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I. Introduction 
The purpose of this paper is to test empiri- 

cally the advantages and disadvantages of two,k4:nds 
of procedures in estimation for small domains: 
(a) asymptotically design unbiased (ADU) alterna- 
tives and (b) design biased alternatives, inclu- 
ding the synthetic estimator. The ADU estimators 
have negligible design bias in moderate to large 
samples, and confidence intervals are readily 
obtainable such that the confidence coefficient 
carries the usual interpretation of coverage rate 
under repeated draws of samples s by the given 
sampling design. The design biased estimators, 
on the other hand, may have a small design vari- 
ance, but their design bias is often so large 
that it is virtually certain that an interval 
centered on the point estimate will fall to con- 
tain the true point under estimation. 
2. Estimators under study 

Let U={I, .... k,.'..,N} be a finite population 
from which a sample s of fixed size n is selected 
by a given sampling design admitting the inclu- 
sion probabilities Zk and ZkZ" Let U (q=1 ..... Q) 
be subdomains with known sizes N an~ let n 
be the (random) number of observaqions contaiqed 
in S.q, the part of s that happens to fall in 
U.q. We seek estimates of the domain means 
Y'q = Y U.q Yk/N.q (q=l . . . .  Q)" 

First, the ADU estimators considered are De- 
sign-Model estimators (also known as generalized 
regression estimators). These are, in a general 
context, of the form (S~rndal, 1981, 1982). 

_ N _ 

T = ~[ + ~ ek/Tr k (2 1) q ICkqYk sCkq. 
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Where e k = Yk-Yk = Yk-X'6 with ~k~ 

= (IS WkXkX~)-1 isWkXkYk (2.2) 

is the residual arising in fitting the linear 
model (~, say) such that E~(Y k) = xi~ ~ to the n 
data points. Here the weigI~ts in ~ ~ are 
chosen as w k = I/~k~: , where °2=Vk ~(Yk) ~° Moreover 
Ckc I = I/N q if k~_ U.q and Cka = 0 otherwise. 
Fo~ a gived sampling design, e~ich model fit 
gives rise to a different ADU estimator. 

An approximate variance estimate of Tq is 
given by the Yates-Grundy formula in Ckqek, that 
is 

- _ ~kqek C~qe~2 (2 3) 
- 

q k 

6s 

where gk~= ( ~ k ~  - ~ k ~ ) / ~ .  An approximate 100 
(1-~)% conf idence i n t e r v a l  fo r  ?.q is t he re fo re  

q I c~12 (2.4) 

where z. /2 is the unit normal deviate. Under 
repeatecl]'~raws of samples s by the given design, 

roughly I00(I-~)% of all confidence intervals cal- 
culated by (2.4) will cover the true value ~.q as 
confirmed in particular cases by our Monte Car~o 
study. 

In the study reported below, the simple random 
sampling (srs) design is used, thus ~k = f = n/N 
for all k and ~kZ= n(n-1)/N(N-1) for all k # ~. 
The fit of a model usually requires access to a 
certain amount of auxiliary information. 

We assume that Xl,... , x N are known positive 
values of an auxiliary variable correlated with Y. 
The N values of x are size ordred and the popula- 
tion units are grouped by nonoverlapping intervals 
of x into H groups Uh. of known size Nh.(h=1 .... H). 
The population is thereby crossclassified!into HQ 
cells Uhq of known size Nhq. At the sample level, 
the correspondina notation is Sh., nh~,Shc j and 
nhq. Thus, n = T~= I nh. = T Qq= n q= T~=IE~= I nhq 
relations which also hold for I the big N's. 

We consider the following ADU estimators obtai- 
ned from the general formula (2.1) for the srs 
design 

A 

T1 = N-1 H - -1 k ) (2 5) q .q 11(NhqY + f Is el 
Sh- hq - 

- = N-I H -I  ~Sh q ) (2.6) T2q .q 11 (;h ][U Xk + f e2k 
hq 

where, for k~ESh~ , elk = Yk~Ysh .= Yk - Esh.Yk/nh. 
and e2~ = Yk - 13h Xk with 13 h = ?sh.Yk/Zsh.Xk. 
In (2.), we use ek~elk and ek=e2k , respectively. 

