f—mwm&mmmnﬁm@n}sxm
CORRECTION FACTOR ESTIMATED FROM ANALYSIS OF VARIANCE COMPONENTS
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INTRODUCTION

In recent literature same statisticians
discussed the effects of complex survey design
on test statistic. Rao and Scott (1979) derived
such effect from examining the eigenvalues of the

matrix A= P~V where P is the covariance matrix
under simple random sampling situation and V is
that arising from actual camplex sampling.
Fellegi (1978) used an effective sample size in a
test statistic, when the balanced repeated
replication method is used to obtain the variance
of data based on nonsimple randan sampling.Cohen
(1976), Altham (1976), and Choi (1980) used a
model approach to find effects of cluster
sampling on test statistics.

In this paper, we propose a device for the
estimation of intracluster correlations in nested
design for categorical data when usual analysis
of variance terms are utilized. Using these
results, we also propose a method to find a
correction method for goodness of fit test
statistic based on nested survey design.

In the first section, a nested random effect
model is introduced. Sections 2 introduces the
definitions and notations used in the succeeding
sections of this paper and section 3-is allocated
for the estimation of the intracluster
correlation coetficient in the first stage
cluster and that in the second stage cluster. In
section 4, the adjustment of chi-squared goodness
of fit test statistic is discussed. A simple
mmerical exawple is given in the last section.

1. NESTED MODEL

The purpose of this section is to discuss the
nested randon effect model for multivariate data
tram unbalanced design, which is analogous to
multiway analysis ot variance (ANOVA) model
discussed in Schette (1959, p 248).

If yijk denotes the kth measurement of the j th

gsecondary unit in the i th primary unit, we may
write

Y= ¥ +cy+ tij+ 13k (1.1)
for i=1,...,r, j'—'l"'"di’ and k=1,..., TR

The usual assunptions for estimation are that
(e (tij) , and (eijk) are independently

identically distributed with zero mean and

variances o', o, and ¢ e respectively and that

( ci) , (tij) and (eijk) are uncorrelated.

The unbiased estimates ot cé, o%, and ci may be

obtained fran the linear cambination ot the mean
square errors in usual ANOVA table so that

2 2

- 2 2
ay —cC+cT+ce 1.2)

which is the measure of reliability of quality of
the given measurement of c; and tij . Denote the
intracluster correlation coetticient among member
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in the first stage cluster ( or PSU) by

e = (1.2a)

<N

o

and the intracluster correlation coetticient
among the members in the second stage cluster

(segment) by
°T

oy = (1.2b)

9y

In single stage situation, Cohen (1976) and
Althan (1976) presented maximum likelihood
estimate of intracluster correlation using a
probability model defining the relationship
between members. Landis and Koch (1977) applied
randon effect model to one way analysis of
variance in order to estimate intracluster
correlation coefficient.

2. DEFINTTIONS AND NOTATIONS.

This section outlines definitions and notations
for categorical data which permits the estimation
of variance components in a nested design
situation. The varisbles that are considered for
the multivariate case of q response categories
are assuned to have multinamial distribution.

Suppose that a sample of n elementary units is
selected fram a three stage nested design with
replacement, i.e. First, r PSU's are taken from
R PSU's by PPS design and secondly, d j segments

randanly selected from D; segments in the ith PSU
for i=1,...,r. Thirdly, my.

J
taken from Mij units in segpent j for j =1,...,di

elements are randomly

Denote each element by yiik k =1,..., mij)’
which have multinomial distribution with
parameter =« =(n1, oo ,nq) where h (h=1,...,q) is
the probability that randamly selected unit Yijk
falls in category h.

petine Yijkh = 1 if the (ijk)th persons falls
in category h and = 0 otherwise for i=1,...,r,
j=1""’di’ k='l,...,mij, and b=1,...,q.

Let yi5= Ogqu1s Yigkor 2 Vijke) O e
vector of q indicator variables for the (ijk)th
person, then I ¥y =1 for all i, j, and k.

h ijkh
Under this situation, the standard assumptions
for (yisyy) to have multinomial ANOVA model
ik
(1.1) is
E(ijkh) = "h
cf,l = var(y]-_ﬁkh) = T[h(].- "h)

2.1)
2.2)



Let E(Y35unYijk )
= PUg51h Tijk'n™ D = S1mn
EQY 5107 15 k')
= p(yijkh =y]._j 'k'h=1) = 8chh for j=j' (2.4)

for k#k' (2.3)

