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ABSTRACT: A crop sample survey method which 
regresses ground gathered acreage determinations 
with computer classifications of remotely sensed 
satellite data is considered. The resulting re- 
gression functions are related to the character- 
istics of the classifier. In particular, if y is 
an observed proportion of a given crop in a group 
of sampling units and x is the classifier derived 
estimate of that proportion, then the regression 
function values E(XIY=y) and E(YIX=x) are derived 
in terms of conditional probabilities of certain 
Bernoulli events defined on the sampling units. 
As a consequence, this indicates that classifier 
designs which are able to keep these probabilities 
constant across certain groupings of sampling 
units insure that the regression functions will be 
linear. 

1.0 INTRODUCTION: Sample survey designs have 
been proposed in which sampled observations are 
regressed onto the outcomes of some auxiliary var- 
iable to increase the precision of the survey. 
Generally, the higher the correlation between the 
survey variable and the auxiliary variable, the 
lower is the variance of the regression derived 
estimates. One such design is being studied by 
the USDA (I). In their approach, estimates of 
crop acreages are acquired by trained enumerators 
using a sampling approach. The estimates are 
then linearly regressed onto estimates acquired 
from a satellite over the same sampling units. 
Once the regression estimator is formed, satellite 
estimates obtained at a much higher sampling rate 
are transformed by the regression estimator to ob- 
tain the crop area estimate. In this process the 
satellite acquired data for a given resolution 
element (pixel) on the ground is dichotomously 
classified into the crop of interest or the class 
of "all other." Classifications of this kind are 
averaged over sampling units to obtain the satel- 
lite derived acreage estimates. 

In this paper we examine the properties of the 
classifier that are needed to satisfy the condi- 
tions of a linear regression model in this sample 
survey setting. 

2.0 PROBLEM DEFINITION: Let ~ be the set of 
all outcomes related to the selection of a given 
sampling unit and let V be the set of all outcomes 
related to the selection of a pixel. Thus, pixel 
v e V from sampling unit w e ~ will be denoted by 
(v,w). Let (Z,@) be a random variable of 
pixel observations where Z(v,w) e~R N ('JR N a real 
product spare) and @(v,w) e {0,I}. The 
variable Z denotes the satellite measurements 
that are to be classified and 0 denotes the true 
crop label of a pixel. If O(v,w)=l, then the 
crop of interest is being observed and if @(v,w)=0 
then some other crop is under observation. Values 
for @ will only be known for the sampling units in 
the ground enumerative survey. In the sequence to 
follow, we will also have occasion to consider a 
random variable V on ~ where V(w)=w. 

Let ¢: ~R N ÷ {0,I} be a classifier where 
is derived so that, by some criterion, ¢(Z(v,w)) 
is close to @(v,w). The classifications can be 
thought of as extensions into sampling units where 
no ground observations have been made. A discus- 
sion of how such a classifier can be derived will 

not be given. It suffices to say, however, that 
in the usual setting a parametric form is first 
postulated and then the parameter values are esti- 
mated using a portion of the ground acquired ob- 
servations, This process is often called ~'traln- 
ing the classifier." The strategy used to train a 
classifier as well as the number of training sam- 
ples used can introduce varying amounts of vari- 
ance in the final acreage estimates. In this de- 
velopment we shall avoid these added complexities 
by assuming that the classifier is given, that 
is, it has not been derived through a training 
process. 

Denote the means of sampling unit "w" as 
Y(w) = E(O(w)) and X(w) = E(~(Z(w)) and 
consider the models 

Y = a + bX + e (I) 
and 

X = c + dY + n (2) 
These models will be linear if, and only if, (iff) 
the error terms are conditionally unbiased esti- 
mates of 0. That is equation (I) will be linear 
iff E(~IX)=0 and similarly equation (2) will be 
linear iff E(n[Y)=0. The properties of ~(Z), rela- 
tive to 0, that will guarantee that these models 
are linear is the main subject of thi~ paper. 

3.0 THE TWO-POINT MODEL: Given a sampling 
unit, w, consider the models 

0 = ~w + ~w~(Z) + ~ (3) 
~(Z) = Yw + ~w 0 + ~ (4) 

where the subscript w indicates the fact that the 
constants are sampling unit dependent. These 
constants are defined to be 

a w = Pr(O=II~(Z)=0, A--w) 
B w = Pr(O=II~(z)=I, A--w) - aw 
Tw = Pr(~(Z)=II@=0, A--w) 
6 w = Pr(~(Z)=IIO=I, A--w) - Yw 

It is easy to see that these coefficients are the 
least square coefficients and that E(~I~(z)) = 
E(~[O)=0; i.e., the models are linear. 

