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1. INTRODUCTION 

Most large national surveys employ a complex 
stratified multistage probability sample. Such 
sample designs allow economical data collection. 
However, they complicate data analysis since 
most standard statistical procedures implicitly 
assume simple random sampling from an infinite 
population. Classical variance estimates which 
do not account for the sample design (e.g., 
using pq/n for a proportion) may seriously under 
estimate the true variance in the presence of 
clustering and unequal probability selections. 
Several authors, such as Shah, Holt and Folsom 
(1977) and Fellegi (1980), have examined the 
consequences of ignoring the sample design when 
analyzing survey data. In general, they have 
shown that for highly clustered designs this 
leads to hypothesis tests which reject the null 
hypothesis too often. 

The challenge to researchers is to properly 
account for the sample design when analyzing 
survey data. Articles by Koch, Freeman and 
Freeman (1975), and Freeman, Freeman and Brock 
(1977) have advocated a weighted least squares 
approach. This is an extension of the method- 
ology developed by Grizzle, Starmer and Koch 
(1969) for categorical data analysis. This 
style of analysis requires two steps. First, 
for analyzing differences between subpopula- 
tions, estimates of the parameter of interest 
are calculated for the various subpopulations 
along with the corresponding variance-covariance 
matrix. Second, weighted least squares is 
applied to evaluate relevant hypotheses con- 
cerning subpopulation effects. During the first 
stage of the analysis, the parameters and their 
variance-covariance matrix are estimated in 
accordance with the sample design. The secon- 
dary analysis can then proceed in a more clas- 
sical vein using weighted least squares or 
standard multivariate techniques. 

Unfortunately, most researchers are ill- 
equipped to carry out the first step of the 
proceeding analysis strategy since virtually all 
traditional software available to them ignores 
the design structure inherent in sample survey 
data. Methods to alleviate this problem for 
tests of goodness of fit and independence in a 
two way table have been proposed by Rao and 
Scott (1979) and Fellegi (1980). Under their 
proposals, classical test statistics for these 
two problems are scaled by an average sample 
design effect. 

This paper presents an empirical application 
and assessment of the Rao and Scott methodology 
using data from the National Assessment of 
Educational Progress (NAEP). Analyses were 
conducted first assuming a simple random sampl- 
ing design and then accounting for the actual 
clustered NAEP design. Test statistics from 
these two analyses were compared to determine 
whether design effect adjustments to the simple 
random sampling test statistics are effective 
for NAEP data. 
2. THEORETICAL BACKGROUND 

To illustrate the design effect adjustment 
methodology consider the vector P = (pl,pT, ... 
pr )' where Pi is the proportion of students 

responding correctly to a particular exercise 
^ 

for student subgroup-i. Let P be an estimate of 
^ 

P calculated from the sample and assume that P 
is asymptoti~ally multivariate normal with 
variance-covariance matrix V. Classical analy- 
sis methods, which assume simple random samp- 
ling, lead to the dispersion matrix S = 
diag{pi(1-Pi)/ni}. In this setting, the hypo- 
thesis for testing subgroup differences or 
contrasts may be stated as: 

Ho- CP = ~ vs. H A • CP ~ 

where C is a matrix of d linearly independent 
contrasts and ~ is the (d x I) null vector. The 
usual test statistic ignoring the sample design 
is 

x 2 = (ce)' [ csc' ] - I (ce) 

On the other hand, the appropriate test of this 
hypothesis accounting for the sample design is 
based on the Wald statistic 

X 2 = (CP) ' [CVC'  ] - l ( c p )  
W 

which is asymptotically distributed as a chi- 
squared with d degrees of freedom under H . 