Then it follows that fo%' h=1,...,q,
GThh= p’]hh"h(l-’"h) + "12’1 for kzk' (2.5)
§ chh= pchhﬂh(ldrrh) + 7y, for j#+j' and ktk'(2.6)
where and

*an " Pmh
correlation coeffirient for the members in the
first stage cluster and that in the second stage
cluster respectively for the hth response
category, h=1,...,q As a result

are the intracluster

$hh™ Th
p'lhh= - 2.7
nh(l-'rrh)
Schh ~ "h
pChh= (2.8)
'rrh(l-'rrh)
Further O%,‘h = PChh ﬂh(l—‘ll h) s (2.9)
6% = Prnn TR0y (2.10)
Con= (- oopnPon) TRy, (2.11)

and (,@h qy%:h *"ZThJ“’zeh’ for b=1,...,q. (2.12)

Thus, intracluster correlation coefficient within
the PSU in (2.7) is
h
° Chi= . - ; (2.13)
°Ch+ °Th+ %eh
and intracluster correlation coefficient within
the segment in (2.8) is
02
Th

Pthh = (2.14)

2 2 2
9¢ht Tint Yen

The correlation structure trom response categories
can be developed by letting the pairwise
probability of agreement on the classification of
given persons between the h th and h' th response
categories in multiple determinations be denoted
by

Schn™ X Viguti Y1y k=) (2-15)
mh= Y5k 15 wne=D (2.16)
= E(Yijkh, y]-_j 'k'h') for i=1i', j#3°

§

tor i=1,...,r, j,j'=1,...,d

and h;h'=1,...,q, then
it tollows that tor h#h'

i k,k'=1,... ’mij ’
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2 4 T e (2:17)
1

Schn = P oo (T e -Tp) Ay )

_ - 2 .
8. nn = Ponne (T e ) Amy )5 + gy (2.18)
where p Chh is the within-PSU intracluster
correlation coefficient for (h,h') th response
categories and ppq. 1s the within-segment

intra-cluster correlation coefficient for the
(h,h') response categories. As a result, for
hh'=l,...,q, (¥h')

Schh' ~ "Wh
° chh'™ (2.19)
(nh(l-nh) T (1-'"1,1.))2
Sthht ~ "Whe
P hh™ (2.20)

1
(nh(l-nh) The (1-'rrh. ))2
The assumptions (2.6) and (2.17) are true under a
certain limited constraint and similarly for
(2.5) and (2.18).

Those entire structures for h,h'=1,...,q can be
sumarized in the matrix notation written in
boldface.

Ap = (smh.) (2.22)
which denotes the gqxq symmetric matrix of pairwise
agreement and disagreement probabilities defined
previously in (2.5) and (2.6) tor h=h' and (2.17)
and (2.18) tor krh'. Write q x g matrices

% = (o cnp)

*; = ()

1] C the symmetric matrix with p Chh (h=h")

(2.22a)
(2.22b)

intraclass correlation) on diagonal elements and
° Chh' (lk¢h') (interclass correlation)

on the off-diagonal elements in
PSU. Similarly Lo is the symmetric

matrix ot correlations among members in the
segment. Denote q x q diagonal matrix

A with ( /n1(1~n1) /nq(qu) ) (2.22c)
on the main diagonal and 1 x q row vector
mw =(1r1,...,1tq). We have
AC = AQCA + ¥'® (2.22d)
AT = AO,IA + *'x (2.22¢)
It follows that
oo =A7 (A, - wiw)al (2.23)
op =A™ (Ap - w'w)a’t (2.24)

Thus the paramaters o2

are the main diagonal
elements of q x q matrix

fA{a.-%x), (2.206a)
o', are the main diagonal elements ot
¢r=(AT -%'x), (2.24b)

and o eh are the main diagonal elements of



=P -0 - o

P=D -»'x
T

(2.24c)
(2.24d)
where D is the q x q diagonal matrix with
elanents of the vector = on the main diagonal.

The measure of overall average intracluster
correlation coefficient can be estimated by

pe = 0% (2.25)
tr (P )

Py = iﬁ”’_]‘_)__ (2.26)
tr (P)

tr (H) is the trace of H . One may observe
that the only information required for the
estination is the diagonal elements of these
matrices. Other types of ratio may also be
considered such as determinants or the largest
eigenvalues. A better picture may emerge when
the relatioship between these values becames
known.