The regression functions E(YIX) and E(XIY) will 
now be derived in terms of these two-point models. 

4.0 THE MAIN THEOREMS: We first define the 
sets. 

A~ = {w:X(w) = x} 
m = {w Y(w) = y} 

where we ~ill assume that Ax and By are nonempty 
for any x,y in [0,I]. 
Theorem I 

I - - 
E(Y X) = ~ +~X X 
E(X Y) = yy + ~y Y 

where 

I a_X = Pr(O=I ¢(Z) = 0, AeA X) _ 

~X = Pr(e=l ¢(Z) = I, AeA X) - a x 
y_y = Pr(¢(Z)=IIO=0 , AeBy) 
6y = Pr(¢(Z)=I]@=I, A~By) - yy. 

Proof: We prove the first assertion; the second 
follows by a similar proof. From equation (3) 

E(@l+(z) , A--w) = a w + 8w¢(Z ) 
Therefore 

E(E(@I¢(z), A--w) I¢(z), AeAx) 

= E(awI¢(zI, AeAx) 
+ E(B w CZ) aeAx)¢(Z ) 

or 

E(O l~(z), AeA X) 
- (E(~[~(Z), AeAx) 
+ E(Bw[~(Z), A~Ax)~(Z). 
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Now 
E(@[~(Z) = 0, AeA X) 

= E(awl¢(Z) = 0, AeA X) 
which implies 

m(~wl¢(Z) = 0, AeA X) 
= Pr(@=ll¢(Z) = 0, AeA x) A e-- X 

Also = 
E(OI¢(Z) = I, AeAx) 

= E(o~ + Bw[¢(Z) = I, AeA x) 
or 

E(c%~ + Bwl¢(Z)= I, AeAx) 
= er(8=ll#(Z) = I, AeA X) A B--X + ~--X 

Hence = 

E(81¢(Z), AeAx) = -~X + BX~(Z) 
Let (Zi,@ i) i=1,2,.., be an iid sample from 

A X. Then for any i we have from independence 

E(@il e(Zi), AeAx) 
= E(e i|¢(zl),¢(z2) ..... AeA X) 

Hence, for a given n 
n 

E( 1 ~eil~(Zl),~(Z 2) ..... AeA X) 
n i=i n 

-- -- 1 
= ~x + ~x ~ ~ ~(zi) 

i=l 
Since, for the given sample (Zi, @i), i--1,2,... 

n 
I ~@i + E(YIAe AX) = E(YIX) n a.s. 

i--i 

n 

+ E(X IAeAX) = X 1 ~ ¢(Zi ) a.s. 
n i=1 

and since conditional expectation is a bounded 
linear operator, we have 

E(E(YIX) I~(_ZI), ¢(Z2) ..... AeA X) 

= ~X+ BX X 
n 

Moreover, since events B( 1 ~ ¢(Zi))CB(¢(Zl) , 
i=l 

¢(Z 2) .... )* for all n, we have upon condition- 
ing on B (X) 

E(E(YIX) IX) = e--X + 8--X X 
or 

E(YIX) = ~--X + B--X X 
which completes the proof. 

Theorem I gives sufficient conditions which 
will guarantee that the regression functions 
E(YIX) and E(XIY) be linear; viz, that the cor- 
responding functions ~X, BX, Yy, and 6y 
be constants.** 

In the case of E(X.IY) this leads to an inter- 
esting interpretation of the role of the classi- 
fier. Consider the family F = F o U F 1 where 

F o = {Fo(.;y):ye[O,l]} 
F 1 = {F1(.;y):ye[O,l]} 

where 
Fi(z;y) = Pr(Z<zl@=i , AeBy), i=0 1 

Thus, if ~ is an ancillary statistic on F, E(XIY) 
is a linear regression function. This means that 
the classifier should smooth over sampling unit 
differentes--i.e., if a classifier design were 
possible that could make the omission and com- 
mission errors*** constant at least over groups 

*Given the random variable V, the notation B(V) 
means the sigma field generated by V. 
**We recognize that other_ _c°nditi°ns will gu_aran- 
tee linearity, e.g., aX , yy linear and BX, ~y 
constants, but these conditions are not discussed. 
***Within a ~-group commission error is defined 
as Pr(¢(Z)-OIO-I , AeB~) and the omission 
error is defined as P~(~(Z)=OI@=I; AeB~). 

