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i. Introduct ion 

Much of demographic research is based on data 
obtained through survey samples. Frequently, the 
event under study has an associated waiting time 
and can be examined using life table methods (see 
Shryock, Seigel and Associates, 1971). Recently 
the work of Cox (1972) and others on life table 
regression models has allowed the statistical ex- 
amination of relationships between a set of cova- 
riables and the occurrence of the event of inte- 
rest. However, a problem exists since an ade- 
quate set of arguments which provide a sound ba- 
sis for the use of such analytic techniques for 
survey data has not been given. Recently a large 
amount of interest has been given to design based 
versus model based inference regarding survey 
data (Tomberlin, 1980; Cassel, Sarndell and 
Wretman, 1978 and Koch, Gillings and Stokes, 
1981). The focus of such discussions being whe- 
ther one relies only upon the randomization in- 
herent in the sampling design or bases data ana- 
lysis upon an assumed underlying stochastic mo- 
del. Related topics such as likelihood based in- 
ference for survey have been discussed by Basu 
(1969, 1975), and actual estimation based upon an 
assumed population structure has been studied by 
Royall (1970). Most of this work, however, is 
not directed at the applied statistician and is 
piecemeal in the sense that specific issues are 
covered. The entire analysis is never viewed 
from start to finish. The result is that in 
practice many of the issues are ignored, or not 
considered, and analyses are performed with pos- 
sibly invalid outcomes. 

The purpose of this paper is to present a 
methodology for the use of life table regression 
models for analysis of survey data. The given 
methodology will encompass both estimation of pa- 
rameters and hypotheses testing. The methodology 
is general enough to encompass a variety of mo- 
dels other than the stated life table regressions. 
Issues covered include the probability structure 
of the data, likelihood construction and estima- 
tion of parameters, and variance or mean square 
error (MSE) estimates. The proposed methodology 
is illustrated using data from the 1973 National 
Survey of Family Growth. 

2. Probability Structure and Likelihood 
The issue here is that the life table implies 

on underlying stochastic process governing the 
occurrence of events (Chiang, 1968). Such an as- 
sumed stochastic process runs contrary to the 
well established design based or fixed population 
approach to survey data. This design based ap- 
proach claims that the values of the variables 
under study are fixed, yet unknown, for each unit 
in the population. The only probabilities are 
those generated by the randomization inherent in 
the selection process. Such an approach excludes 
consideration of life table regression models, 
and any analysis approach which assumes a proba- 
bilistic structure other than the sample design. 
However, an alternative view of survey data is 
available which allows considerable flexibility 

regarding survey data analysis. This alternative 
approach is the superpopulation or model based ap- 
proach. Here the value of the variable under stu- 
dy is treated as the outcome of a random variable 
with a specified stochastic structure (see Cassel, 
Sarndell and Wretman, 1978). 

The superpopulation view of survey data is the 
framework within which life table analysis of sur- 
vey data must be couched. The main argument for 
this is the implied stochastic process underlying 
the time to events in the life table. 

The occurrence of events in a life table is 
governed by what is termed a hazard rate. The 
hazard rate for a life table can be defined in 
terms of a non-negative continuous random variable 
T with values t. The definition of the hazard 
rate is 

lim 
~(t)=~t_>o P(t<T< t+AtlT>t)/At . 

Cox (1972) proposed a hazard rate model which in- 
corporated covariables. The Cox model for the 
hazard rate is 

where 

and 

%(t:~) = exp(~%(t) ( i )  

%(t) is an underlying hazard; treated as a 
nuisance function 
is a vector of unknown regression coef- 
ficients to be estimated 

is a vector of known covariates which 
can depend on time. 

The main focus of attention in this paper will be 
directed at using the Cox model for survey data. 
However, other regression methods will be men- 
tioned. 

The first assumption necessary is that events 
occur independently among the population units. 
This is a standard life table assumption, but in 
practice requries examination since events like 
infectious disease occurrences may not be indepen- 
dent. A related concern is with respect to intra- 
class correlation resulting from 'cluster samp" 
ling'. The primary effect of such correlation is 
reduced sample precision through a redundancy of 
information (i.e., individuals within clusters 
have similar covariate values leading to similar 
times to occurrence of the event under study). 
The intraclass correlation is a function of the 
sampling design alone which here is assumed inde- 
pendent of the stochastic process of the life ta- 
ble. Within this proposed framework such a corre- 
lation structure has no effect upon the indepen- 
dence of the events within the population and is 
not a factor in estimating parameters. However, 
the sample design will affect inference since the 
properties such as expected values or variances 
are defined in terms of the sampling design proba- 
bility function. This topic is discussed further 
in section 3. 