3. ESTIMATION OF INTRACLUSTER CORRELATION FROM
ANOVA TFRMS.

This section is concerned with
multivariate analysis of variance calculation
imvolving the sun of squares and their expected
values that are used to estimate the variance
camponents and hence the corresponding
intracluster correlation coefficient of
respective stages of clustering discussed in
section 2. The notations are sumarized in the
table below.

Table 1 ANOVA table
Source Mean Squares (MS)
15 & g - -

Total (Y) I 2 2V (Ve YY) Fie, -7

AT i=1=1 k=1 € 1k
lst stage ;| r _ _
cluster: I my (y1 -y) (yl— '
PSU(C) r-1 i=1
2rnd stage 1 r di _ _
cluster: I m G- %) G- 93
segment(T) d-r i=1 j=1 3 U J

] o d.l m]._j _ _
Error(e): ~ % z T (yijk— y]._j )(yijk- yij )

n-d i=1 j=1 k=1

r di r di
d= 2 di m.= 2 mij n= z z m]'_j
i=1 i=1 ij=1
rody my,
z z I Y-
5= 17l3=1k=1 9K

(3.1)
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d, m,.
DRIl A
- j=]1 k=1 y
. =3 1 (3.18)
1 m.
1
ij
z as
g uk (3.1b)
Y=
ij Y
mij is the mmber of persons in the (ij)th

segnent or ultimate sampling cluster. The expected
values of the mean square errors are shown below

EMSy) £ P-9 @ -2 o) (3.1¢)
EMS,) =( P+o @ +8 O] (3.2)
EMS;) =( P+y @t 9 ), (3.3)
EMs,) =( P - ?: ) (3.4)
where o = (E-r-(A/n))/(r-1)

g = (n-E-((B-A)/n))/(r-1)
y = ((n-E)/ @ -1))-1 (3.5)
§ = (n-E)/(d-1r)

6 = A/n(n}-l)( H

r = (B-A)/ n(n-

P is given in (2.24d) (3.6)

r di
= L (my s - 3.7)
A= Zi=1 §=1m1] (rn]_J 1) (
r
B= Zi=1mi(mi- 1) (3.8)
d,
E= ; Tt 2, (3.9)
=1 — 3=1 ij
1= mi ]

More than one unbiased estimates for ¢C, OT,
and q)e can be possible. A unique solution may be
possible through multivariate least square methoc

(suggested by Dr. Ron Forthoter, Univ. of Tx).
A set of unbiased estimates are
- MY (S B My (3.11)
O £ (a) +8(1-9)
-4 )M
o (16 JMSHot8 S -( YMSy 3.12)
¢ (14a) + 8(1-8)
P - g (3.1%)
S MSe A

we can use the ANOVA mean square matrices
unbiased estimates cs):d these .
bia; estimates
araneters. In particular, the unl
gf the variance components due to PSUs as shown
in (2.9) can be obtained by

2 _ Dpiag (Q)C) (3.14)

o
C

i determined by
where Diag ( H) denotes the vector r
the main gi.(agz)nal elements of the matrix H, the
unbiased estimate of variance components due to

seguents as shown in (2.10) can be obtained by

Thus,
to construct the



~, ‘ -
o = Diag (Qr) (3.15)
and the unbiased estimate of residual error as
shown in (2.11) can be obtained by

= Diag(MS @) (2.16)
The corresponding unbiased estimates of the total
variance of each of the q responses as shown
(2.12) can be obtained by

of =o +ah+d} (3.17)
The correlation matrix & and L shown in (2.23)
and (2.24) may be estimated by

a1l a1
QC =A ?CA

“1a a1
op =A O
where A 1s the q x q matrix given in (2.22c).
Since the main diagonal elements in (3.18) and
(3.19) reflect the intracluster correlation
coefficients of the respective q response
categories. An overall average level of them is of
great interest, which is used in adjusting a test
statistic for such clustering impacts in section
4.

(3.18)

(3.19)

Denote (2.25) and (2.26) by (3.20) and (3.21) below:

(3.20)

h=1 Yh

pc 1s a weighted average of the cell correlation

coefficients due to the clustering of PSU's with
weights being the corresponding total variances
of each category. Similarly denote a weighted
average due to the clustering of segments in the
PSU by

f 2

[o] g

oy = h=1 Thh Yh (3.21)
q
7 o
h=1 Yh

An unbiased estimate of the mmerator of p C can
be obtained by 1 oC' =tr( ¢C) and that of pT by

1 02' =tr (QT), where 1 is 1xq vector of

1's.
An unbiased estimate of the denominator of ;(J

and pT can be obtained by 1 02 ' =tr( P ) where

P=¢)C+er+¢

Cand pT are:

Thus, consistent estimates of

i
Q>

(3.22)

fd
Q>
=N AN

Q>

[
Q
<N AN

and - 1

©
)_]
>

(3.23)

These results are applied to adjustment of test
statistics in section 4. Cohen (1976) found the
maximm likelihood estimate of intracluster
correlation coetficient when the multinomial
distribution is assumed. Landis and Koch (1977)
used the average intracluster correlation in one
stage clustering and applied to measure overall
relisbility for response categories.

