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I. INTRODUCTION 

Annually in late May and early June the Statistical 
Reporting Service (SRS) of the U.S. Department of 
Agriculture conducts the nationwide June Enumerative 
3urvey (JES). From the data collected in the JES, state 
and national estimates of the amount of land planted to 
various crops are calculated, as well as estimates of 

intended crop utilization, farm grain storage, livestock 
inventories, agricultural labor, and farm economic data. 

Crop-area and production estimates for individual 
counties are also an integral part of the SRS estimates 
program. Such estimates are used by the Agricultural 
Stabilization and Conservation Service and by the 
Federal Crop Insurance Corporation. Published county 
estimates are used by agri-business concerns in making 
decisions on m arketing of farm products and in 
transportation scheduling of agricultural corn m odities. 

SRS calculates county estimates by subdividing the 
official state estimate into crop reporting districts 

(collections of contiguous counties) and then further 
subdividing into counties. Several types of indicator 
data are used in subdividing the state estimate. These 
include: 

i. JES expansions at a district level, 
2. Non-probaMlity mail surveys, and 
3. State farm census data. 

The resulting estimates are at least partially subjective 
and as a result variance estimates for individual counties 
are not calculable using this method. 

In recent years, a number of states have discontinued 
their state farm census. This has prompted research by 
SRS into alternative methods of calculating county 
estimates. Ford (1981), for example, evaluates direct, 
synthetic, and composite estimators for crop and 
livestock items utilizing a probability mail survey in 
North Carolina. 

For county crop-area estimates, a number of 
researchers have proposed the auxiliary use of data from 
the LA N DSAT earth-resources satellite. The model- 
based estimators proposed by Huddleston and Ray (1976) 
and by Battese and Fuller (1981) are discussed later in 
this paper. Cardenas, Blanchard, and Craig (1978) have 
proposed a LA N DSA T-adjusted synthetic estimator for 
calculating county crop-area estimates. In this paper we 
extend the Battese-Fuller estimator to the case of a 
stratified sample design and evaluate the Battese-Fuller 
estimator on a six-county area in eastern South Dakota. 

II. DATA SOURCES 

A. Ground-Survey Data. JES sample units, called 
segments, are selected from an area sampling frame. 
Segments are typically one square mile and are selected 
from strata defined in terms of the percent of cultivated 
land. 

During the JES interview, all fields within the 
sampled segment are delineated on a non-current aerial 
photograph, and the crop or land use of each delineated 
field is recorded on a questionnaire. 

B. LANDSAT Data. The basic element of LANDSAT 
data is the set of measurements taken by the satellite's 
multispectral scanner (MSS) of a 0.4 hectare area of the 
earth's surface. The MSS measures the amount of 
radiant energy reflected from the earth's surface in four 
different regions of the electron agnetic spectrum. The 
individual 0.4 hectare M SS resolution areas, referred to 

as pixels, are arrayed along east-west rows within the 
185 kilom eters wide north-to-south pass of the 
LANDSAT satellite. For purposes of easy data storage, 
the data within a swath are subdivided into overlappin[~ 
square blocks, called scenes, which are 185 kilometers om 
a side. 

Ill. ANALYSIS-DISTRICT LANDSAT ESTIMATOR 

An analysis district is a collection of counties or 

portions of counties completely contained in one to three 
LANDSAT scenes having the same image date. In the 
midwestern United States, where most of the SRS 
LANDSAT research has been conducted, a typical 
analysis district contains a minimum of ten counties. 

For analysis districts, SRS uses the regression 
estimator described by Cochran (Section 7.1.7, third 
edition) to obtain crop-area estimates which are more 
precise than the JES estimates. This procedure is 
described in detail in Sigman, et al (1978). Briefly, the 
S R S analysis-district procedure is as follows: 

I. The JES data for segments in the analysis district 
are used to label segment LANDSAT pixels as to 
crop type. 

2. Labeled LANDSAT pixels are used to develop 
discriminant functions for each crop type. (A 
discriminant function for "other" is also 
developed,) 

3. The d isc r im inan t  funct ions are used to c lassi fy 
the LANDSAT data in the sampled JES segments. 
The c lass i f ica t ion resul ts fo r  each segment are 
the auxiliary variable for the regression 
estimator. The survey results for each segment 
are the primary variable. 

