
CLASSIFICATION MODELS AND PROPORTION ESTIMATION 

Wayne A. Woodward and H. L. Gray 
Center for Applied Mathematical and Statistical R 

Southern Methodist University 

I. Introduction 

A common objective in remote 
sensing is the estimation of the 
proportions P 'P2''''' p in the 
mixture density I m 

L = f(x i) f(x 2) ...f(x n) 

f (x) :Plfl (x) +P2f2 (x) +... +Pmfm (x) (I.I) 

where m is the number of 
components(crops) in the mixture and 
for component i,fi(x) is a (possibly 
multivariate) density. In practice 
this density has been assumed to be 
(multivariate) normal with X being the 
reflected energy in four bands of the 
light spectrum, certain linear 
combinations of these readings, or 
other derived "feature" variables. 
Generally the parameter estimation is 
accomplished using maximum likelihood 
techniques. In this paper we examine 
the use of minimum distance estimation 
as an alternative to maximum 
likelihood and we will compare the 
performance of the two estimation 
techniques when dealing with mixtures 
of normal and of non-normal densities 
with varying amounts of separation. We 
will focus on the mixture of two 
univariate distributions given by 

f(x)=Pfl(x)+(l-P)f2(x) (1.2) 

We are also assuming that only data 
from the mixture distribution are 
available. Other sampling schemes in 
which training samples from the 
component distributions are also 
available have been discussed by 
Hosmer(1973), Redner(1980), and 

Hall(1981) among others. 

2. Estimation in the Mixture of Normals 
Model 

In this section we will assume 
that fl(x) and f2(x) in (1.2) are 
normal densities with 2 mean and 
variance ~i[ ~ and ~2, °2 respectively 
where it is assumed that all five 
parameters ~i, ~ ; 2 , ~  2 7 .  and p a r e  
unknown. Techniques ~or estimating 
these parameters will be discussed. 

(a) Maximum Likelihood 

Several recent articles have 
dealt with the problem of obtaining 
the maximum likelihood estimates of 
~i, ~ , ~ , ~ , and p 
(Has~elblad ( 66), Day (1969), 
Wolfe (1970), Hosmer (1975), 
Fowlkes (1979), Lennington and 
Rassbach(1979), and Redner(1980).) The 
MLEs are those parameter estimates 
which maximize the likelihood function 

(2.1) 

or log(L), where n in (2.1) is the 
sample size. This maximum is usually 
found by setting the partial 
derivatives of log(L) with respect to 
each of the 5 parameters equal to zero 
and solving the resulting set of 
equations, called the likelihood 
equations. Since closed form solutions 
of these equations do not exist, they 
must be solved using iterative 
techniques. Hasselblad (1966) and 
Wolfe (1969) suggested that these 
equations be solved by taking 
advantage of their fixed point form. 
Redner(1980) and Redner and 
Walker(1982) have pointed out that 
this fixed point technique is 
essentially an application of the EM 
algorithm (see Dempster, Laird and 
Rubin(1977)) with the only difference 
being that usin~the EM @igorithm, the 
estimates of ~ and ~ at step k 
involve the upda%ed k step estimates 
of ~I and ~2 

Fowlkes(1979), on the other hand, 
maximized the likelihood function 
directly by utilizing a quasi-Newton 
method for minimizing -log(L) and 
found that good starting values were 
crucial for acceptable performance. 
Hosmer(1975) stated that using the 
likelihood equations, starting values 
were not a serious problem in his 
experience. In order to determine 
which of the two techniques seemed 
preferable in our simulation studies 
we replicated simulations performed by 
Fowlkes in which various sets of poor 
starting values were used to initiate 
the minimization procedure. We 
simulated realizations from the 
mixture utilized by Fowlkes and 
estimated the parameters using both 
direct maximization and the EM 
algorithm. The results of our 
simulations indicate that the EM 
algorithm approach is preferable and 
hence we have used this technique for 
obtaining MLEs in our simulations. 

