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In recent literature some statisticians 
discussed the effects of complex survey design 
on test statistic. Rao and Scott (IWq) derived 
such effect from examining the eigenvalues of the 

matrix A= p-IV where P is the covariance matrix 
under simple random sampling situation and V is 
that arising from actual complex sampling. 
Fellegi (IQ7g) used an effective sample size in a 
test statistic, when the balanced repeated 
replication method is used to obtain the variance 
of data based on nonsimple random sampling.Cohen 
(1976), Altham (1976), and Choi (19fi0) used a 
model approach to find effects of cluster 
sampling on test statistics. 

In this paper, we propose a device for the 
estimation of intracluster correlations in nested 
design for categorical data when usual analysis 
of variance terms are utilized. Using these 
results, we also propose a method to find a 
correction method for goodness of fit test 
statistic based on nested survey design. 

In the first section, a nested random effect 
model is introduced..Sections 2 introduces the 
definitions and notations used in the succeeding 
sections of this paper and section 3is allocated 
for the estimation of the intracluster 
correlation coe£ficient in the first stage 
cluster and that in the second stage cluster. In 
section 4, the adjustment of chi-squared goodness 
of fit test statistic is discussed. A simple 
nunerical example is given in the last section. 

I. NK~-I~D MODEL 
The purpose of this section is to discuss the 

nested random effect model for multivariate data 
£rom unbalanced design, which is analogous to 
multiway analysis o£ variance (ANOVA) model 
discussed in Schei£e (1959, p 248). 

If Yijk denotes the kth measurement of the j th 

secondary unit in the i th primary unit, we may 
write 

Yijk =p + c i+ tij+ eijk (1 . t )  

for i=l,...,r, ~=l,...,d i, and k=l,..., mi~. 

The usual assumptions for estimation are that 
(ci) , (tij), and (eijk) are independently 

identically distributed with zero mean and 
variances o 2- o 2 - and o 2 respectively and that 

" t "  L ; "  e - 

(ci) , (ti~) and (eijk) are uncorrelated. 

The unbiased estimates 0£ 02 2 and o2 may be C' °T' 
obtained Irom the linear combination o£ the mean 
square errors in usual ANOVA table so that 

2 2 Oy =o~ + o~ +Oe (].2) 

which is the measure of reliability of quality of 
the given measurement of c i and tij. Denote the 

intracluster correlation coe£iicient among member 

in the £irst stage cluster (, or PSU) by 

pC = 

2 
o C 

2 
Oy 

[l.2a) 

and the intracluster correlation coe£ficient 
among the members in the second stage cluster 

(segment) by 

2 
°T (I .2b) 

pT = 
2 

Oy 

In single stage situation, Cohen (1976) and 
Altham (1976) presented maximum likelihood 
estimate of intracluster correlation using a 
probability model defining the relationship 
between members. Landis and Koch (1Q77) applied 
random effect model to one way analysis of 
variance in order to estimate intracluster 
correlation coefficient. 

2. DEFtNrr~ORS AND ~O~S. 
This section outlines definitions and notations 

for categorical data which permits the estimation 
of variance components in a nested design 
situation. The variables that are considered for 
the multivariate case of q response categories 
are assumed to have multinomial distribution. 

Suppose that a sample of n elementary units is 
selected from a three stage nested design with 
replacement, i.e. First, r PSU's are taken from 
R PSU's by PPS design and secondly, d i segments 

randomly selected from D i segments in the ith PSU 

for i=l,...,r. Thirdly, mij elements are randomly 

taken from Mij units in segment j for j =I,... ,d i 

Denote each element by Yijk (k -I,..., mij), 

which have multinomial distribution with 
parameter , =(71,.. "'~q) where ~h (h=l, ... ,q) is 

the probability that randomly selected unit Yijk 

falls in category h. 

ueline Yijkh = I if the (ijk)th persons falls 

in category h and - 0 otherwise for i=l,... ,r, 
]=l,...,d i, k=l,...#nij, and h=l,...,q. 