4. The discriminant functions are used to classify all 
pixels within the analysis district from which the 
population mean per segment of the auxiliary 
variable can be calculated. 

The estimation procedure described above is carried 
out in each analysis district, and then analysis-district 
estimates as well as variances are combined to the state 
level by treating the analysis districts as post-strata. 
The above procedure imposes a lower bound on the size 
of the JES sample within the analysis district. The 
reasons for this are the following: 

I. If the separate form of the regression estimator is 
used, there must be enough segments in each 
stratum of the analysis district to estimate the 
stratum regression coefficients, or 

2. If the combined form of the regression estimator 
is used, there must be enough segments in the 
analysis district to esti m ate the co m bined 
regression coefficient. 

In the mid-western United States, counties typically 
contain only two to four sampled JES segments and may 
contain no sampled segments. Thus, defining analysis 
districts to be individual counties and then using the 
above procedure is generally not feasible. 

IV. LANDSAT SMALL AREA ESTIMATION 

A. Huddleston-Ray Procedure. As presented above, 

crop acreage estimation for analysis districts is a 
straightforward use of a regression estimator. To 
provide a set of estimates for each county contained in 
the analysis district, Huddleston and Ray (1976)proposed 
that the mean calculated by classifying the entire 
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analysis d i s t r i c t ,  Xa.d. ,  be r e p l a c e d  by the  mean  
c a l c u l a t e d  by c lass i fy ing  the  ful l  s e t  of  p o t e n t i a l  
seg m ents fro m a particular county, X c" 

Thus, the analysis district regression estimator for 
the mean per segment is: 

REG a.d. =ya.d.  + b l  (Xa.d . -  Ea.d.) 

= b o + b I X a.d. 

and the Huddleston-Ray coun ty  e s t i m a t o r  is: 

H R e = Ya.d. + b l  (Xc - ~a.d.)  

= b  o + b  I X c. 

B. Battese-Fuller Model. The Battese-Fuller model 
for county level estimation assumes that segments 
grouped by county admit the same rate of change 
relationship (slope) as does the analysis district but that 
a different intercept is required. This idea is 
implemented by using a portion of the vertical distance 
from the analysis district regression line to the county 
sample mean. Denoting this distance by U c = Yc- bo - 
bl~c, the Battese-Fuller county estimator is: 

BFc =bo+bl Xc + ~c 5c where 0 < ~c< i. 

This introduction is an oversi m plific a tion. 
Estimating county effects by 5 c precludes the use of 
ordinary least squares in fitting the analysis district 
regression line and thus the cboice of ~c = 0 does not 
coincide exactly with the Huddleston-Ray estimate. 

More precisely, as originally proposed, the Battese- 
Fuller model assumes that for the jth sampled segment 
from the itb county we have: 

Yij =bo + b l xij + uij =bo +bl xij +vi + eij 

vi, eij independent, normal with mean 0 and 

variances (i2 and (i2 respectively 
v e 

coy (uij , ui,j,) =}0 if  i # i' I 

02 i f  i = i', j # j' 

l(i2 + 02 if  i = i', j = j' 
V e 

Thus, segments from the same county possess 
positively correlated residuals. The para meter ~2 is both 
a within county covariance and a between v county 

component of the variance of any residual. (i2 is the 
within county variance component. This eset of 
assumptions reduces to the standard assumptions of 
ordinary least squares when (i2 = 0. 

Assuming first that b o anVd b I are known, the county 
mean residuals 

~i. = Yi. - bo - bl  Ki. = vi + gi. 

are observable and give estimated county effects of 
A 

vi= 6i~.  1. where  0 <  6 i <  1. 

The county mean is estimated by 

bo + bl Xi+ ~iui. 

with e r r o r  equa l  to (1 - ~ i) v i -  ~ iei .  