The estimators T1q and T2q arise for the 
models of independent Yk such that, respectively, 

2 (2 7) E~(Yk) = 13 h ; V~(Y k) = o h all k6.Uh. . 

and 

2 Xk a l l  k6U h (2 8) E~(YE ) = 13hX k ; V~(YE ) = o h . . 

Other ADU estimators under srs studied below 
are the "simple direct estimator" 

= Y (2.9) T3q = ~[s Yk/n'q s 
• q "q 

and the "combined cell mean estimator" 

- - -  _ 

T4q = ~ Nhq Y Shq/N -q (2.~o) 

The latter is frequently undefined for subdomain 
q, namely, as soon as the cell count nhq in the 
denominator of ?~'on =- ZShQ Yk(nhq is zero for 
some h. (To make q T4q operat,onal, a rule for 
collapsing cells would-first have to be defined.) 

Now ?3q and T4q are also obtained from (2.1) 
under obvious model formulations; their respec- 
tive variance estimates are given by (2.3) with 
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ek =e3k = Yk - Y s and e k = e4k = Yk - r(Shq- 
q 

Turning now to he design biased estimators, 
we consider the much debated synthetic estimator 

T5q = l~ Nhq Ysh./N.q (2.11) 

It requires the same auxiliary information as 
(2.5) above and (2.12) below, that is, the popu- 
lation cell counts Nhq. 

Another group of design biased alternatives 
that deserve attention for comparative purposes 
are those arising from the predictive approach, 
(Holt, Smith and Tomberlin, 1979), that is, from 
the general "predictor formula". 

A 

T :Zs +Zu-  q kqYk s kqYk 

where Yk is the predicted Yu-value under the 
model. For the models (2.7)~and (2.8) we get, 
respectively (with w k = a£ 2 in (2.2)) 

T6q = N-I H 4~N Y + ][ elk~ (2.12) 
• q ZI hq Sh. Shq 

T7q = m-l.q ~H ~i h ~[UhqXk + ZShq e2k~ (2"13) 

with elk and e2k as in (2.5) and (2.6), respec- 
tively. 

It is unclear what variance estimate to use 
for (2.11)-(2.13); suggestions made for (2.11) 
(Gonzalez and Waksberg, 1973) do not seem to 
have the usual repeated sampling interpretation. 

For (2.12) we use the variance estimator pool- 
ed over all groups h and suggested by Holt, 
Smith and Tomber]in (1979), 

_ _ H Q 2/ 

V(T6q)=N-2 dq h~lq~l~s (Yk-Ysh) (n-H) (2.14) 
"q hq • 

H 

where d = h~1 (mh - nhq! ~mhq - nhq + nh-)/nh. 
This isqa moael ba~ed ace estimate and var I 

although we use it below in our Monte Carlo stu- 
dy for the construction of confidence intervals, 
we expect a priori that the coverage rate achie- 
ved in repeated samples by these intervals will 
not come near the theoretical confidence level 
aimed at. 
3 Description of the Mqnte Carlo Simulation 

We identified a population consisting of 
N=1287 Swedish households classified into Q=12 
subdomains defined by household type (number of 
household members, age and accupation of head of 
household). Let Yk and x k denote, respectively, 
disposable income and net income (as per the 
income tax return), both calculated as totals 
for all members of the k'th household. For every 
unit k=1,.., N assume that the following infor- 
mation is avaliable (I) the value of x k (from 
the income tax return) and (2) the identity of 
the subdomain to which k belongs. 

The subdomain sizes N are thus known. The 
relative subdomain sizes'qN.q/N varied between 
1.3% and 29.5%. In the discussion below we 

d is t i ngu i sh  the " s i x  larger  subdomains" varying 
in size from 7.1% to 29.5%, and the " s i x  smaller 
subdomains" varying is size from 1.3% to 4.7%. 