Let Yijk = (Yijkl' Yijk2''"' Yijkq ) be the 

vector of q indicator variables for the (i]k)th 
person, then r y = I for all i, ], and k. 

h i~kh 
Under this situation, the standard assumptions 
for [ Yi~k~ to have multinomial ANOVA model 

(1.1) is 
E(Yi]kh) = ~ h (2. I) 
y 

Oh = var(Yi_]kh) = ~h(l- ~h) (2.2) 
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Let E(YijkhYijk, h) 

= P(Yijkh =Yijk'h = I) = ~Thh for k~k' (2.3) 

E (Yij khYij ,k,h ) 

= P(Yijkh =Yij 'k'h =I) = ~Chh for j#j' (2.4) 

Then it follows that for h=l,...,q, 
+ ~ for k~k' (2.5) 

6Tnh-- ~ ~hh~ h(l-~ h ) 

Chh = ~ Chh~h[l-~h) + ~ for j,j ' and k~k' (2.6) 

where p and ~ are the intracluster 
Chh Thh 

correlation coeffioient for the members in the 
first stage cluster and that in the second stage 
cluster respectively for the hth response 
category, h=l,.. • ,q As a result 

PThh-- 

2 
~ Tnh- ~h 

~ h(l-~h) 

(2.~) 

2 
~Chh - ~h 

~Chh: (~'~) 
~ h ( l - ~ h )  

Further o 2 Ch = p Chh ~ h ( 1-7 h), (, 7. W) 

2 
°Th = PThh ~h(']-~h ) (2.10) 

2 
Oeh = (I- PChh-PThh) ~h(l-~h), (2.11) 

and 2 
°Yh =~h 2 2 4~Thq~eh' for h=l,...,q. (2.12) 

Thus, intracluster correlation coefficient within 
the PSU in (2.7) is 

~Chh = (2.13) 

~ +  O~h+ J eh 

and intracluster correlation coefficient within 
the segnent in (2. X) is 

02 
Th 

P Thh = (2.14) 
O ~,hq= 2 2 OTh + o eh 

The correlation structure from response categories 
can be developed by letting the pairwise 
probability of agreement on the classification of 
given persons between the h th and h' th response 
categories in multiple determinations be denoted 
by 

Chh 

Thh' 

: ~ Yijkh=Yij ,k.h.:l) (2.15) 

: ~ Yijkh' Yij 'k'h' ) for isi', ~#j' 

= ~ Yijkh=Yij k,h.=l) (2.16) 

= E(Yijkh' Yij 'k'h ') for i=i', j~j' 

for i-1,...,r, j,j'=l,...,di, 

and h,h'-l, ...,q, then 
it iollows that (or h~h' 

k,k'=l, . . . #nij , 

i 

6Ch h, : DChh,(~h~h , (1-~h)( ,1-~h, ) )  2 + ~h~h, (2.17) 
1 

~'mn' = o'mh '(~ h~h ' tl-~h~ t l ' ~h ' ) ) 2  +~h~h ' t2.1U~ 
where 0 Chh' i s  the  within-PSU i n t r a c l u s t e r  

c o r r e l a t i o n  c o e f f i c i e n t  for  ( h , h ' )  t h  response  
c a t e g o r i e s  and P ' I ~ '  i s  the  w i t h i n - s e g n e n t  

intra-cluster correlation coefficient for the 
( h , h ' )  response  c a t e g o r i e s .  As a r e s u l t ,  fo r  
h,h'=l,... ,q, (h~ h' ) 

~Chh' -~h~h ' 

P Chh '= (2.19) 
1 

(~h(l-~h) ~h' (l-~h'))2 

6 
Thh' - ~h~h ' 

P 'mh '= (2.20) 
1 

(~ n(1-~h ) ~h' ~I~h'))2 

The assumptions (2.6) and (2.17) are true under a 
certain limited constraint and similarly for 
(2.5) and (2.18). 
Those entire structures for h,h' =I,..., q can be 

summarized in the matrix notation written in 
boldface. 

a, C : (aCh h, ] (2.21) 

A T = ( 6Th h, ] (2.22) 

which denotes the qxq symmetric matrix of pairwise 
agreement and disagreement probabilities defined 
previously in (2.5)and (2.6) ~or h=h' and (2.17) 
and (2.18) ior h~ h'. Write q x q matrices 

• C = (PChh') (2.22a) 

• r = (DThh' ] (2.22b) 