It follows that 2 
2 (ie MSE =(1 - ~ i  )2 (iv 2 + ~i 

n .  
1 

where n. is the size of the sample from county i. Note 
1 . . 

that, condltloned on the county effects, the average 
error is (I - ~.) v.. Squaring and averaging gives a mean 

• I I 
squared condltlonal bias of: 

MSCB =(1 - ~.)202. 
1 V 

As a function of (Si , it is easy to see that the above 
expression for MSE is minimized if 

02 
~ ----- V 

1 

2 +02 
(Iv e 

n. 
l 

Denoting this quotient by Yi' we focus our attention on 
the three specific estimates obtained from: 

a . ( S . =  0 
1 

• estimate lies on analysis district regression 
line 

• MSE = MSCB 
b.~.= 1 

I 
• MSCB = 0 

c. 8i=Yi . . 
• mlmmum MSE is obtained 

MSCB 
• MSE - 1-Yi 

Note that estimates for unsampled counties may be 
obtained by choosing ~ = O. 

As discussed in the Battese-Fuller paper, a best 
linear unbiased estimate'bfor an unknown b is obtainable 
by an appropriate transformation of the data. A fitting 
of constants procedure handles estimation of the 
variance components. Formulas for the MSE and MSCB 
when b is estimated are given in Battese and Fuller 
(1981) and in Walker and Sigman (1982). The same 
choice of ~i = ~(i minimizes the MSE when b is 
esti m ated. 

C. Stratification. Like the regression procedure used 
at the analysis district level, the Battese-Fuller model is 
applicable within individual strata. The procedures set 
forth by Battese and Fuller and presented above suffice 
for estimating b_, bl, O .2 , 0 .2 in each stratum. However, 
the presence o~ a county e main effect across strata 
introduces a cross strata covariance and requires 
revisions in both the M SE formula and the choice of an 
optim al set of multipliers for the m ean residuals. 

At Fuller's suggestion, the authors developed the 
following extension of the model presented in the last 
section. For the jth segment from county i and stratum 
h, assu me that 

Ybij = bO + bbl Xhij + Vhi + ehij 

with variance - covariance structure 
0 if i#i' 

(i2 if i=i ' h=h ' j#j' 
V 

c°v(uhij ' Uh'i'J ') = (iv2~ + 2 if i=i ' h=h ' j=j' 
(ie h 

(i if i=i ' h#h' 
Vhh' 

Under these assumptions one must estimate a vector 
of county effects denoted v i = (v.., ..., v .)' where s is 

I I Sl. 
the number of strata. Each component is estimated 
using the vector of mean residuals 5 i = (Oii, ..., 5 .)' 

Sl 
where 

nhi = 1 nhi Z Uhij 
nhi  j=l  

474 



thereby requiring an s by s coefficient matrix. That is; 

^ O+ i - s • 
U hi = b h b h X hi ~Z ~ h  Uki 

k= l  
e s t i m a t e s  t he  a v e r a g e  a m o u n t  of  t he  c rop  pe r  s e g m e n t  
for the part of county i that falls into stratum h. The 
mean for the county is then the appropriate weighted 
sum over strata• 

To put this in a convenient notation, let 

BX i = 

Xi. • . 0 0 

o . .  i 
and similarly for LX i using Xhi" Also, set 

°, ul ..., u °, bb' 
and 

wi=(Nli N s i )  
---- 9 • • . 9 - -  

N "i N "i 

where Nhi = total number segments in county i and 

stratum b and N. i =Z h Nhi. 

For known b values, tbe vector of estimated means 

for county i is 

A 

U~ i = BXi'B + Ci'N i 

ahd the final county mean is estimated by 

U i=wiu~i, 

Introducing the s by s matrices 

0 2 . . . 0 
Vl Vl 

H = E(v i v i') = 

O . . 0 2 
Vls Vs 

and 

w e have 

2 
. e l  • . . 0 

li 

SE i = • 

o 2  s 

Ai = E (uiui ')  = H +S E i. 

nsi 

and 

Then M SE ~ i) 

MSCB 

= w i E( (v i - Ci'ui)(v i ' -  u i 'Ci))w i' 

= wi(H - 2H C i + Ci'AiC i) w i' 

= wi(H-2HC i +Ci'HC i) w i'. 