4 TMPACTS OF NESTED DESIGN ON x? TEST STATISTIC

The impacts of sample survey design on the test
statistics are generally called design effect
(Rao and Scott, 1979, Fellegi, 1978, Kish and
Frankel, 1974). The design effect can be
identified by investigating variance covariance
structure of a statistic based on complex survey
data.

The adjustment of goodness of fit test statistic
based on the nested design is shown below.

let Y15 Y95 cess ¥y be a set ot r independent

vectors of dimension g-1:

¥; =0i150005 Yiq-1) (4.1)
4 My

Yin= D) Yijkh .2
j=1 k=1

i=1,..,r, and h=1,...,q-1, and Yijkh is
indicator variable defined in section 2.

|
y "(yl’y2’ ":yq_l) where h z yhi. n=) e
h=1
" = ('rrl,...,'nq_l) where = yh/ n.
B k=" (4.22)
‘SChh' for j#3i°
E(yi_jkh9yivj lkah-)= GThh. for k2k' (4-2b)

Th The for i#i'

where S o and S mhhe are given in (2.5) and

(2.16) for h=h' and (2.17) and (2.18) for t¥h'.
The variance covariance matrix of y can be
written as

I =0 P+ AASA + (B-A) AdA (4.2e)

of which the elements are: for h=h'

o =my (L 4 oy A Ty (Lomy )+ o gy (B-A)my (Lomy),
1

Thh™ -mhwh,+ p,mh,A(nh(l-ﬂh)Trh. (l-fnh. ))2

+0 oy (B-A) (T (1= )mp (1= wh.))z for t#h'



A and B are defined in (3.7) and (3.8), A in
(2.220), #, and ¢ in (2.19) and (2.20), and

P in (2.243) with only g-1 columns and rows.
1f P Chh'= PC and PThh'= P for h,h'=1,...,q9-1,
¥ in (4.2e) reduces to

£ =n P+ (g-n) b'b (4.2£)
of which the elements are:

oh =Ry + Gy oy (') G2)

ohhv=-“'h“h'+(g—n)("h(1‘"h)“h'(1'"h‘))2- (0"

b (/A T, T (T ) (4.28)

g=n(1+pTé+pC————(B_A) ) (4.9

n n

Pe and pp are the average intracluster

correlation coefficients defined in (2.25) amd
(2.26) and estimated by (3.22) and (3.23).

1f mij=m, and d]._= d, than g reduces to
g'=n (Mo @-D+pm(d -1)) (4.5)

When the sample included different sizes of
clusters, the weighted average of 03 's and di's

often gives a better result than using the
largest values of myy and d, if r is reasonsbly

large. The weighting may be made according to the
size of clusters (Choi, 1980).

If d =1, g' further reduces to n(l +pT(r'ﬁ-1)),
it becomes one stage clustering situation. And
furthermore, when m=1 and d&=1, g' reduces to n,
this is also true if pC=pT=0 regardless of the

nature of nested design.
Using the results in (4.2f), the covariance

matrix V, say, for the vector v n@ -1n), can
be written by

(g-n)
b'b

vV = 4.7

n
where b is Ix(g-1) vector defined in (4.2g).
The inverse of matrix V (see Donald Morrison p69)
is given by

v _1= P—l - (g-n) /n P‘lblb P—].
1+ (g-n) b P b
n
= ploz (say) (4.8)

where Z is so defined. In binanial situation, V'1
reduces to n /v (1-v)g). For an unbiased estimate
® and for the hypothesis n=x (specified), where

L =('n'°1,..,1r°q_1), one can write a quadratic
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fom O =nG=) V1 Ga) (4.9)
Qcc can be written into two terms: Qcc= Ql- Q2,
where  Q=n G-,) Pl ()" (4. 9)
Oy n G=x) Z G ) (4.9)
Since V"l, P'} and Z are positive semidefinite,
O0c £7 (4.9¢)