A result similar to that shown by Rao a~d 
Scott (1981) is that under the null hypothesis 
H : CP=~, 

O 

d 
x 2 = ~ ~ . z ~  

i 1 
i = l  

where Z_, .... ,Z. are asymptotically independent 
1 d > 

N(0,1) random variables and ~I - k~ ~ "'" ~ kd 

are the eigenvalues of D = [CSC']-I[CVC']. Rao 
and Scott refer to these eigenvalues as "gene- 
ralized design effects". Following Rao and 
Scott's suggestion_for tests of independence, X 2 
can be scaled by k = (Ek=)/d to bring the test 
more nearly into line wl~h the Wald statistic 
X 2 . Notice that this adjustment factor is 
d~pendent on the exact contrast being considered 
and requires full knowledge of the matrices S 
and V. Rao and S~ott indicate that the average 
eigenvalue of S--V may provide an adequate 
adjustment for a general contrast. In the cases 
that will be addressed in this paper, S is a 
diagonal matrix and the average eigenvalue of 
S -V is also the average design effect of the 
subgroups. 
3. EMPIRICAL INVESTIGATION 

Initially, five NAEP exercises per age class 
were selected for analysis from the Year 09 
Mathematics Assessment. Each item was recoded 
one for correct and zero for incorrect. An 
additional score was defined for each student as 
the proportion of the items analyzed on a pack- 
age that the student answered correctly. This 
score was analyzed within each age class to form 
three mean scores for analysis. 

Four domain or subgroup defining variables 
were also selected. These were, with their 
corresponding levels: 
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Sex Race 
Male White 
Female Other 

Type of Community Parental Education 
(TOC) (PARED) 

Extreme Rural Not High School Graduate 
Metro High School Graduate 
Other Post High School 

The ultimate goal of this study was to com- 
pare sample design based analyses of NAEP data 
with those assuming a simple random sample. 
This approach proceeds by first estimating a 
vector of domain statistics and its correspond- 
ing covariance matrix. Various hypotheses 
concerning this vector can then be evaluated 
using weighted least squares and large sample 
Wald statistics. Two vectors of domain means 
were formed for each of the 15 item scores and 
the three mean scores. The first vector con- 
tained 12 elements corresponding to the complete 
cross-classification of Race, Sex and Parents 
Education (PARED). The second vector was de- 
rived from the cross-classification of Sex, Type 
of Community (TOC) and PARED and was of length 
18. For the 15 item scores, these vectors 
consisted of simple proportion correct p-values. 
Two covariance matrices were then estimated for 
each vector. One based upon the actual sample 
design and the other assuming a simple random 
sample of students. The covariance matrices 
were estimated using a Taylor's series lineari- 
zation approach. 

At this point several exercises were excluded 
from the study because their estimated covari- 
ance matrices were singular. For the 
Race*Sex*PARED cross-classification only one 
item was excluded. However, for the 
Sex*TOC*PARED cross-classification it was neces- 
sary to exclude five items. 

A linear model was then fitted, via weighted 
least squares, to each of the remaining domain 
mean vectors. For the Race*Sex*PARED domain 
cross-classification vectors the model contained 
the main effects of Race and Sex, a linear 
effect of PARED and the four possible two- and 
three-way interactions among these three effects 
The Sex*TOC*PARED domain classification model 
had the same form except that TOC was substi- 
tuted for Race. These models were fitted two 
ways -- one weighted with the design based 
covariance matrix and the other weighted with 
the simple random sampling covariance matrix. 
The lack of fit of each model and the signifi- 
cance of each effect in the model was then 
assessed. These tests are labeled one through 
eight in Tables I and 2. 

In addition, nine other hypotheses were 
considered and are labeled nine through 17 in 
Tables I and 2. These hypotheses were tested 
via direct contrasts of the domai~ means. The 
tests labeled "average" (numbers I0, II, 12 and 
13) average the effect over the combined levels 
of the other two variables. On the other hand, 
the "nested" tests (numbers 14, 15, 16 and 17) 
test for all the indicated simple effects being 
simultaneously null over the combined levels of 
the other two variables. 

Two test statistics were entertained for each 
hypothesis. The first test was a Wald statistic 
chi-squared based upon the actual NAEP sample 
design. A second Wald-like statistic was also 
calculated assuming a simple random sample of 
students and will be referred to as the simple 
random sampling chi-squared. These two test 
statistics were calculated for each hypothesis 
for 14 NAEP items and three mean scores for the 
Race*Sex*PARED cross-classification, as well as 
for I0 NAEP items plus three mean scores for the 
Sex*TOC*PARED cross-classification. 