(b)Minimum Distance 

Although ML estimation procedures 
are known to have certain optimality 
properties, their sensitivity to 
violations of the underlying 
assumptions is well known. The 
development of estimation procedures 
which perform well even under moderate 
deviations from assumptions has been a 
topic of major interest in recent 
literature. One of these robust 
procedures which has received recent 
attention is that of minimum 
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distance (MD) estimation introduced by 
Wolfowitz (1957). Parr and 
Schucany (1980), for example, have 
shown that MD techniques provide 
robust estimators of the location 
parameter of a symmetric distribution. 
Minimum distance estimation has been 
used for parameter estimation in the 
mixtu r e model by Cho i and 
Bulgren(1968) and MacDonald(1971) with 
some success although, to our 
knowledge, the question of sensitivity 
to assumptions in this setting has not 
been addressed. These authors assume 
that the parameters of the component 
distributions are known and that only 
the mixing proportion (s) is to be 
estimated. 

In order to briefly describe 
minimum distance estimation, we let 
Xl,X2,...Xndenote a random sample from 
a population with distribution 
function F and let F n denote the 
empirical distribution function, ie 

F n(x)=k/n where k is the number of 
observations less than or equal to x. 
Further, let~=- {H~ :Se~} denote a 
family of distributions depending on 
the possibly vector valued parameter 
8. The MD estimate of 8 is that value 
of 8 for which the distance between F n 
and H 6 is minimized. Of course, when a 
mixture of two normals is assumed, H 8 
becomes 1 X-~l) 2 

x -~( ~I 
H% (x) =p f 1 e + 

_oo ~ (7 
1 

1 x-~2) 2 
x -~( 02 . (l-p) f 1 e 

-~ 2/Y%- ~ 2 
Certain considerations become 

obvious at this point. First, we must 
define what we mean by the "distance" 
between two distributions. Several 
such distance measures have appeared 
in the literature. The reader is 
referred to the article by Parr and 
Schucany(1980) for a discussion of 
these measures. For our purposes we 
have chosen the Cramer-von Mises 

W 2 between distribution distance, 
functions G 1 and G 2 which is given by 

oo 

W 2 = f (O 1 (x)-S 2 (x)) 2riG 2 (x) . 
..oo 

In our setting a computing formula for 
the Cramer-von Mises distance between 
F n and H8 is given by 

n 2 
W2 -n 12nl + 7~ [H8 (Yi) i-.5]n 

i=l 

where Y$ is the ith order statistic. 
The similarity between W 2 and the sum 
of squared differences between the 
empirical distribution function F_ and 
H 8 used by Choi and Bulgren~Ii968) 
should be noted. 

Another consideration involves 
the minimization procedure to be 

employed in minimzing W~. Parr and 
Schucany used the IMSL quasi-Newton 
algorithm ZXMIN. Our comparisons have 
shown ,however, that the IMSL routine 
ZXSSQ which uses Marquardt's(1963) 
method for minimizing a sum of squares 
was significantly faster, usually 
taking no more than half the time 
required by ZXMIN. In the simulation 
studies reported in the next section 
we have used the Marquardt 
minimization procedure when 

calculating the MDE. It should be 
noted that minimization 2 is subject to 
the constraints o~>0, o2>0 , and 0<p<l . 
Another finding wnYch deserves mention 
before proceeding is that similar to 
the technique we have chosen for 
calculating the MLE, the MDE has the 
desirable property that it is 
relatively insensitive to starting 
values. 