By, then the regression of X on Y would be linear. 
In the model X = c + dY + n this ancillary condi- 
tion therefore implies that n will be a condi- 
tionally unbiased estimate of 0. 

If we randomly draw from the collection of 
all sampling units, rather than from just one, as 
was done in equation (4), then we again have a 
two-point model of the form 

~(Z) = c + dO + ~, E(~]@) = 0 
where 

c = Pr(~(Z) = II@ = 0) 
d = er(¢(Z) = I[@ = I) - c 

Let (Zi, @i) i=l,2,...,n be a sample of size n 
from a particular sampling unit and define the 
averages 

n 
Xn =I ~ #(Zi ) (5) 

i=l 
n 

Yn =I ~ @i (6) 
i=l 

If we find that all such averages have the same 
linear regression, viz, 

X n = c + dY n + ~n, E(~nlYn) = 0 
then this condition completely characterizes the 
ancillary property of the classifier. We state 
this more formally in the following theorem. 
Theorem 2 

is ancillary for the family F iff there 
exists constants c,d such that E(XnlYn) = c + dY n 
for all n. 
Proof: Assume E(XnlYn) = c + dY n. 

We have for any n,N, N>n 
E(~nlYn,YN) = m(~nlnYn, NY N - nYn) 

But ~n depends only on sums up to n and not 
beyond so that 

E(~nlYn,Y N) = E(~nlYn) 
and since this holds for all N and YN + Y 

a.s. 
we have, 

E(CnlYn,Y ) = E(~nlYn) 
Thus, since E(CnlYn) = 0, we have 

E(YnCnlY) = E(E(YnC nlYn,Y) IY) 

= E(YnE(~n IYn, Y) I Y) 

= E(YnE(~nlYn) I Y) = 0 (7) 

We have the model 

X n = c + dY n + ~n 
and therefore, using equation (7), and the fact 
that E(YnlY) = Y, 

YnXn = cY n + dYn 2 + Yn~n 

E(YnXnlY) = cY + dE(YnmlY) 
or 

E((Yn-Y)XnlY) + YE(XnlY) - cY - dY 2 

= dE((Yn-Y)21Y) 

Noting that E(XnlY) = E(XIY ) and 

E((Yn-Y)E(XnlY)IY) = 0, we have 

E((Yn-Y)(Xn-E(XnlY))IY) 

+ Y(E(XIY) - c - dY) = dE(Yn-Y)21Y) 

and since E(CnlY) = E(E(CnlYn) IY ) = 0 for 
all n implies E(XIY) - c - dY = 0, we have 

cov(Yn,Xn I Y) 
var(Ynly ) = d 

Now 
cov(Yn,XnlY) E(@~(Z)IY)-E(@IY)E(~(Z)IY) 
var(Y nlY) = E(@Iy)_m(@iy) 

and after some manipulation this reduces to 
d Pr(~(Z)=II@=I , AeBy) - 

Pr(¢(Z)= II@=0 , AeBy) = ~y 
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By Theorem I, E(XIY) = y--y + 6y--and thus 
E(XIY) = yy + dY 

but, by the assumption that E(XIY) = c + dY this 

means that 
yy = c 

Hence, both Pr(~(Z)=II@=I, AeB¥) and 
Pr(~(Z)=01@=0 , AeBy) are independent of 
Y and so ~ is ancillary for F. 

To prove the assertion the other way, we have 
proceeding as we did in the proof of Theorem I. 

m(XnlYn, AeBy) = y--y + 6--yY n 
But, since ~ is ancillary for F, we have yy = c, 
6y = d and therefore 

E(XnlYn) = E(E(XnlYn, Ae~y) IY n) = c + dY n 
which completes the proof. 

A similar theorem holds when the regression 

function E(YIX) is considered. 

Theorem 3 
~M and 8X are independent of X iff there 

exists constants a, b such that E(YnlX n) = a + bX n 

for all n. 
The proof of this theorem is analogous to that 

of Theorem 2. 
5.0 CLASSIFIER DESIGN: Theorem I shows that 

the regression functions E(YIX) and E(X~Y) are de- 
termined respectively by the functions ~X, 8X 
and y--y, ~--y. Since these functions are related 
to the responses of the classifier, they provide a 
means for understanding the effect of the classi- 
fier on a linear regression, or any other regres- 
sion form. If the regression function E(XIY) is 
being considered then, as was pointed out above, a 
classifier that is an ancillary statistic is a de- 
sirable classifier to insure that E(XIY) be linear. 