The target  of est imat ion is the mean dispos- 
able income in each domain, 

Y q = ZU YklN (q=1 . Q) • .q ," , • 
.q 

The x-variable was used to create H=5 income 
classes. For this population the correlation be- 
tween x and Y is 0.80. It expected, therefore, 
that the x-dimension will have a strong variance 
reducing effect. That is, estimators such as 
T I and b2qt which capitalize on the x-variable 
wi?l be ter than estimators (such as the simp" 
le direct formula T3q) which do not. 

Our Monte Carlo simulation consisted in the 
selection of J=1000 samples, each of size n=200, 
from the population of 1287. Thus, the expected 
number of observations in a subdomain ranged 
from 2.6 for the smallest to 59 for the largest 
subdoma i n. 

For each sample from I to 1000, and for 
i=I,.., 7; q=1,.., 12, we calcualted the_ estima- 
tor value Tiq~ its estimated variance Viq = 
Vsrs(Tiq), =.~ the cofidence interval 
?iq + zi-~/2 ~I/2 for I-~ = 80%, 90% and 95%. In 
summary of the i Llwhole experiment we calculated 
the mean, mEiq , and the variance VAiq, of the 
I000 estimato~ values, as well as the coverage 
rate CRiq = the fraction of the 1000 intervals 
that covered the true point Y a (at nominal con- 
fidence levels of 80%, 90% and'~5%). Here ME._, 

,L I 
VA i and CR. can be taken as sufficiently good q ~q 
approximations of the true mean, variance and 
coverage rate of the procedure. 

We discuss the main findings with respect to 
the concepts (a) design bias; (b) design variance; 
(c) coverage rate. In Table I to 3, results are 
given seperately for "six larger domains" and 
"six smaller domains". For domains q in each of 
these two categories, "max" and "rain" gives, res- 
pectively, the largest and smallest value of the 
concept in question. This gives some indication 
of the deterioration of the quality of an estima- 
tor as domain size decreases. 

It turned out that ?4q was undefined for many 
of the 1000 samples _(because of at least one zero 
cell count nhq ~ andsT4q is therefore excluded 
from the compa i son low. 

(a) The design bias. For all subdomains, in- 
cluding_t_h every smali ones, Eiq should. _ according 
to theory be close to the true polnt Y g for the 
ADU estimators (i=1,2,3), but not likely so for 
the design biased ones (i=5,6,7). This was con- 
firmed by the Monte Carlo results reported in 
Table I, which gives values of the relative bias 
100(Eiq-r(.q)/? . It should be noted that the 
sample size her q is to be thought of as n=200. 
This is large enough to count on approximate 
design unbiasedness for ADU estimators, even 
though the expected sample size in the smallest 
domains is only about 3. 

Table I reveals a striking contrast between 
the three ADU estimators and the tree design 
biased ones. 

The relative design bias in the ADU group is 
never important; the max and min values tend, 
however, to be slightly larger in the smaller 
domains. Deviations from zero could be a result 
of the insufficiency of the 1000 repetitions. 
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Earlier claims that the design bias of the syn- 
thetic estimator T5q can not be estimated from 
the sample are unfounded, considering the re- 
sults of this study. The term f-lrshqelk of ?lq 
given by (2.5) effectively removes 
the design bias of the synthetic estimator. For 
the design biased group, the direction and magni- 
tude of the relative design bias is unpredict- 
able. It is to be expected that particularly 
large biases arise if the underlying model fits 
the population badly. 

Table I. Relative design bias 
IO0(ME. -Y ) /Y  = B I . .  lq .q -q lq 

Esti- 
mator 

ADU" 

lq 
T2q 
A 

T3q 

Design 
biased: 

Six larger domains 
Max BI. Min BI. 
q lq q Jq 

0.73 -0.41 

0.59 -0.39 

0~04 -0.48 

A 

T5q 26.0 -15.0 

T6q 22.1 -12.7 

T7q 20.9 -13.1 

Six smaller domains 
Max BI. Min BI. Iq lq 

q q 

I .63 -I .62 

2.00 -I .59 

2.70 -1.16 

14.6 -34 1 

12.1 -30.0 

2.0 -24.7 

(b) Design variance. Among the ADU methods, 
T1g and T2q .capitalize on the information con- 
tained in the x-variable and are expected to 
give smaller variances than the simple direct 

method h3qo 
On t ther hand, we expect the design biased 

methods TSq , ?6qandT7q to profit even more 
strongly 1:rom the variance reducing effect of 
the x-dimension, unhampered as they are by the 
ADU-ness constraint. 