Apply ing  a m i n i m i z a t i o n  c r i t e r i o n  to e ach  c o m p o n e n t  
of v i results in 

Ci= (A i) -1H 
which reduces to 

c i =  

Y l i  0 ) 

0 Y si 

i f  0 Vh k = 0 fo r  al l  h#k• 

The c o e f f i c i e n t  m a t r i c e s  fo r  which we c a r r i e d  out 
t h e  e s t i m a t i o n  p r o c e d u r e  a re  t he  fo l lowing :  

a. C i =  0 
• r e g r e s s i o n  l ine  used in each  
stra tu m 
• MSE=MSCB 

b. C i =  I 
• MSCB = 0 

c• c i = F i =  

yli 0 

0 Y si 

• m i n i m i z e s  MSE i fOvh  k = 0 

d• C i = (A i) -1 n 
• m i n i m i z e s  MSE in g e n e r a l  

The e s t i m a t e s  o b t a i n e d  using t h e s e  m a t r i c e s  will  be 
denoted BFREG, BFONE, BFGAM and BFOPT, 
respectively, in section V.C. The Huddleston-Ray 
estimate discussed in section IV. A. will be denoted H R. 

Formulas for the mean square error and mean square 
conditional bias when b is estimated are given in Walker 
and Sigman (1982)• 

V. EVALUATION OF BATTESE-FULLER ESTIMATOR 

A• Description of Data Set. An empirical evaluation 

of the Battese-Fuller estimator was performed over a 
six-county area in eastern South Dakota• The major 
feature of this data set which made it advantageous for 
use in a county-estimation study was that it contained a 
large nu tuber of segm ents within a relatively s m all area. 
Specifically, there were enough segments to calculate a 
within-county regression estimate for each county 
against which to compare other county estimators. This 
a m ounts to treating each county like an analysis district. 
Also, there were enough segments in the data set to 
simulate repeated selection of samples smaller in size 
then the full data set. A negative feature of the data 
set, however, is that the quarter-section (160 acres) 
segment size is smaller than normal JES segments. 

Table 1 shows the sample size broken down by county 
and stratum. 
Table i: Sample Allocation by County and SRS Stratum 

Stratu m 

C ounty i_._II 12 20 Total 

Codington 8 14 5 27 
Spinks 21 24 2 47 
Beadle 13 26 3 42 
Clark 15 14 7 36 
K ingsbury 7 21 2 30 
Hamlin i0 8 0 18 

74 107 19 200 

For purposes of simulating repeated samples, eight 

samples of size 75 were developed by dividing the 200 
segments into 8 mutually exclusive sets and then forming 
samples from groups of three sets• Calculation of 
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discriminant functions, classification of LANDSAT data, 
and calculation of Battese-Fuller county estimates were 
performed for each sample of 75 and for the full sample. 
A lengthier description of the data set appears in Walker 
and Sigman (1982). 

B. Validity of Model Assumption s . To determine 
whether or not the assumptions of the Battese-Fuller 
estimator are valid, ordinary least-squares LANDSAT 
regressions were performed within strata ii and 12 for 
each of the six South Dakota counties. The following 
statistics of co m parison w ere calculated: 

~5hi = regression intercept for stratum h, county i 

$2 i = error mean sum of squares for stratum h, county i 

•i i = regression slope for stratum h, county i 

If the unstratified Battese-Fuller model assumptions 
are true, then the calculated comparison statistics 
satisfy the following properties: 

I. Each ^bhi is an unbiased estimate of b o + v i. 

2. Each $2 i is an estimate of 02. 

3. Each~2 i is an unbiased estimate of b I. 

If, on the other hand, the stratified Battese-Fuller 
model assu m ptions are correct, the corn parison statistics 
will exhibit the following behavior: 

0 
4. ^bhi unbiasedly estimates b h + Vhi. 

5. S2 i estimates (12 h for each county in stratum h. 

6. i unbiasedly estimates b h within statum h. 

The above statements and alternatives to them can 
be concisely expressed by using the regression-hypothesis 
notation of McLaughlin(1975). McLaughlin considers the 
triplet of para meter vectors 

(intercepts, residual variances, slopes) 
for a set of regressions. A hypothesis concerning the 
triplet is denoted by a three-letter word. The 
component letters correspond in position to the triplet 
parameter vectors, and each letter is either E for 
ho m ogeneity (equality) or V for heterogeneity 
(variability). 