Q1 is the usual formm of goodness of fit test

statistic, i.e. .
q -
0. Z n (1ri "oi)z
1 —_—— 4.10)
i=] m

ol

One may observe that 0O 9> 0 under the situation
(pTA +po(B-A)) > 0. The equality in (4.9c) holds
ipr= o= 0. In most practical cases, ;C> 0 and

and ;T > 0. 1If BC and /or ‘;T are negative, these

estimates could be replaced by zero for practical
application.
O1 is the maximm value of chi-square statistic

obtainable regardless of the nature of dependence
between members in the cluster. If Q1 is not

significant when referred to x2(q-1), the
hypothesis » = ¥o should be accepted whatever the

Oce value is. But when 0 is significant, Qe

should be adjusted for design effect in order to
find the actual significance of Oc ¢

If the full covariance matrix V¥ ig known, one
can always construct an asymptotically correct
Wald statistics. Rao and Scott (1979) introduced
a simple approximation to the distribution of O
that required only very limited information about

Vv, that is, tr(P"V)/ (q-1) =X. X > 1 for the
clustered data. X can be written as

-1
= EOPV) gy D )
q-1 ) n(g-1) )
. g- -
N O WL N SN AT
n(g-1) b1 7w w d=17
where g is given in (4.4), b in (4.2g), and
q-1
T=1-] w,.
S
Thus, the modified statistic is
- 0
Opao™ ___1 (4.12)
A

Both Q_, and O, can be considered as a %2 (g-1)

randan varisble. The expected values of Q's are
same as x2 (g-1). The variance is also same under
certain conditions (Rao and Scott, 1979).

A consistent estimate ‘g of g can be obtained by

substituting o and ;C in g. Thus, it gives x.



In order to find 0, , the matrix Z should be
known:

7= G P~ 1b'bp~! vhere G = (g - n)/(n+ (g - n)f)

-1
and £f= bP b' . The elements of Z are:

b, 177
Zon= G —+—1 by )2 for h=h'
h h=1 (4.13)
b, 1 91 , b a1
zhh.=G["— - th)(;,—'-; th,) for hh'
h =1 B h'=1

It is generally true that f > 1 and consequently
1>G>.G=0 ipr=pT= n.

Using these scalar forms, one can avoid matrix
operations in order to obtain ) .
For O,., the design effect can be adjusted by

subtracting 0, fron a conventional chi-square
test statistic 0;. Only information reguired is

0, for such adjustment. On the other hand, for

Orao ’

matrix is required to correct the test statistic
0q-

the knowledge of a full variance covariance

5 EXAMPLE

A simple example is presented here for an
illustrative purpose. Suppose that the
sanpling is done with replacement.
Three PSU's are selected by PPS design.
Here design feature does not matter as
far as the models fit for pairwise relationship
in the cluster. The sample segpents in the PSU
are randamly selected. Thirdly the elementary
units (e.u.) in the segment are also randomly
selected. These steps are illustrated in the
table below.

PSU No. MNo.of y y y

No. Seg Elem. ijk ij i

1 dp2myp2 (0,1,0,0,1,0 01,0 (LL,0)
m,=2 (1,0,0),(1,0,0) (1,0,0) '

2 dy=2 my=l (1,0,0) (1,0,0  (1,0,M
m,,=2 (1,0,0),(1,0,0) (1,0,0)

3 dgl mgy=2 (0,1,M,(0,1,0)  (0,1,0)  (0,1,0)

¥y =(5/9, 4/9, 0), n=9, n(n-1)=72,
A=8, B=20, (B-A)=12, F=17/3
1 1

1

1

1] 1

1

1 MSC =" MSp= _

18 0] 18 0 2 0

Here MS(error)= 0 in order to simplify the
calculation although it is not realistic.

a=28/9,8 =1,y =2/3,8§ =5/3,0 =1/9,
z =16, B(1-8)H (1+a) = 65/54

1 1 1
L] I ISR IR PR N
C 130 0 T 65 0l e 65 0

3
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p~=2/41 p=1 "—=(l’ l) l)
¢ T 33 3
Q= 14/3 = 4,666,

Q,= 35656,

Que= Qg- Q= 1.1010 (2 d.£.)

X = 3.7534,

Qrao= 4.666/3.7534 = 1.2433 (2 d.f.)

Thus, the data fit to the specified value wxe for
both procedures. In this case, Q cc
approximately same results. However, the O2 is

and Qa0 gives

generally effected by the redundant cell deleted
and thus may have to be adjusted for other
situations.
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