• C the s~mmetric matrix with p Chh (h=h') 

intraclass correlation) on diagonal elements and 

P Chh' (h~ h') (interclass correlation) 

on the off-diagonal elements in 
PSU. Similarly CT is the synmetric 

matrix o£ correlations among members in the 
segment. Denote q x q diagonal matrix 

A with(/~I(I-~I) ... J~q(l-~q) ) 

on the main diagonal and 1 x q row vector 
=(~l,...,~q). We have 

A C = A¢~ + w'w 

A T -- AOTA + ~'* 

It follows that 

(2.22c) 

(2.22d) 

(2.22e) 

c - A -i (A c _, ',)A-I (2.23) 

%T = A-I (AT - * ")A-I (2.24) 

Xhus the paramaters 02 are the main diagonal 
elements of q x q matrix 

2 
~Th are the main diagonal elements of 

~=(A T - ""], (2.24b) 
2 

and ~ eh are the main diagonal elements of 
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~e-- P - ~ - ~ (2.24c) 

P = D - w  'w (2.24d) 

where D is the q x q diagonal matrix with 
elements of the vector ~ on the main diagonal. 
The measure of overall average intracluster 
correlation coefficient can be estimated by 

_ tr( ~C ) 
PC - 

tr (P) 

tr (~) 
PT = 

tr (P) 

tr (H) is the trace of H . One may observe 
that the only information required for the 
estimation is the diagonal elements of these 
matrices. Other types of ratio may also be 
considered such as determinants or the largest 
eigenvalues. A better picture may emerge when 
the relatioship between these values becomes 
known. 

(2.25) 

(2.26) 

3. ESTIMATION OF ~ ~  fX]~IELATION FROM 
~ A  ~ .  

This section is concerned with 
multivariate analysis of variance calculation 
involving the sun of squares and their expected 
values that are used to estimate the variance 
components and hence the corresponding 
intracluster correlation coefficient of 
respective stages of clustering discussed in 
section 2. The notations are su~narized in the 
table below. 

Table I ANOVA table 
Source . . . .  Mean Squares (MS) 

d. ~ij 
Total (Y) 1 ~ 71 (Yijk- ~) (Yijk 

n-I i=lj=l k=l 
-9)' 

Ist stage 1 r 
cluster: 7. m i (Yi - ~) ~i- ~)' 
PSU(C) r-I i=l 

stage _ 
cluster: I i m.. ~ij - Yi ) ~Yij 
segnent(T) d-r i=l j=l lj 

- ir 

m d. m.. 

Error(e)-__l r Z l Z lJ (Yijk- Yij }(Yijk- Yij )' 
n-d i=l j=l k=l 

Yijk: (Yijkl; "'" ' Yi~kq ) 

r im n=~ 
d= I d i mi= ij #ij 

i=l j=l i = 

y= 

r d i mij 

Z Z Z 
~:l j :I k: I y~j:: k 

(3.1) 

d 

Ex Yijk 
- j=l k=l (3.1a) 
Yi --'-- " 

m i 

~ij Yijk (~.Ib) 
k 

y j: 
mij 

mij is the number of persons in the (i~)th 

segnent or ultimate sampling cluster. The expected 
values of the mean square errors are shown below 

E(M~)  ~ P - 0 ~C - ~ ~ ) (3.1c) 

E(M~) =( P+~ ~ +B ~) (3.2) 

E(M~)  : (  P + Y  ~C + 8  ~I" ) ' [3.'~) 

E(MSe) = ( p _ ~ ) (3.4) 

where ~ : (E-r-(A/n) } / (r- I) 
B = (n-E-((B-A)/n) ) / (r-l) 
T : ((n-E)/ (d -r))-I (3.5) 

~ = (n-E) / (d-r) 
0 = A/n(n-l) 

= (B-A)/ n(n-l) 
P is given in (2.24d) (3.6) 

r d. l 
A= r Z m.. - I) (3.7) 

r 
B=E m i(m i- I) (3.R) 

i=l 

r ]. d i 
E= E S m 2 (3-°) 

i:i-- j :1  ~i 
m i 

More than one unbiased estimates for ~C' ~' 

and ~e can be possible. A unique solution may be 

possible through multivariate least square method 
[suggested by Dr. Ron Fortho£er, Univ. of Tx). 
A set of unbiased estimates are 

^ ~ M~ -(~+8)MSe+ B M~ (3.11)  ffi 
O+~) + ~ (1~) 

