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i. Introduction

The purpose of this paper is to test empiri=-
cally the advantages and disadvantages of two'kinds
of procedures in estimation for small domains:
(a) asymptotically design unbiased (ADU) alterna-
tives and (b) design biased alternatives, inclu-
ding the synthetic estimator. The ADU estimators
have negligible design bias in moderate to large
samples, and confidence intervals are readily
obtainable such that the confidence coefficient
carries the usual interpretation of coverage rate
under repeated draws of samples s by the given
sampling design. The design biased estimators,
on the other hand, may have a small design vari-
ance, but their design bias is often so large
that it is virtually certain that an interval

centered on the point estimate will fall to con-
tain the true point under estimation.
2. Estimators under study

Let U={1,...,k,...,N} be a finite population
from which a sample s of fixed size n is selected
by a given sampling design admitting the inclu-
sion probabilities m  and Tt Let U, (g=1,...,Q)
be subdomains with known sizes N 4 and let n
be the (random) number of observations contained

in s g, the part of s that happens to fall in
Y ﬁe seek estimates of the domain means
Y.q = ZU q Yk/N‘q(q=1,°')Q)-
First, the ADU estimators considered are De-

sign-Model estimators (also
regression estimators).
context, of the form (S&rndal,

known as generalized
These are, in a general

1981, 1982).
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Tq = 21cquk + zsckqek/w (2.1)

Yk Y k-x B with

Where e =

(L mod) ™! Lomony (2.2)
is the residual arising in fitting the linear
model (£, say) such that Eg(Yk) = xkB to the n
data points. Here the weights in g are
chosen as wi = l/ﬂkdk , where ok—v (YQ Moreover,
Ckq = 1/N .q iIfke U and cyq = 0 otherwise.
For a given sampling ges|gn, each model fit
gives rise to a different ADU estimator,
An approximate variance estimate of T
glven by the Yates-Grundy formula in Ckq®

is
“ka’k _ “2q%2 2
(T ) = zz o\ " T
k<t k 2
€s

is

K that

(2.3)

where g = (w T, )/ﬂ g An approximate 100
(1-a)% confldence |nterva$ for Y is therefore
~ -~ - 1
3
Tq * 2102 V(T)) (2.4)
where 2z is the unit normal deviate. Under

repeateé %raws of samples s by the given design,
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roughly 100(1-0)% of all confidence intervals cal-
culated by (2.4) will cover the true value Y , as
confirmed in particular cases by our Monte Carlo
study.

In the study reported below, the simp1e random
sampling (srs) design is used, thus 7, = f = n/N
for all k and m = n(n-1)/N(N-1) for a]l k # 2.

The fit of a mo§el usually requires access to a
certain amount of auxiliary information.

We assume that xq,..., xy are known positive
values of an auxiliary variable correlated with-Y.
The N values of x are size ordred and the popula-
tion units are grouped by nonoverlapping intervals
of x into H groups Uy, of known size Ny (h=1,..,H).
The population is thereby crossclassified into HQ
cells Upq of known size Np,. At the sample level,
the corresponding notation is sp,, np, ,sh and
Nhqe Thus, n = $hoy o, = 10 1 Ng=2hyZ
relations which also hoid for the big N's.

We consider the following ADU estimators obtai~
ned from the general formula (2.1) for the srs
design

=1 "hq

T _ 41 gH v -1

Tig ™ Vg LilngYs *+F 0 I end (2.5)

Ty, = N 2? (éh Iy x 1T ey (2.6)
where, for késh*, e = Yk:?sh-= Y = Zsp.Yk/Ph.
and eg = Yy - Bh Xk with By = Ig, Y/ Tsp Xk
In (2.3), we use ey =eq) and _ek=e) respectlvely

The estimators Tiq and TZq arise for the
models of independent Yy such that, respectively,

- . = o2 .

EE(Yk) =8 3 Vg(Yk) of all keu (2.7)

and
2
EE(Yk) = thk > VE(Yk) = Uh Xk all keUh_(Z.S)

Other ADU estimators under srs studied below
are the '"'simple direct estimator"

T, =3 Y/n, =V (2.9)
k
3Ty ®.q
and the ''‘combined cell mean estimator"
T, =39 N T (2.10)
Lq T "hq Shq A

The latter is frequently undefined for subdomain
q, namely, as soon as the cell count np, in the
denominator of Yshq Zs Yk/"hq is zero for
some h. (To make Th oBeratlona], a rule for
collapsnng cells would first have to be defined.)
Now T,. and Tb are also obtained from (2.1)
under obvious mode\ formulations; their respec-
tive variance estimates are given by (2.3) with



€K =e3k = Yk - YS. and ek = ehk = Yk - Yshq.
Turning now to the design biased estimators,
we consider the much debated synthetic estimator

H
T5q = Iy

th Y. /N

s /Mg (2.11)

It requires the same auxiliary information as
(2.5) above and (2.12) below, that is, the popu-
lation cell counts Npg.