These expectations are confirmed by Table 2, 
which, using the standard error of T I as the 
point of reference, shows max, min an~ average 
values of the efficiency measure 
{VAIcj/VA2q} I/2 = EFiq, seperately for larger 
domalns and for smaller domains. Within the ADU 
group, TI_~ and_ ?2cj perform about equally well. 
For example, T1q is better than T3g in all do- 
mains, and the t~endency is especlally pronoun- 
ced in the smaller domains. 

The variance reduction achieved by the design 
biased methods is of more dramatic proportions 
and is especially apparent in the sma!ler do- 
mains, where the synthetic estimator T5q per- 
forms particularly well with an average effi- 
cience measure of 7.0. 

Table 2. Features of EF i q = {VAIq/VAi .q}  
I/2 

E'stimator ' Six larger domains 

ADU: 

T2q 
T3q 

Max EF. Min EF. EF. lq lq l' 
9 q 

1.16 0.77 1.00 

0.99 0.69 0.84 

Design 
biased" 
A 

T5q 2.53 0.98 1.64 
A 

T6q 2.34 1.08 1.66 

T7q 2.41 1.09 1.64 

Estimator Six smaller domains 
m~x EFiq ' M.~n EF.i q EFi. 

ADU" 

T2q 

T3q 

I .09 0.55 0.93 

0.91 0.65 0.75 

Design 
biased" 

T 17.26 3.03 7.00 
5q 

T6q 5.43 2.90 4.17 

T7q 5.68 2.72 3.95 

(c) Coverage rate Table 3 shows coverage 
rates (a-t nominal vaiues I-~ of 90% and 95%) 
achieved by the confidence intervals centered on 

?lq. T2cj,.•3q and ~6q- 
ine ~ntervals are constructed according to 

(2.4), where V(Tin) is given by the Yates-Grundy 
formula (2.3) in ~he case of i' I_ q, T 2q and ?3q, 
and by (2.14) in the case of T6q. 

The coverage rates achieved By the ADU methods 
have a tendency to fall short of the intended 
nominal rate, a feature which becomes particular- 
ly apparent for the smaller domains, where the 
achieved CR drops, in the worst case, to about 
60 % (for an intended 90%) and 65% (for an in- 
tended 95%). This is not surprising, since the 
smallest domains yield extremely few non-zero 
values c k ek/~ k on which to base the calculation 
of the estimated variance. 
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Table 3. Features of the coverage rate CRinable 
The upper (lower) port ion of the 
refers to the nominal rate of 
I-~ = 90% (95%) 

Esti- Six larger domains 
mator Max CR. Min CR. lq iq 

ADU: 

89.7 84.4 lq 
T2q 92•5 83.3 

T 3 88.3 77.1 q 

Design 
biased: 

T6q 99.7 0,0 

Six smaller domains 
Max CR. Min CR. 

i q  

89.5 59.0 

90.9 67.7 

82.0 61.8 

99.7 0.0 

ADU: 

T lq 

T2q 
T3q 

Design 

biased" 
A 

T6q 

94.2 89.9 

96.9 88.3 

94.6 83. I 

I00•0 0 

94.3 66.6 

96.5 72. I 

87.0 64.4 

100.0 0.3 

_ The coverage rates of the design biased method 
T6q bear no resemblance to the nominal rates 
aimed at. We conclude that a model based vari- 
ance estimate such as (2.14) is of little use 
in attempting to construct confidence intervals 
with the customary randomization theory inter- 
pretation, that is, one that appeals to repeated 
draws of samples s under the given sampling de- 
sign. (The design biased estimators T5q and T7q 
were omitted from the coverage rate study be- 
cause of the apparent lack of a confidence inter- 
val procedure that carries the randomization 
theory interpretation. 
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