The design effects (DEFFs) for each domain 
p-value and mean score used in the analyses are 
summarized in Tables 3, 4, and 5. Each table 
presents the minimum, median, maximum and mean 
DEFFs for a particular NAEP item or mean score 
across the levels of the indicated domain defin- 
ing cross-classification (i.e., Race*Sex*PARED 
or Sex*TOC*PARED). The design effects reported 
in these three tables are consistent with pre- 
vious NAEP experience and tend to average around 
1.4. Also, as discussed in section 2, the mean 
DEFF's given in the last column of each table 
are the exact quantities proposed by Rao and 
Scott (1981) and Fellegi (1980) for adjusting 
simple random sampling (SRS) based Wald statis- 
tic chi-squareds to reflect the effects of the 
sample design. These are the adjustment factors 
used in the subsequent discussion. 

As was noted earlier two different methods of 
analyses or hypothesis testing often used by 
researchers was considered. The first fitted a 
linear model to the estimated domain statistics. 
Relevant hypotheses were then tested via con- 
trasts of the estimated linear model parameters. 
The parameters were estimated weighting in- 
versely proportional to the SRS covariance 
matrix of the domain statistics to obtain the 
SRS test statistics. Another set of parameter 
estimates was obtained by weighting by the 
inverse of the design based covariance matrix 
and the asymptotically correct test statistics 
were calculated. The second method of analysis 
evaluated hypotheses via direct contrasts of the 
domain statistics. Again this was first accom- 
plished using the SRS covariance matrix to 
obtain the SRS test statistics, and was then 
repeated using the design based covariance 
matrix to obtain the asympotically correct 
tests. Results in the rest of this section will 
be presented separately for these two modes of 
analysis (i.e., contrasts of linear model co- 
efficients and contrasts of cell means). 

For each hypothesis test entertained in this 
portion of the investigation, the ratio of the 
SRS based test statistic to the asymptotically 
correct sample design based Wald statistic 
chi-squared was calculated. These ratios are 
another measure of the effect of the sample 
design and are referred to in the remaining 
tables as hypothesis test design effects. Two 
issues will be addressed by way of these test 
DEFFs. First, an indication of the ordinal 
relationship between the two test statistics 
will be sought. That is, does the SRS statistic 
tend to be generally smaller or larger thanthe 
design based chi-squared? Second, are the test 
DEFFs fairly constant, at least within an item 
or mean score? This second point is important 
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if a simple multiplicative adjustment to the SRS 
test statistics is to be successful. Tables 6, 
7, 8, present a summary of the test DEFFs for 
each mean or item score for the indicated cross- 
classification. The minimum, median, maximum 
and mean test design effects are shown sepa- 
rately for linear model coefficient contrasts 
(test numbers 1 through 8 in Tables 1 and 2) and 
cell mean contrasts (test numbers 9 through 17 
in Tables 1 and 2). 

The most striking feature of these three 
tables is the extreme instability of the test 
DEFFs for linear model coefficients. In virtu- 
ally every case the mean is far greater than the 
median, indicating a skewed distribution with a 
long right hand tail. It appears that adjusting 
the SRS test statistic for the linear model 
coefficient contrasts will not prove fruitful 
because of the extreme range they cover. This 
may result from using the SRS covariance matrix 
to estimate the linear model parameters for the 
SRS test statistic. This process does not 
properly account for the correlated nature of 
the domain statistics and leads to less precise 
estimates of the model coefficients. The theory 
presented in section 2 does not strictly apply 
in this situation. These results are included 
to illustrate the problems that arise when SRS 
is assumed. Conversely, Tables 6, 7, and 8 
indicate that the cell mean contrast hypothesis 
test design effects tend to be more symmetri- 
cally distributed over a narrower range than 
their linear model counterparts. However, they 
still exhibit enough variation on both sides of 
unity to make a simple multipicative adjustment 
questionable. 