For the case of regressions performed within each 
stratum of each county, we extend the notation as 
follows: 

E = Homogeneity across both strata and counties 
Ec = Vs = Homogeneity across counties within each 

stratum. Heterogeneity across stata. 
Es = Vc = Homogeneity across strata within each 

county. Heterogeneity across counties. 
V = Heterogeneity across both counties and strata. 
Thus, statements I through 3 above~ are the 

hypothesis VcEE and statements 4 through 6 the 
hypothesis VEcEc. These models can be tested using the 
procedure described in (McLaugbin, 1975). 

Though the Battese-Fuller estimator does not require 
that the form of the probability distributions of the 
regression errors be known, testing of the postulated 
model assumptions does. We assume that the regression 
errors have Gaussian distributions. 

Walker and Sigman (1982) contains the model test 
results. Only model VVE c for corn cannot be readily 
rejected (p = .21). This model for corn assumes that 
regression slopes are homogeneous across counties within 
each strata but that intercepts and error variances are 

heterogeneous. For sunflowers, flax, and oats there is 
s ign i f ican t  h e t e r o g e n e i t y  of regress ion  slopes across  
count ies .  

Though the  l ikelihood r a t i o  t es t s  r e j e c t  VVE c for  all 
crops excep t  corn,  f u r t h e r  s tudy ind ica ted  t h a t  
departures from the model  (homogeneous slopes across  
count ies  within each s t r a t u m ;  heterogeneous i n t e r c e p t s  
and res idua l  variances) are not  over ly  l a rge  for  oats  and 
sunf lowers ,  but  model  departures are pronounced for  
f lax.  F u r t h e r m o r e ,  the h e t e r o g e n e i t y  of regress ion  
slopes is more evident  for  low R L values ,  where R 2 is 
the c o e f f i c i e n t  of d e t e r m i n a t i o n  be tween  c lass i f ica t ion  
resu l t s  and ground t ru th .  

Models which assume the h o m o g e n e i t y  of e r ro r  
variance across  count ies  were read i ly  r e j e c t e d .  Flax,  
oats ,  and sunf lowers  exhibit  high b e t e r o s c e d a c i t y ,  
whereas for  corn the departure from homogeneous e r ro r  
va r i ances  is modera te .  

In sum mary,  the model  t e s t s  pe r fo rmed  do not 
support  e i t he r  the uns t r a t i f i ed  or the s t r a t i f i ed  
assumpt ions  for  the Battese-Fuller e s t i m a t o r .  For  
corn,  and corn only, the h e t e r o g e n e i t y  of s t r a tum 
regress ion  slopes over  count ies  was not  s ign i f icant ,  but 
this was accompan ied  by h e t e r o g e n e i t y  of res idua l  
variances. Sunf lowers  and oats  failed model t e s t s  for  
b o m o g e n i e t y  of s t r a tum regress ion  slopes,  but  the 
observed departures from horn ogen ie ty  were not overly 
la rge .  

C. Resul ts .  The f i t t ing  of  cons tan t s  procedure 
discussed in B a t t e s e - F u l l e r  (1981) was used to obtain 
estimates of the variance components(12 h and 02 h in 

each stratum and an F test of the hypothesis H 0:0 2 = Vh 

0 was carried out. The between county variance 

component O2 h has a large variance; a situation that 

would be eased if the number of counties in the region 
was greater. The sample sizes in stratum 20 were too 
small to provide viable estimates ofO220 , so ordinary 

least squares regression was used in that stratum. 
The most convincing evidence of a nonzero county 

effect was found for corn in both strata and for oats in 
stratum 12. 

Correlations of residuals within and across strata 
were found from the estimated variance components. 
Except for corn, low within strata correlations resulted 

becauseO2 h was small relative to (12 h. See Walker and 

Sigman (1982) for details. 
It seemed appropriate to assume that 02 = 0 for 

Vll,12 
all crops except corn. Moreover, the procedures 
described herein do not guarantee that the estimated 
matrix H = E (viv i') will be positive definite and, indeed, 
four of the eight groups posed this problem. 