If a linear functional form for E(YIX) is de- 
sired, then a prope__rty somewhat_ opposite to ancil- 
lary is needed if eX and 8X are to be constant. 
This property is analogous to the property of a 

sufficient statistic. However the connection with 
a sufficient statistic is not as clear as is the 
previously discussed connection in the case of the 
ancillary statistic. Part of the problem is that 
the conditional probabilities Pr(@=II~(Z) = O, 
A__eAx) and Pr(@=ll~(Z) = I, AeAx) , which define 
e x and 8--x, are indexed on x-values rather than 
y-values. Nevertheless, the role of the classi- 
fier in this formulation is essentially one of 
preserving information regarding sampling unit 
crop proportions as opposed to smoothing over that 
information as is done in the case of the ancillary 

statistic. 
If the classifier should have properties that 

tend to preserve the crop proportion information 
in a sampling unit, then it would be interesting 
to examine E(YIX) when a Bayes classifier is used 
and when a classifier such as a maximum likelihood 
classifier is used. Since the Bayes classifier 
uses the actual proportion of the crop of interest 
as a prior probability, one ma__y conje__cture that 
such a classifier would keep ex and Bx reason- 
ably constant over x-values whereas the maximum 
likelihood classifier, which ignores these priors, 

would not. 
To gain some insight into this question, a 

simple example was constructed in which Z for the 
crop of interest in a given sampling unit has a 
normal probability density N(';~I,~) and the 
class of all other material is distributed as 
N(.;~o,O ). Sampling units were simulated by 
treating ~o and y as independent uniformally dis- 

tributed values. The ranges on ~o and y were from 
.I to .9. The other parameters ~i and o were 
held fixed at values of 0 and .2~respectlvely. 

In a given sampling unit where y is the propor- 
tion of the crop of interest and z represents the 
spectral value of a plxel, the Bayes classifier 
decides the pixel is the crop of interest if 

yN(Z;~l,O) > (l-y) N (Z;~o,O) 
otherwise the pixel is classified into the class 
of "all other." For the maximum likelihood clas- 
sifier the decision strategy is similar except 
that the priors (y-values) are ignored. This is 
the same as letting y=I/2 in the Bayes classifier. 

Figures la to If show the resulting ~ x and 
8-- x values for the two classifiers. The Bayes 
classifier produces a regression function that is 
very nearly linear in the shown domain of x- 
values. While 8x-values are nearly constant, 
the q--x-values have a slight positive slope in- 
dicating that a part of the slope of E(YIX) comes 
from the ~X function. The maximum likelihood 
classifier produces a different regression func- 
tion. It is more "S"-shaped and the correspond- 
ing ~--X and 8--X functions are also nonlinear. 
Thus, if the objective is to produce a linear 
regression, then the maximum likelihood classi- 
fier is not a satisfactory choice, at least for 
this case. The Bayes classifier is better, but 
it falls somewhat short of holding ~X constant 
(assuming constant ~x-values are desirable). 

The regression function from the maximum llke- 
lihood classifier tends to have large curvature 
values, in this example, for small and large x- 
values. The reason is that the maximum likeli- 
hood classifier tends to overestimate when the 
crop of interest exists in small proportion and 
tends to underestimate when the proportion is 
large. The overestimation is due to the commis- 
sion error rate of the classifier and the under- 
estimation is due to omission errors. The Bayes 
classifier on the other hand, tries to adjust it- 
self so as to reduce these commission and omission 
errors at the extremes of the proportion values. 
Indeed, if the prior probability is low for the 
crop of interest, then the Bayes classifier will 
assign more of the pixels to the opposite class 
than will the maximum likelihood classifier with 
the result of reducing the commission error. In 
high proportion situations the opposite is true. 

6.0 SAMPLING EFFICIENCY: Consider the 
linear model given by equation (I) and let 
a = E(Y) - bE(X), then 

E(Y) = Y + B(E(X)-X) - e 

and let 
E(Y) = Y + D(E(X)-X) 

be our estimator of crop acreage. (This is 
essentially the formulation given by Cochran (2) 
page 189). When b is the usual least square co- 
efficient, the variance of this estimator is 

easily seen tj~.be 
Var(E(Y)) = Var(Y) (I-R 2) 

where 
COV(X,Y) var(X) 

R = var(X) var(Y) = b var(Y) 

For the case where 8 x = b for all x, we have 
b = Pr(@=ll~(Z)=l) - er(O=ll~(Z)=0) 
which can be rewritten as 