As indicated earlier, theoretical consider- 
ations suggest that the mean design effects 
presented in Tables 3, 4 and 5 may provide 
serviceable adjustments to the SRS test statis- 
tics. This conclusion is drawn into question by 
comparing the standard mean DEFFs in these three 

tables with the average test DEFFs for cell mean 
contrasts in Tables 6, 7, and 8. Almost without 
exception the mean test DEFFs are less than 
their corresponding p-value DEFF average. In 
addition, the mean hypothesis test DEFFs are 
generally near unity or less while the standard 
mean DEFFs are generally much greater than 
unity. This implies that dividing the SRS test 
statistic by the mean design effect will produce 
a test that is generally much too conservative. 
In fact, the adjustment suggested by Rao and 
Scott (1981) or Fellegi (1980) is in the wrong 
direction for the examples presented here. 
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Table I. Hypothesis Tests for the Race*Sex*PARED Cross- 
Classification 

Test Number d.f. Description 

Linear Model Tests 

1 4 Lack of fit 
2 1 Race 
3 1 Sex 
4 1 PARED linear 
5 1 Race*Sex 
6 1 Race*PARED linear 
7 1 Sex*PARED linear 
8 I Race*Sex*PARED linear 

Contrast Tests 
9 11 

I0 1 
11 I 
12 2 
13 1 
14 6 
15 6 
16 8 
17 4 

All cells equal 
Average Race effect 
Average Sex effect 
Average PARED effect 
Average PARED linear effect 
Nested Race effect 
Nested Sex effect 
Nested PARED effect 
Nested PARED linear effect 

Table 2. Hypothesis Tests for the Sex*TOC*PARED Cross- 
Classification 

Test Number d.f. Description 

Linear Model Tests 

1 6 Lack of fit 
2 1 Race 
3 2 TOC 
4 I PARED linear 
5 2 Sex*TOC 
6 1 Sex*PARED linear 
7 2 TOC*PARED linear 
8 2 Sex*TOC*PARED linear 

Contrast Tests 
9 
I0 
II 
12 
13 
14 
15 
16 
17 

17 
1 
2 
2 
1 
9 
12 
12 
6 

All cells equal 
Average Sex effect 
Average TOC effect 
Average PARED effect 
Average PARED linear effect 
Nested Sex effect 
Nested TOC effect 
Nested PARED effect 
Nested PARED linear effect 
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Table 3. NAEP Item Design Effects for the Race * Sex * PARED 
Cross-Classification 

NAEP Minimum Median Maximum Mean 
Item DEFF DEFF DEFF DEFF 

NO222A .79 1.23 3.08 1.48 
NO227A .80 1.36 1.94 1.40 
N0305C .62 1.39 1.93 1.35 
NO323A .59 1.27 1.67 1.14 
TOI05A .91 1.50 2.84 1.63 
TOIIOA .56 1.26 2.38 1.43 
TO203A .99 1.72 2.29 1.66 
TO223A .69 1.13 2.32 1.28 
TO224A 1.00 1.31 2.82 1.47 
SOI08A .63 .94 1.99 I.II 
SOII7A .61 1.17 2.44 1.23 
S0121A .39 1.09 3.71 1.37 
S0206A .72 1.25 3.44 1.40 
SO225A .59 .84 1.83 .99 

Average .71 1.25 2.48 1.35 

Table 4. NAEP Item Design Effects for the Sex * TOC * PARED 
Cross-Class ification 

NAEP Minimum Median Maximum Mean 
Item DEFF DEFF DEFF DEFF 

NO222A .21 1.17 2.49 1.25 
N0305C .37 1.53 2.21 1.35 
TOI05A .49 1.40 4.32 1.61 
TOIlOA .64 1.28 3.02 1.31 
TO203A .27 1.36 4.46 1.62 
TO223A .68 1.14 2.10 1.25 
SOI08A .44 1.03 2.01 1.14 
SOII7A .35 I.II 2.14 1.14 
SO206A .48 1.53 4.17 1.66 
SO225A .47 .93 2.37 1.04 

Average .44 1.25 ~ 1.34 

Table 5. Mean Scores Design Effects 

Minimum Median Maximum Mean 
Mode i/Age DEFF DEFF DEFF DEFF 

RACE*SEX*PARED 
9-year-olds .57 I. 45 3.32 I. 50 
13-year-olds .78 1.31 2.33 1.46 
17-year-olds .49 I. 09 2.57 I. 16 