^ [1~ )M~+[a+0 )MSe-(I+a)MSy (3.12) 

O+a) + B ( I ~ )  
^ ^ 

me - (3.13) 

Thus, ~e can use the ANOVA mean square matr ices 
to  const ruc t  the unbiased est imates o f  these 
parameters. In  p a r t i c u l a r ,  the unbiased est imates 
of the variance components due to PSUs as shown 
in (2.9) can be obtaine~ by 

2 o C = Diag (~C) (3 14) 

where Diag [ H) d e n o t e s  t h e  v e c t o r  detemined by 
the main diagonal elements of the matrix H, the 
unbiased estimate of variance components due to 
segnents as shown in (2,10) can be obtained by 
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2 
o T = Diag ( ) (3.15) 

and the unbiased estimate of residual error as 
shown in (2.1 I) can be obtained by 

2 = Dia~MSe~T) (~ 16) o e ...... 

The corresponding unbiased estimates of the total 
variance of each of the q responses as shown 
(2.12) can be obtained^by 

^2 2 2 ^2 
Oy = o C + o T + °e 

The correlation matrix #C and @ T 

and (2.24) may be estimated~ by 

#C = A-I~ -I (3.1R) 

- I  - I  
~T = A (3.10) 

(3.17) 

shown in (2.23) 

where A is the q x q matrix given in (2.22c). 
Since the main diagonal elements in (3.18) and 

(3.19) reflect the intracluster correlation 
coefficients of the respective q response 
categories. An overall average level of them is of 
great interest, which is used in adjusting a test 
statistic for such clustering impacts in section 
4. 

Denote (2.25) and (2.26) by (3.20) and (3.21) below: 

q 
p o 2 

p = h=l ChhYh (3.20) 

C q 
02 

h=l Yh 

PC is a weighted average of the cell correlation 

coefficients due to the clustering of PSU's with 
weights being the corresponding total variances 
of each category. Similarly denote a weighted 
average due to the clustering of segments in the 
PSU by 

q- 2 Y.p ~ 
" : h=l Thh Yh (3 21) 
PT " 

it o2 
11=1 Yh 

An unbiased estimate of the numerator of PC can 

be  obtained by 1 o~'  ---tr( ) and t h a t  of  p T by 
^ 

^2,  - t r  (~1 r ) ,  where 1 i s  lxq v e c t o r  of  l o  T 
l ' s .  

An unbiased es t ima te  of  the  denominator ot~ PC 

" 2' :tr()) where and P T can be obtained by I Oy 
^ 

-- ~+ ~+ ~e" 2hus, consistent estimates of 

PC and PT are: 

1 ^2, 

^ :C (3.22) 
pC = 

^2, 
and ^ I :T 

pT = ^ 

1 o~' (3.23) 

These results are applied to adjustment of test 
statistics in section 4. Cohen (1976) found the 
maximun likelihood estimate of intracluster 
correlation coellicient when the multincmial 
distribution is assumed. Landis and Koch (1977) 
used the average intracluster correlation in one 
stage clustering and applied to measure overall 
reliability for response categories. 

4 I}~ACl~ OF NESTED DESIC~ ON X 2 TES'r S'rATISTIC 
The impacts of sample survey design on the test  

s tat is t ics are generally called design effect 
(Rao and Scott, 1979, Fellegi, lq78, Kish and 
Frankel, 1974). The design effect can be 
identified by investigating variance covariance 
structure of a s ta t is t ic  based on complex survey 
data. 

The adjustment of goodness of f i t  test  s ta t i s t ic  
based on the nested design is shown below. 

Let YI" Y2' "'" Yr be a set ot  r independent 

vectors of dimension q-l: 

Yi =(Yil''''' Yiq-] ) (4.].) 

d o  i mij 

Yih = I I Yijkh (4. P) 

j : l  I<-1 

i=l,..,r, and h=l,...,q-1, and Yijkh is 

indicator variable defined in section 2. 
r ~t 

Y = ( Y l ' Y 2 " " ' Y q - 1  ) '  where yh=~=l Yhi" n - Yh" 

^ ^ ^ ^ 

" = (~l'"''~q-I) where ~h = Yhl n. 