Another group of design biased alternatives
that deserve attention for comparative purposes
are those arising from the predictive approach,
(Holt, Smith and Tomberlin, 1979), that is, from
the general ''predictor formula'.

Tq = zscquk * ZU-scquk

where Yk is the predicted Y -value under the

model. For the models (2.7)"and (2.8) we get,
respectively (with W, = 0;2 in (2.2))

—
|

z 1ol [y s

69~ Vg L <L§hq Yo . zshq e1é}7 (2.12)

%7 =N e Ty kot e
q -q hq hq

with ey, and e;, as in (2.5) and (2.6),
tively.

It is unclear what variance estimate to use
for (2.11)-(2.13); suggestions made for (2.11)
(Gonzalez and Waksberg, 1973) do not seem to
have the usual repeated sampling interpretation.,

For (2.12) we use the variance estimator pool-
ed over all groups h and suggested by Holt,

Smith and Tombérlin (1979),

(2.13)

respec-

2 B 5 .2
V(T )= .q 9a nZrqli%s (Y, ~Y, )/ (n-H)  (2.14)
hq he.
H
where d = Nhg * N )/n
This |sqa moael baged vaglance estlmate, Qnd h-

although we use it below in our Monte Carlo stu-
dy for the construction of confidence intervals,
we expect a priori that the coverage rate achie-
ved in repeated samples by these intervals will
not come near the theoretical confidence level
aimed at.
3 Description of the Monte Carlo Simulation

We identified a population consisting of
N=1287 Swedish households classified into Q=12
subdomains defined by household type (number of
bousehald members, age and accupation of head of
household). Let Y, and xi denote, respectively,
disposable income and net income (as per the
intome tax return), both calculated as totals
for all members of the k:th household. For every
unit k=1,.., N assume that the following infor-
mation is avaliable (1) the value of x, (from
the income tax return) and (2) the identity of
the subdomain to which k belongs.

The subdomain sizes N _ are thus known. The
relative subdomain sizes "N, ,/N varied between
1.3% and 29.5%. In the discussion below we
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distinguish the ''six larger subdomains'' varying
in size from 7.1% to 29.5%, and the "six smaller
subdomains'' varying is size from 1.3% to 4.7%.

The target of estimation is the mean dispos-
able income in each domain,

Y-q = ZU,q Yk/N-q(q=1"" Q).

The x-variable was used to create H=5 income
classes. For this population the correlation be-
tween x and Y is 0.80. it expected, therefore,
that the x-dimension will have a strong variance
reducing effect. That is, estimators such as
Tiq and To, which capitalize on the x-variable
will be better than estimators (such as the simp-
le direct formula Tz,) which do not.

Our Monte Carlo simulation consisted in the
selection of J=1000 samples, each of size n=200,
from the population of 1287. Thus, the expected
number of observations in a subdomain ranged
from 2.6 for the smallest to 59 for the largest
subdomain,

For each sample from 1 to 1000, and for
i=1,.., 7; g=1,.., 12, we calcualted the estima-
tor value T its estimated variance Vig =
Vsrs(qu) and the cofidence Interval
T,q t z1-¢/2 Vl/2 for 1-a = 80%, 90% and 95%. In
summary of the whole experiment we calculated
the mean, ME;,, and the variance VAjq, of the
1000 estimator values, as well as the coverage
rate CRjq = the fraction of the 1000 intervals
that covered the true point ¥ (at nominal con-
fidence levels of 80%, 90% and 85/) Here ME;

VAiq and CR;, can be taken as sufficiently good
approxlmatlons of the true mean, variance and
coverage rate of the procedure.

We discuss the main findings with respect to
the concepts (a) design bias; (b) design variance
(c) coverage rate. In Table 1 to 3, results are
given seperately for ''six larger domains'' and
Y“six smaller domains''. For domains q in each of
these two categories, ''max'' and ''min'' gives, res-
pectively, the largest and smallest value of the
concept in question. This gives some indication
of the deterioration of the quality of an estima-
tor as domain size decreases.

It turned out that Th4q was undefined for many
of the 1000 samples (because of at least one zero
cell count nhq) and T4q is therefore excluded
from the comparisons below.

(a) The design bias. For all subdomains, in-
cluding the very small ones, Ej, should according
to theory be close to the true point Y _, for the
ADU estimators (i=1,2,3), but not likely so for
the design biased ones (i=5,6,7). This was con-
firmed by the Monte Carlo results reported in
Table 1, whlch gives values of the relative bias
100(E; y/v It should be noted that the
sample size here is to be thought of as n=200.
This is large enough to count on approximate
design unbiasedness for ADU estimators, even
though the expected sample size in the smallest
domains is only about 3.

Table 1 reveals a striking contrast between
the three ADU estimators and the tree design
biased ones.