3. Starting Values 
In order for the estimators 

discussed in the previous chapter to 
be used in practice, starting values 
for the iterative procedures must be 
provided. We have chosen to obtain 
starting values in this two component 
univariate setting using a 
partitioning technique which is very 
easy to implement. In the discussion 
to follow we will assume, without loss 
of generality, that ~i < ~2" This 
technique involves first obtainlng the 
initial estimate of p, denoted by P0, 
and then estimating the remaining four 
parameters given P0" Under the current 
implementation, only the 9 values 
.1,.2,...,.9 are allowed as possible 
values for P0" For each allowable 
value of Pn, the sample is divided 
into two suSsamples : 

YI,Y2,---, Y 
n 1 

Ynl+l,Ynl+2,' ' ' ,Yn 
where Yi is the ith order statistic 
and n I is nP0 rounded to the nearest 
integer. The value for p is that 
value of p for which p (l-p)(ml-m2 )2 
is maximized where mj is the sample 
median of the jth subsample. The 
criterion used here is a robust 
counterpart to the classical cluster 
analysis procedure of selecting the 
clusters for which the within cluster 
sum-of-squares is minimized. It is 
easy to show, however, that the within 
cluster sum-of-squares is minimized in 
the two cluster case when 
p(l-p) (~i-~2) is maximized where Kj 
is the sample mean of cluster j a nd 
and P=nl/n with n i the number of 
sample values placed in cluster i. 
Such a clustering is based upon a 
cut-point, c , for which all sample 
values below c are assigned to the 
cluster associated with population i. 
It must be observed, however, that due 
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to the overlap between the two mixture 
distributions, some sample points 
assigned to cluster 1 may be from 
population 2 and some observation~ 
from population 1 may be in cluster 2. 
The effect of this truncation of the 
right tail in population 1 is that the 
sample mean from cluster 1 is likely 
to underestimate ~i while ~ is likely 
to be^ overestimated In ~ddition ~ 

Z • " • 

and ~2 are l~kely to be underestlmated 
by s~ and s~. If we assume that the 
overlap between the two populations is 
not too severe, then the sample values 
in cluster 1 to the left of m I are 
relatively pure observations from 
population 1 in which case m] is a 
"good" estimate of the populatiDn mean 
in • the case of symmetric 
distributions. This reasoning also 
indicates that ml and m 2 should 
provide better estimates of ~land p2 
than would x I and x 2. In order to 
estimate the variances of the 
component distributions we again will 
depend upon the fact that the values 
to the left of m] and to the right of 
m 2 are "pure" samples from populations 
1 and 2 respectively. Thus, we will 
use only this data for estimation of 
the sample variances. We have used the 
fact that the semi-interquartile range 
of a standard norma~ distribution is 
.6745, to estimate o[by 

2 ml-rl ('25) 2 
= ( ) 

~i(0) .6745 

(q) 
where r~ is the q th percentile from 
the j t5 cl u7s te r , j=l,2. Similarly, 
2 _ 2 ( . 5)_m2 

~2 (0) I-n ( (trh e next )/.6745 ) 2. section we will 
discuss the results of a major 
simulation investigation comparing ML 
and MD estimation. In these 
simulations the iterative techniques 
were initiated by the starting values 
as discussed in the previous 
paragraph. A preliminary simulation to 
the one discussed in the next section 
investigated the performance of the 
starting values described here. In 
this study we compared the convergence 
starting at these starting values with 
that starting at the true parameter 
values. Convergence was almost always 
to the same parameter estimates, a 
result which held for both the MLE and 
MDE. For this reason and results to be 

• . 

Shown in section 4, we believe this 
starting value procedure to be 
adequate. 

4. Simulation Results 
In the previous two sections we 

have discussed ML and MD estimators 
for the parameters of the mixture of 
two distributions. In this section we 
report the results of simulations 
designed to compare these two 

estimators when the component 
distributions are normal and when they 
are non-normal. In addition we have 
made our comparisons under varying 
degrees of separation between the two 
distributions. All computations were 
performed on the CDC 6600 at Southern 
Methodist University. 