E(Yijkh )= # h (4.2a) 

E(Yijkh' Yi'j 'k'h' )= 

~Chh' for j#j' 

6 for k~ k' Thh' 
for i, i' ~h #h' 

(4.2D) 

where ~ Chh' and 6Thh' are given in (2..5) and 

(2.16) for h=h' and (2.17) and (2.1R) for h~h'. 
The variance covariance matrix of y can be 

written as 

K =n P + A A#~ + (B-A) A~ 

of which the elements are: for h=h' 

(4.2e) 

o~--n~h(l"h)+ PThh A ~h(l-#h )+ PChh(B-A)#h(l-~h), 

1 

Ohh ,= -mh~h,+ PThh,~#h(l-~h)~h, (I-~ h, ))f 

1 

+ P Chh' (B-A)(~h(l-#h)#h' (I- #h' ))f for h~h' 
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A and B are defined in (3.7) and (3.g), A in 
(2.22c), 0C and~T in (2.19) and (2.20), and 

P in (2.24d) with only q-I columns and rows. 
If p Chh ,= PC and PThh,= PT for h,h'= I, ...,q-l, 

Z in (4.2e) reduces to 

~. --n P + (g-n) b'b (4.2f) 

of which the elements are" 

°h2 :r~h(l_~h) + (g-n)~h(l-~h) (h=h') 
i 

o hh, =-n~ h~ h, +(g-n) (~ h (I -~h)~h, (I -~h' ))2 

(4.3) 

(hch') 

b :(¢~ 1(1~ 1 ) , . . .  , / iq_ l ( l -~  q_l ) ) (4.2g) 

g = n(I+PT A +Pc (B-A)) (4.4) 

n n 

o C and OT are the average intracluster 

correlation coefficients defined in (?.25) and 
(2.26) and estimated by (3.22) and (3.23). 

If m ij=m , and d i= d, than g reduces to 

g'= n (lqvr(m-l)+ p~(d -I)) (4.5) 

When the sample included different sizes of 
clusters, the weighted average of mij's and di's 

often gives a better result than using the 
largest values of mij and d i if r is reasonably 

large. The weighting may be made according to the 
size of clusters (Choi, lqgO). 

If d =I, g' further reduces to n(l +pT (~-I))' 

it becomes one stage clustering situation. And 

furthermore, when ~=I and a=l, g' reduces to n, 
this is also true if p C=o~ regardless of the 

nature of nested design. 
Using the results in (4.2f), the covariance 

matrix V, say, for the vector ¢ n (~ -I), can 
be written by 

(g-n) 
V = e + b'b (4.7) 

n 
where b is Ix(q-l) vector defined in (4.2g). 
The inverse of matrix ¥ (see Donald Morrison p69) 
is given by 

V -1= p-1 _ (g-n)/n p-lb,  b p-1 

I+ (g-n) b p-Ib' 
n 

: p-l_ Z (say) (4.g) 

where Z is so defined. In bincmial situation, V -I 
reduces to n /(~ (]-~)g]. For an unbiased estimate 
, and for the hypothesis ~=w (specified), where 

u 

=(7 ,7 ) one can write a quadratic o oi"" oq-I ' 

form O = n (w-w) V "I (w-~)' (4.9) 
cc o o 

Occ can be written into two terms" 

where Ql=n (1_wo) p-I  (w.~) ,  
%== ql- %' 

(4. Qa) 

O2= n (~-~) Z (~-~)' (4.9b) 

Since V-I, p-,l and Z are positive semidefinite, 

< 01 (4.9c) Occ _ 
Q1 is the usual form of goodness of fit test 

statistic, i.e. 
^ 

q n (~i - ~=i ~ 
O1: ~ (4. In) 

i=l ~=i 

One may observe that 0 2 > 0 under the situation 

(p ~ + p c(B-A)) > O. The equality in (4. gc) holds 
^ 

if pc = pT = 0. In most practical cases, pc > 0 and 
^ ^ ^ 

and P T > 0. If PC and/or P T are negative, these 

estimates could be replaced by zero for practical 
application. 
O I is the maximum value of chi-square statistic 

obtainable regardless of the nature of dependence 
between members in the cluster. If 01 is not 

significant when referred to ×2 (q-l), the 
hypothesis ~ = w v should be accepted whatever the 

0cc value is. But when 01 is significant, ~c 

should be adjusted for design effect in order to 
find the actual significance of Occ. 