The above assumptions allow a likelihood to be 
written in a product form. A final consideration 
regards the sampling weights. These weights asso- 
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ciated with each unit sampled usually impart in- 
formation concerning actual or proportional fre- 
quencies of certain population characteristics. 
As such, their inclusion in the computation of 
statistics is generally warranted. Since the 
sample weights are frequency related, and the 
likelihood a product of individual terms the 
method proposed here is to include the sampling 
weights as exponents in the likelihood. Denoting 
the sample weights by wj j=l,...,n (n the sample 
size) examples of including the sample weights as 
exponents result in 

n ::. n 
~= ~ wjxjfj~ 

j=l . . . . .  i ;wj 

as the estimator of the mean for a normal popula- 
tion and 

n n 

^ ~i xj ~=z wj/ wj 
j=l j 

for the mean of an exponential population. The 
above estimators are similar to Horvitz-Thompson 
(1952) estimators. 

If an indicator random variable 

I the event occurs at the ith time(in- 
Yij = terval) to the jth unit 

otherwise 

is used to denote the event of interest then a 
likelihood based on hazard model (i) is 

k n exp (Zj B)Yijwj 
L { B:Y,~,~(r)}=~(r) II II (l-Pi) 

i=l j=l 

exp(~j B) (l-Yij)w j (2) 
• Pi 

where 

Pi=exp { -f ti %(T) dT} 
ti-i 

is the conditional probability of surviving the 
i-th time (interval). The function T(r) is the 
probability function for the given sample design, 
r the specific sample in question; Y denotes the 
nxl vector of indicator variables for the sample 
units. Note that ~(r) need not be known since it 
becomes an additive constant in the log-likeli- 
hood, and vanishes when derivatives with respect 
to B are taken• Other likelihoods for the Cox 
model (i) are available, see for example 
Kalbfleishch and Prentice (1980). The only unus- 
ual aspect of (2) is the inclusion of the sample 
weights as exponents• 

3. Variance/Mean SRuare Error Estimation 
The final issue is that of obtaining as esti- 

mate of MSE for the model parameters upon which 
inferences can be based. The usual definition 
for variance/MSE is 

Var(B) = Z (~-B.)(B.-B)'~(r), 
rsR 

where R is the set of all samples, r, under the 
specified design, and prime denotes the transpose 
operator. 

A problem with complex sample designs is that 
the variance or MSE estimates are not easily 
computed. Methods like balanced repeated repli- 

cations (BRR), jackknife, or Taylor Series Line- 
arization (TSL) must be used (see Kish and 
Frankel, 1974). The situation here, with the 
life table regression coefficients, is that the 
estimates are found using some iterative method. 
The cost of finding the parameter estimates is 
not incidental especially if estimates must be 
found for a number of 'half-samples' or jack- 
knifed samples as would be required by the BRR or 
jackknife; application of the TSL in this situa- 
tion is not clear since no closed for estimator 
exists. To resolve this problem of having to 
compute parameter estimates for several subsets 
of the sample data the score statistic 

s ( B : Y ,  ~ )  ~ " =~log L { B:Y, 3, ~(r)} 

can be used. The score statistic is known for 
the life table regression model (i), and has 
known statistical properties when evaluated at 
B. Since the score statistic is known, a vari- 
ance estimate for this statistic can be computed 
using methods like the BRR or jackknife. Viewing 
the score statistic as a function of 8, the vari- 
ance of the score statistic, Var(S), can be 
thought as a function of the variance of 8, i.e. 

L IB_  Var(8~ . (3) 

The equation (3) can then be used to find a vari- 
ance estimate for fl ~ince both Var(S) and the 
partial derivatives are known. The result for a 
single parameter is 

~ d S  A ^ 
Var(~) (4) = ( s ) .  Var 

The case of several parameters involves matrix 
operations in both (3) and (4) an expression 
which emphasizes this fact is 

. H ( f l )  , V(B)=H (E)V(.S)~. ' (5) 
A A 

where V(~.)and V(~) are the variance/covariance 
matrices of ~ and the score statistic S respec- 

and H(~o) is the inverse matrix of tively, partial 
derivatives of the score statistic evaluated at 
8; prime denotes transpose. 

An interesting result is obtained when apply- 
ing the above to the single parameter case. The 
result is given in terms of the design effects 

Variance under the true design (6) 
deff-Variance as if a simple random sample 

defined by Kish (1965). Under simple random sam- 
piing the correct asymptotic variance for the 
score statistic, disregarding any sampling frac- 
tion, is 

^ ^ I VSRS ( S ) - d S / d B  B_~, (7) 

and t h e  v a r i a n c e  o f  g i s  t h e  i n v e r s e  of  ( 7 ) ,  
( K e n d a l l  and S t e w a r t ,  Vol•  2,  1963)•  Us ing  e q u a -  
t i o n s  (4) and (7) and d e f i n i t i o n  (6) t h e  r e s u l t  
of  t h e  p r o p o s e d  m e t h o d o l o g y  i s  
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VCSD(S)= S/dSy~= (~) S/dS]~= 

= d e f f . V s R s  (~) (8) 
A 

where  VCS D i n d i c a t e s  v a r i a n c e  u n d e r  t h e  complex  
s a m p l i n g  d e s i g n .  I t  n e e d s  to  be p o i n t e d  ou t  t h a t  
t h e  d e f f  i n  e q u a t i o n  (8) a r e  in  t e r m s  o f  t h e  s c o r e  
statistic, not B. 