Average .61 1.28 2.74 1.37 

SEX*TOC*PARED 
9-year-olds .80 1.52 3.47 1.66 
13-year-olds .59 1.50 3.57 1.66 
17-year-olds .75 I. 30 2.61 1.45 

Average .71 I. 44 3.32 I. 59 

529 



Table 6. Hypothesis Test Design Effects by NAEP Item for 
the Race * Sex * PARED Cross-Classification 

NAEP 
Item 

Contrast of Linear 
Model Coefficients 

Minimum Median Maximum Mean 
Contrast of Cell Means 

Minimum Median Maximum Mean 

NO222A 
NO227A 
NO305C 
NO323A 
TOI05A 
TOIIOA 
TO203A 
TO223A 
TO224A 
SOI08A 
SOII7A 
SOI21A 
SO206A 
S0225A 
Average 

.04 .82 5.42 1.41 .19 .74 

.00 .57 900.26 112.96 .23 1.02 

.09 .57 18.69 3.88 .62 1.33 

.00 .48 1.08 .57 .51 1.08 

.32 .99 15.73 4.02 .44 1.16 

.16 .63 1.72 .81 .56 1.18 

.I0 .86 2.29 1.03 .53 1.51 

.49 5.10 284.87 45.21 .72 I.II 

.80 1.68 34.09 9.05 .65 I. I0 

.03 .71 47.13 6.47 .55 .84 

.19 .59 3.62 .97 .53 .75 

.00 .47 26.19 3.91 .60 .95 

.59 1.51 2.67 1.58 .59 1.10 

.34 .65 2.33 .87 .43 .92 

.23 1.12 96.15 13.77 ~ .51 1.06 

1.81 .88 
1.60 .88 
2.40 1.38 
2.01 1.12 
1.98 1.27 
2.18 1.19 
2.21 1.50 
1.63 1.10 
2.41 1.27 
1.50 .93 
1.75 1.00 
2.23 1.19 
2.09 1.12 
1.09 .84 
1.92 1.12 

Table 7. Hypothesis Test Design Effects by NAEP Item for 
the Sex * TOC * PARED Cross-Classification 

NAEP 
Item 

Contrast of Linear 
Model Coefficients 

Minimum Median Maximum Mean 
Contrast of Cell Means 

Minimum Median Maximum Mean 

NO222A .48 4.28 55.14 11.51 .II .48 2.82 .75 
NO305C .I0 1.08 190.09 29.98 .19 .97 1.81 .89 
TOI05A .04 .60 6.97 1.70 .13 .39 3.23 .98 
TOIIOA .37 .76 1.57 .80 .19 .55 3.41 .84 
TO203A .14 .44 3.93 .91 .27 1.08 1.84 .93 
TO223A .22 1.23 10.30 2.40 .45 .86 1.13 .77 
SOI08A .02 .14 .64 .22 .I0 .36 2.62 .73 
SOII7A .46 .97 2.80 1.22 .03 .36 2.46 .70 
S0206A .II .47 1.27 .54 .I0 .64 1.27 .59 
S0225A .05 .75 2.98 .98 .23 .45 1.43 .60 
Average .20 1.07 27.57 5.03 .18 .61 2.20 .78 

Table 8. Hypothesis Test Design Effects for Mean Scores 

Model/Age 
Contrast of Linear Model Coefficients Contrast of Cell Means 

Minimum Median Maximum Mean Minimum Median Maximum Mean 

Race*Sex*PARED 
9-year-olds 
13-year-olds 
17-year-olds 
Average 

Sex*TOC*PARED 
9-year-olds 
13-year-olds 
17-year-olds 
Average 

• II .22 3.74 .85 .29 .91 1.67 1.00 
• 09 1.86 7064.23 885.11 .59 1.19 2.23 1.26 
.00 .43 I. 16 .56 .40 1.08 1.32 .89 

• 84 2356.38 295.51 .43 1.06 1.74 1.05 

.23 .39 1.39 .55 .19 .62 2.53 .91 

.05 .50 1.96 • 74 • 17 • 72 2.87 1.09 

.02 .65 223.55 28.54 .03 .50 1.27 .53 
• I0 .51 75.63 9.94 .13 .61 2.22 .84 
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