~r(O=l) 
b = pr(~(Z)=ll@=l)er(~Z)=l ) 

pr(O=l) 
- pr(~(z)=0)lO=l) pr(~(z)=0) 
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Let A = Pr(~(Z)=I), ~ = Pr(@=l), then 

b = I(I~A~(Pr(~(Z)=IIO=I)-A) . l 

and noting that A can be written as 
A =Pr(@(Z)=l lO=o)(1-n)  

+ P r ( ¢ ( Z ) = l l O = l ) ~  
we have 

~(1-~) ( i  - *o- * ) b = A(1-A) c 
where ~o, ~c a r e  the  omis s ion  and commission e r r o r  
rates of the classifier, viz, 

~o = er(@(Z)=0JO=l) 
• c = er(@(Z)=l O=0) 

Letting Pl = var(Z)/A(l-A) and 
P2 = var(Y)/~(l-~), we have 

R 2 = (I - * o -  *c )2 ~(I-~) Pl 

A(l-A) P 2  
Thus, the gain in sampling efficiency over using Y 
as the estimator depends upon the omission and com- 
mission error rates of the classifier, the proba- 
bilities ~ and A, and two terms, Pl and P2 
which are measures of the effect of clustering 
pixel observations into sampling units. The terms 
Pl and P2 are analogous to the intracluster 
correlation coefficients discussed in Cochran (2). 

It is interesting to compare the sampling effi- 
ciency of the regression estimator E(Y) with that 
of a stratified estimator. Suppose the classifier 
is used to stratify the sampling frame into two 
strata; one stratum being the portion of the frame 
classified as the crop of interest and the other 
as the stratum of all other material. If instead 
of grouping the pixel observations into sampling 
units, they are randomly allocated in a pps (prob- 
ability proportional to size) fashion to the 
strata, we could then take as an estimator of the 
proportion of acreage that is the crop interest 

n nnlO i'~ 11 p = ~ A + ( l -A)  
1 0 

Here nl, n o are the respective numbers of samples 
allocated to the stratum classified as the crop of 
interest and the other stratum, and nll and nl0 
are the respective number of samples in n I that 
are in fact the crop of interest and the number of 
samples in n o that are in fact other material. 
Here nl = An, n o = (l-A)n where n is the 
sample size of ground enumerated pixels. For this 
case 

var (~) = R 1 ~ (1-~) 
n 

where 

R 1 = 1 - (I - ¢o - qc )2 ~ (I-~) A ( I-A) 
This expression is the same as the expression de- 
rived by Tenebein (3); however, Tenebein considers 
the case where the samples are thrown at random 
and not in a pps fashion. In his case R 1 has the 
above form in the limit (i.e., as n+~). 

7.0 CONCLUDING REMARKS: In this paper we have 
derived an expression for the regression function 
which indicates how certain properties of the clas- 
sifier will affect the form of the regression func- 
tion. Unfortunately, it is not always possible to 
achieve these properties with a given set of obser- 
vations. For example, consider the regression 
function E(XIY). We saw that a classifier which 
acts as an ancillary statistic on a family of crop 
Glass conditional distributions of the satellite 
measurements, whose parameters are functions of y 
(i.e., the family can be indexed on y which is the 
proportion of the crop of interest), makes E(XIY) 
a linear function. This amounts to holding the 

classifier omission and commission error proba- 
bilities constant across By-groups of sampling 
units. Given an area, the satellite measurements 
of the crops in the area, along with the classi- 
fier design, determine these error probabilities. 
And, since one has no control over the measure- 
ments, it is not always possible to achieve the 
desired ancillary properties. Nevertheless, it 
may be possible to take certain steps which can 
help, such as stratifying the sampling frame on 
variables which can influence these conditional 
distributions. Strata which are homogeneous in 
crop mix, crop condition, and crop stage may be 
desirable (4). 

If we want to keep E(YIX) approximately 
linear, then our numerical example suggests that 
the Bayes classifier may be a better choice than 
the maximum likelihood classifier. But here 
again, the design of such a classifier depends 
in part upon variables whose values are not 
known in advance; e.g., the true proportions of 
the crop of interest in the sampling units. If 
the survey is repeated each year, then it may 
help to use previous year data over the sampling 
units to obtain a rough estimate of the desired 
crop proportions. 

Finally, we remark that the expression we de- 
rived assumed that an infinite sample is avail- 
able from each sampling unit. Thus, the treat- 
ment avoids certain estimation considerations 
which for small sample sizes may have dominant 
effects. 
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