In our comparison of the MDE and 
MLE we have begun by comparing their 
performance when the normality 
assumption is valid, i.e., when the 
mixture distributions actually are 
normal. We should mention that because 
of the optimality properties of the 
MLE we would expect that the MLE would 
be superior in this situation. Since 
in practice the validity of the 
normality assumption is subject to 
question, we are also very interested 
in the performance of the MDE and MLE 
when the component distributions are 
not normal. To this end we have 
simulated mixtures in which the 
component distributions are 
distributed as a t with 4 degrees of 
freedom. We simulated 500 samples of 
size n=100 from mixtures of normal and 
of t(4) components for each of the 
following parameter configuratfons: 

Mixing proportion 
.25 
.50 
.75 

Variances 
2 2 2 22 

~i = ~2 ~i = 2 

Since we are interested in the 
performance of the MDE and MLE under 
various levels of separation between 
the two component distributions it is 
necessary to define a measure of 
"overlap". Without loss of generality 
we assume that population 1 is 
centered to the left of population 2. 
We define "overlap" to be the 
probability of misclassification using 
the rule: 

Classify an observation x as: 
population 1 if x < x c 
population 2 if x ! x c 

where x c is the unique point between 
1 and ~2such that 

Pfl(Xc) = (l-P)f2(Xc) " 

We have based our current study on 
"overlaps" of .03 and .i0. 

In Table 1 we display the 
simulation results. Although both 
estmation procedures provided 
estimates of all 5 of the parameters, 
only the results for the estimation of 
p are given here since the mixing 
proportion is the parameter of 
interest. In addition, when dealing 
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with the non-normal mixtures, the 
remaining parameter estimates often do 
not have a meaningful interpretation. 
In these simulations we have used the 
procedure discussed in the previous 
section to obtain starting values. It 
should be noted that although we refer 
to mixtures of t(4) distributions 
here, they are actually mixtures of 
disributions associated with the 
random variable T'=aT+b, where T has a 
t(4) distribution. These modifications 
are made in order to obtain the 
desired separation and variance 
ratios. 

In Table 1 we show the estimates 
of the bias and MSE obtained from the 
simulations for purposes of comparing 
the performance of the MLE , MDE, and 
the starting value procedure. In 
particular, let p~ denote the estimate 
of p for the it~ sample. Then based 
upon the simulations, estimates of the 
bias and MSE are given by: 

^ 1 n ^ 
bias = -~- zs (pi_p) 

s i=l 

^ 1 s (p p) 
MSE =-- 

n s i=l i- 

where n s is the number of samples. It 
should be noted that nMSE is the 
quantity actually given in the table. 

An examination of the table 
indicates that all three techniques 
yielded estimates with small bias. 
Upon comparison of the MSEs, it can be 

seen, as expected, that the MLE was 
superior to the MDE when the 
components were normally distributed. 
This relationship between the 
estimators held for both overlaps. The 
MLE and MDE were in fact quite similar 
at p=.5 while for p=.25 and p=.75 the 
superiority of the MLE is more 
pronounced. A very unexpected result, 
however, is that the starting value 
routine produced estimates with lower 
MSE than either the MDE or MLE at .I0 
overlap. At .03 overlap, the starting 
values were generally the poorest with 
the exception beiDg that their MSE was 
lower than that for the MDE at p=.25. 

For the t(4) mixtures the 
relationship between MDE and MLE is 
reversed in that the MDE shows to 
perform better. In addition, this 
superiority of the MDE is greater at 
p=.5 than at the other values of p. As 
in the mixtures of normals, the 
starting values were generally the 
best estimates at .i0 overlap and the 
poorest at .03 overlap. The 
superiority of the MDE in this case is 
due in part to the heavy tails in the 
t(4) mixture. The MLE often 
interpreted an extreme observation as 
being the only sample value from one 
of the populations with all remaining 
observations belonging to the other. 
Due to the well known singularities 
associated with a zero variance 

estimate of a component distribution, 
Day(1969), we were concerned that the 
observed behavior of the MLE was due 
to the fact that we did not constrain 
the variances away from zero. 
However,simulation results in which 
equal variances were assumed (which 
removes the singularity) and also 
those which used a penalized MLE 
suggested by Redner(1980) were very 
similar to those quoted here. 