If the full covariance matrix V is known, one 
can always construct an asymptotically correct 
Wald statistics. Rao and Scott (lq7q) introduced 
a simple approximation to the distribution of O 
that required only very limited information about 

V , that is, tr(p-Iv)/ (q-l) =f. f > I for the 

clustered data. f can be written as 

f = tr(p-Iv) = 1 + (g-n) tr( P-lbb' ) 

q-1 n(q-1) 

= I+ (g-n) ~-I( __~+__~ ~-I b ) (4.11) 

n(q-l) h=l ~h ~ i=l i 

where g is given in (4.4), b in (4.2g), and 
q-I 

Thus, the modified statistic is 

O = Ol (4.12) 
rao 

Both Occ and Ora ° can be considered as a ×2 (q-l) 

random variable. The expected values of Q's are 
2 sane as × (q-l). 7he variance is also sane under 

certain conditions (Rao and Scott, I Q79). 
A consistent estimate ~ of g can be obtained by 

^ ^ 

substituting o T and PC in g, Thus, it gives ~. 
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In order to find ~, the matrix Z should be 
known: 

Z=G P-Ib'bP-! where G = (g - n)/(n + (g - n) f), 
-I 

and f- b P b' . The elements of Z are: 

1 q-I  
bh + -- ~. b h 

h h~ l  

) 2 for h=h' 

(4.13) 

1 q-I ~, b q-I 

Zhh ,= G( "h ~ ~ ~)( -- ~ ~') for h~h' 
~h' 

h=l h' =I 

It is generally true that f > 1 and consequently 
1 > G >0. G = 0 if pC =oT= O. 

Using these scalar forms, one can avoid matrix 
operations in order to obtain 02. 

For O cc , the design effect can be adjusted by 

subtracting 02 from a conventional chi-square 
test statistic O 1 . Only information reguired is 

02 for such adjustment. On the other hand, for 

Orao, the knowledge of a full variance covariance 

matrix is required to correct the test statistic 

01 • 

5 
A simple exanple is presented here for an 

illustrative purpose. Suppose that the 
sanpling is done with replacement. 
Three PSU's are selected by PPS design. 
Here design feature does not matter as 
far as the models fit for pairwise relationship 
in the cluster. The sanple segnents in the PSU 
are randomly selected. Thirdly the elementary 
units (e.u.) in the segnent are also randomly 
selected. These steps are illustrated in the 
table below. 

PSU No. No.of y y y 
No. Seg Elan. ijk ij i 

1 d1=2 m11=2 (0, I ,0) ,  (0,1,0) 

m12=2 (1,0,0), (1,0,0) 
2 d2=2 m21=l (I,0,0) 

m22=2 (I,O,0), (I,0,O) 

3 d3=l m31=2 (0,I,O), (0,I,0) 

(0,I,O) 

(I,0, O) 
(I ,0,0) 
(1,O,0) 

(O,l,n) 

( ~ , 1 , o )  
2 2  

(I,O,O} 

(0, I ,  n) 

=(5/9, 4/q, 0), n=9, n(n-l)=72, 
A=8, B=20, (B-A)=12, E=17/3 

1 J 1 " 5 -  l " S c  1]1 1 = = . 1 MST= _I 1 

18 0 18 0 2 0 
Here MS(error)= 0 in order to simplify the 
calculation although it is not realistic. 
a = 8/9, B = I, y = 2/3, 6 = 5/3, 8 = 1/9, 

= 1/6, B (1-0)+~(Iq~) = 65/54 

III ill III I 1 ~e = - I  I  _41 I 0 
c-Y , 0 0 

n 

Oc :z/41 ~T: I 

QI = 14/3 = 4.6bb, 

,-=(I, I, I) 
3 3 3 

Q2 = 3. 5656, 

Occ= QI-Q2 = I.I010 (2 d.f.) 

r = 3.7 534, 

Qrao = 4.666/3.7534 = 1.2433 (2 d.f.) 

Thus, the data fit to the specified value wQ for 

both procedures. In this case, Qcc and Ora ° gives 

approximately sane results. Ho~=ver, the 0 2 is 

generally effected by the redundant cell deleted 
and thus may have to be adjusted for other 
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