4. Illustration of the Methods 
Data from the 1973 NationalSurvey of Family 

Growth (NSFG) were used to illustrate the methods 
previously proposed (see French (1978) for a des- 
scription of the 1973 NSFG). The event 'marital 
disruption' was examined for 2297 black women 
whose first marriage occurred at least five years 
before the survey date. The covariate studied 
was the woman's age at first marriage. 

Since the methods proposed are applicable to 
statistical procedures other than life table re- 
gressions two other regression models were exa- 
mined; a logistic model and a simple linear re- 
gression. If 

Y. = fl the marriage is disrupted j 

L0 the marriage remains intact 

then the three models are: 

i. Simple Linear Regression: E(Y)=~+BB 

ii. Logistic Regression:E(Y)=[l+ex~ -(~+~) ~ -~ 

iii. Life Table Regression:E(Y)=l-ex~ -~exp(BB) } 

The parameter a for the life table model is the 
integrated underlying hazard for the five year 
period immediately following marriage. 

The parameters are estimated both using the 
sample weights in the likelihoods and ignoring 
the sample weights. Estimates of the variance/ 
covariance matrices were computed under simple 
random sampling and under the NSFG design using 
Balanced Repeated Replications. Parameter esti- 
mates are given in Table 1 and variance/covari- 
ances are presented in Table 2. 

The results of Table 1 indicate that for the 
given data including or excluding the sample 
weights from the likelihood has little effect on 
the estimates obtained. However, since the NSFG 
is a national survey, differences between esti ~ 
mates of as little as 0.001 can be considerable 
when translated into actual numbers of persons. 
A general trend noted here is for the parameter 
estimate to be slightly less when including the 
weignts than when not using them. The nnly noted 
exception here is the life table parameter ~. 
The average absolute difference over all parame- 
ters and models was .0133. 

Variance/Covariance estimates are presented in 
Table 2. The variance estimates obtained based 
upon the complex sample design are larger in 
every case than those estimated under the assumed 
simple random sample. Covariances under the com- 
plex sample design are larger also except for 
those of the simple linear regression. 

5. Discussion 
This paper has dealt with some of the issues 

surrounding the use of life table regression mo= 

dels for the analysis survey data. Arguments re- 
garding the probability structure of the data and 
use of the sample weights in the estimation have 
been covered as well as variance or MSE estima- 
tion. 

Results of the proposed methodology when used 
to examine data from the 1973 NSFG are encourag" 
ing, since including the weights did not substan- 
tially change the parameter estimates. A sinnilar 
result was noted for ratio proportions estimated 
for the same data set (O'Br,ien, 1980). 

Substantial differences Were noted for vari- 
ances estimates between those computed under sim- 
ple random sampling and under the complex NSFG 
design. However, since no known criterion was 
available for comparison with the results, caution 
is warranted. Further analytic and empirical in- 
vestigation are needed to firm the arguments pre- 
sented and study the proposed methods of includ- 
ing the sample weights and computing variances. 

Table i: Parameter Estimates by Model and Weight- 
ing Scheme 

Model 
Linear Regression 

Weighted 
Unweighted 

Parameter 

B 

.5643 -.0387 

.5707 -.0456 

Logistic Regression 
Weighted .2701 -. 1603 
Unweighted .3046 -. 1920 

Life Table Regression 
Weighted .4842 .0440 
Unweight ed .4807 .0482 

Table 2: Variance and Covariance Estimates by 
Model and by Sample Design 

Parameter 

Model 
Var(~) V~r(~ COV(a,~ 

Linear Regression 
SRS 6.44xi0 -4•4.84xI0 -5 -l.61xlO -~ 
Complex 1.58xi0 -3 9.37xi0 -5 -l.05x10 -4 
DEFF 2.46 I. 94 0.65 

Logistic Regression 
SRS 1.13x10 -2 8.86xi0 -~ -2.89xi0 -3 
Complex 3.25xi0 -2 5.01x10 -3 -1.26xi0 -2 
DEFF 2.88 5.65 4.36 

Life Table Regression 
SRS 2.15xi0 -3 6.07xi0 -~ -l.07x10 -3 
Complex 6.23x10 -3 1.12xl0 -3 -2.61xl0 -3 
DEFF 2.90 1.86 2.44 
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