimators that were considered correspond to points
in the following graph:



El__E2 Ay

. . Y , h
/ 2 3 ¥ 5 €

-1

As an example consider the point labeled E2 in the
table. E2 is the regression estimator that uses data
from times k, k-1 and k-2, 3 times periods, and is
based on d=1.

When d is not one it is difficult to use a regression
estimator that uses more than two months of data (k,
k-1) because of the difficulty in estimating products
of B's. This problem was pointed out in Section II. If
an estimator such as E2 or E3 is used when d is not
one, the tabular results indicate that more is lost when
products of R's are incorrectly estimated than is
gained by the use of data from months k-2 and k-3.
For practical purposes d is .never known exactly. Thus
for reasons of both accuracy and simplicity it is
recommended that an estimator which uses data from
only time k and k-1 be used. This narrows down the
set of estimators to those corresponding to points that
lie on 1,, in the graph.

It may be possible to estimate d and although this
estimator, d, may_,not be very good, a regression
estimator based on d and using data from times k and
k-1 is recommended. If d is not estimated then a good
rule of thumb, as shown by the computer simulations,
is to choose El. El is the regression estimator based
on d=1 and remains quite robust for large deviations of
the true value of d from one.

The monthly survey of employment, hours, and
earnings at the Bureau of Labor Statistics is
undergoing revision. The work that is summarized in
this paper is part of this revision. El is a simple
modification of EO, the estimator that is currently
being used in the this survey. This modification can be
described by saying that El lets the sample of
respondents represent itself. To show explicitly what
this means recall that EO can be written
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E0: 1,(S) = (v, (s, 8 1Yy 16y Mgy 8y )
+ 0o e 1 G181 V-1 1

El replaces the first term of this sum with the
observed sample values at time k.
El: 1,(S) = y, (s,) +(y, (s 8, - )y _1(8,5) My

This simple modification of the current system
should be a good choice among the possible estimators
studied in this paper.

El, like the other estimators that correspond to
E()Oi{l)ts of l1 or 12 is unbiased with respect to model
2.1},

The problem of estimating variances for the
estimators considered here has yet to be looked at.

My thanks are due to Wesley L. Schaible, Alfreda
Reeves, Sandra West and Bennett Brady for their help
in preparing this thing.
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