The relative design bias in the ADU group is
never important; the max and min values tend,
however, to be slightly larger in the smaller
domains. Deviations from zero could be a result
of the insufficiency of the 1000 repetitions.



Earlier claims that the design bias of the syn-
thetic estimator Tc, can not be estimated from
the sample are unfounded, considering the re-
sults of this study. The term F'125h ey of T1q
given by (2.5) effectively removes O

the design bias of the synthetic estimator. For
the design biased group, the direction and magni-
tude of the relative design bias is unpredict-
able. It is to be expected that particularly
large biases arise if the underlying model fits
the population badly.

Table 1. Relative design bias
100(ME, -Y )/Y = BI, .
1q -q °q q
Esti- Six larger domains| Six smaller domains
mator Max B|i Min Bli Max B|iq Min BIi
e ‘% q 'Y q g 1
ADU
T1q 0.73 -0.41 1.63 -1.62
T2q 0.59 ~0.39 2.00 -1.59
3q 0.04 -0.48 2.70 -1.16
Design
biased
qu 26.0 -15.0 14.6 =341
T6q 22.1 -12.7 12.1 ~30.0
T . ~13. . -24,
7q 20.9 13.1 2.0 24,7

_  (b) Design variance. Among the ADU methods,
T1gq and i2q capitalize on the information con-
tained in the x-variable and are expected to
give smaller variances than the simple direct
method T3q.

On the other hand, we expect the design biased
methods T q’ Téq and T7q to profit even more
strongly ?rom the variance reducing effect of
the x-dimension, unhampered as they are by the
ADU-ness constraint.

These expectations are confirmed by Table 2,
which, using the standard error of T;, as the
point of reference, shows max, min ang average
values of the efficiency measure
{VA1q/VA2q}1/2 = EFjq, seperately for larger
domains and for_smaller domains. Within the ADU
group, T1q and Ty, perform about_equally well.
For example, T{q is better than T34 in all do-
mains, and the tendency is especially pronoun-
ced in the smaller domains,

The variance reduction achieved by the design
biased methods is of more dramatic proportions
and is especially apparent in the smaller do-
mains, where the synthetic estimator Tgq per-
forms particularly well with an average effi-
cience measure of 7.0.
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Table 2. Features of EFiq = {VAlq/\/,Aiq}V2

Estimator Six larger domains
Max EF. Min EF. EF.
g ¥ 4 ' v
ADU:
T2q 1.16 0.77 1.00
T . . .
3q 0.99 0.69 0.84
Design
biased:
Asq 2.53 0.98 1.64
T6q 2,34 1.08 1.66
T7q 2.41 1.09 1.64
Estimator Six smaller domains .
Max EF, Min EF, EF.
g "ig 4" “Tig i
ADU:
%
2q 1.09 0.55 0.93
T3q 0.91 0.65 0.75
Design
biased:
qu 17.26 3.03 7.00
T6q 5.43 2.90 417
.6 2.72 .
T7q 5.68 7 3.95

(c) Coverage rate. Table 3 shows coverage
rates (at nominal values 1-a of 90% and 95%)
achieved by the confidence intervals centered on
T1qs Togs T3q and Tgq. )

The intervals are constructed according to
(2.4), where V(T;,) is given by the Yates-Grundy
formula (2.3) in the case of Ty4, Taq and T3q,
and by (2.14) in the case of Tgq.

The coverage rates achieved by the ADU methods
have a tendency to fall short of the intended
nominal rate, a feature which becomes particular-
ly apparent for the smaller domains, where the
achieved CR drops, in the worst case, to about
60 % (for an intended 90%) and 65% (for an in-
tended 95%). This is not surprising, since the
smallest domains yield extremely few non-zero
values ¢y ey /m on which to base the calculation
of the es%imated variance.



Table 3.

Features of the coverage rate CR;,.

The upper (lower) portion of the table
refers to the nominal rate of
1-a = 90% (95%) .
Esti- Six larger domains [Six smaller domains
mator Max CRiq Min CRiq Max CRiq Min CRiq
| 9 q 9
ADU:
?]q 89.7 84.4 89.5 59.
T2q 92.5 83.3 90.9 67.
T3q 88.3 77.1 82.0 61.
Design
biased:
T6q 99.7 0.0 99.7 0.
ADU:
Ty 92 89.9 | 943 6.
T2q 96.9 88.3 96.5 72.
T3q 94,6 83.1 87.0 6k,
Design
biased:
T 100.0 0 100.0 0.
q
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. The coverage rates of the design biased methad
Tgq bear no resemblance to the nominal rates
aimed at. We conclude that a model based vari-
ance estimate such as (2.14) is of little use

in attempting to construct confidence intervals
with the customary randomization theory inter-
pretation, that is, one that appeals to repeated
draws of samples s under the given sampling de-
sign. (The design biased estimators T5q and T7q
were omitted from the coverage rate study be-
cause of the apparent lack of a confidence inter-
val procedure that carries the randomization
theory interpretation.
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