5. Mixtures of Asymmetric 
Distributions 

The simulation results of the 
previous chapter focus on the 
performance of the MLE and MDE under 
deviations from the assumption of 
normality. However, the t(4) 
distribution is symmetric, and recent 
studies have indicated that there is 
often a substantial asymmetry in the 

component distributions for variables 
of interest in agricultural remote 
sensing. A Monte Carlo examination of 
the performance of the MDE and MLE, 
assuming normal components, when in 
fact the component distributions were 
asymmetric, was performed, and the 
results of this examination will be 
discussed in this section. 

For purposes of our examination, 
we simulated mixtures of X ~ (9) 
distributions with p=.5. In these 
simulations the two distributions 
differed from each other only by a 
location shift. Actually the component 
distribution to the left is X ~ (9) 
while that ~o the right is that of a 
"shifted" X (9) with origin no longer 
at 0. This shift was varied to provide 
overlaps of .01, .05, and .i0. Since 
our estimation procedures involve a 
normality assumption, we used the 
means and 2 variances of the two 
component × (9) distributions and the 
true mixing proportions as our 
starting values. The problem of 
obtaining starting values from the 
data in this case is being examined. 
In Table 2 we display the results of 
this simulation. Only when the two 
component distributions were widely 
separated (overlap=.01) do the two 
procedures provide reasonable results. 
However, when the two chi-square 
distributions are not widely 
separated, both estimators tend to 
seriously underestimate p. In Figure 1 
we display the three mixture 
distributions on which these 
simulations were based. We see there 
that it is no surprise that the 
estimate of p is less than .5, 
especially for p=.10. Both estimation 
procedures view this as a mixture of 
normals, and therefore make the 
reasonable interpretation that the 
density to the left has a smaller 
variance and a mixing proportion less 
than .5. These results point out the 
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impact which skewed distributions can 
have on the proportion estimation in 
the mixture model when normal mixtures 
are assumed. 

Current investigation into this 
area centers around modifying the 
estimation procedures by assuming that 
the underlying component distributions 
belong to some family of distributions 
whose members can be either symmetric 
or asymmetric depending on parameter 

configurations. At the present time, 
the Weibull distribution is being 
examined concerning its usefulness. 

6. Concluding Remarks 
We believe that the results of 

the preceding sections are of 
sufficient substance to motivate 
further research in the area of MD 
estimation in the mixture model. Our 
results indicate that the MDE is 
indeed more robust than the MLE in the 
sense that it is less sensitive to 
symmetric departures from the 
underlying~assumption of normality of 
component distributions. Several areas 
for future investigation have already 
been identified in addition to the 
asymmetric components problem 
discussed in section 5. 

First, simulations similar to the 
ones • presented here should be 
performed without the assumption of 
only two populations in the mixture. 
The performance of • the MDE and MLE 
should be compared when the number of 
populations is known and larger than 
two. In addition the applicability of 
the MDE to the problem of estimating 
the number of populations also 
warrants investigation. We plan to 
examine these possibilities. 

Second, the problem of applying 
the MDE to the multivariate setting is 
of interest. Preliminary indications 
are that such an extension will be 
possible. 

Third, the choice of distance 
measure in the MDE is a topic of 
interest. Our results are not meant to 
imply that W 2 is optimal. 

Finally, the MDE and MLE must 
ultimately be compared on real data. 
Several related practical 
considerations have not yet been 
investigated. For example, when 
applying these estimators to LANDSAT 
data, the number of iterations allowed 
must be small due to time constraints. 
In the simulations described here, 
these constraints were not imposed and 
iteration was allowed to continue 
until convergence was obtained. The 
performance of the MDE and MLE under 
convergence zestrictions should be 
examined. 
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