For all crops and all groups estimation was carried 
out usingo 2 = 0. For the set of all 200 segments 

Vll,12 
and half of the eight smaller groups, we also obtained 
estimates for corn using a nondiagonal H. This provides 
information on the effect of ignoring the cross strata 
correlation. 

Values of the optimal scale factor'(hi appear in table 
2 indicating that we were able to make a sizeable 
adjust m ent a way fro m the regression line when 
estimating corn. Note that flax and sunflowers usually 
require the use of a regression line estimate in at least 
on e stra tu m. 
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Table 2: Optimal Scale Factor Yhi 

C200 = result using all 200 segments 
Med. = median for eight groups of 75 segments each 

County 

Codington 

Spink 

Beadle 

Clark 

Kingsbury 

Hamlin 

i Sun- 
Corn Oats Flax flower 

-- . . . . . . . . . . . . . . . . . . . . . . .  

Stratum C2OOMe~-C200---------- Me~ C200 Me~ 
. . . . . . . . . . . . . . . . .  . . . . . . . . . .  

ii i.80 .59 .24 .18 0 .07 
12 .85 .61 .54 .47 0 0 .04 .24 

I 
ii .91 .79 i.38 .22 .45 .38 0 .14 

• 67 .42 . . 12 .91 .74 0 0 07 32 

Ii .86 .68 .28 .18 .34 .31 0 .13 
12 1.92 .77 .68 .59 0 0 .08 .38 

{ 
Ii .88 .72 .31 .22 .37 .25 0 .09 
23 .85 .62 .54 .52 0 0 .04 .24 

II .77 .52 .17 .09 .22 .15 0 .05 
12 .90 .67 .64 .52 0 0 .06 .27 

i 
II .83 .63 i.23 .13 .28 .20 0 .05 
12 .77 .42 .40 .27 0 0 .02 .i0 

. . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C200 Med. 

An initial assesment of the Battese-Fuller estimates 
was made by calculating relative root mean square 
errors. It is desirable to have these below 20%. Part 1 
of Table 3 shows that corn estimates satisfy this 
requirement with few exceptions when we assume 
OVll,12 = 0. Part 2 of Table 3 indicates that these 

relative root mean square errors go up a few percentage 
points when the cross strata correlation is used. 

Table 3 - Part I: Relative Root Mean Square Error 
Assuming Zero Cross Strata Correlation 
(Relative RMSE = (RMSE/Estimate) • 100%) 

Abbreviations are as defined in section IV C. 

Crop 

Corn 

Oats 

Flax 

Su n f I owe r 

County 

Codington 
Spink 
Beadle 
Clark 
Kingsbury 
Hamlin 

Codington 
Spink 
Beadle 
Clark 
Kingsbury 
Hamlin 

Codington 
Spink 
Beadle 
Clark 
Kingsbury 
Hamlin 

Codington 
Spink 
Beadle 

Clark 
Kingsbury 
Hamlin 

y_~_!n_~_2_oo_s_e~_en_t_s__ 
BFREG : BFONE : BFGAM 

27 : 20 : 17 
77 : 12 : 12 
81 : 12 : 12 
32 : 24 : 21 
21 : 8 : 7 
15 : 10 : 9 

29 : 20 : 15 
43 : 36 : 66 
60 : 25 : 198 
23 : 33 : 20 
28 : 48 : 17 
15 : 17 : ii 

15 : 21 : 21 
107 : 53 : 6 
197 : 237 : 61 
22 : 22 : 16 
16 : 21 : 308 
12 : 14 : I06 

21 : 60 : 21 
6 : i0 : 6 

64 : 76 : 61 
17 : 23 : 16 

388 : 147 : 308 
106 : 210 : 106 

BFGAM 
8 groups 
Median 

18 
19 

18.5 
19 
9.5 

ii .5 

15 
41 

33.5 
21 

29.5 
17.5 

15 
51 
76 
19 
15 
14 

33 
13 

75 
21 

126 

91 

Table 3 - Part 2: Relative Root Mean Square Error 
USing an Estimated Nonzero 
Cross Strata Correlation 

Crop 

Corn 

County 

Codington 
Spink 
Beadle 
Clark 
Kingsbury 
Hamlin 

.u_ s_inm_2_QO__se_am_e_n_t_s__ 
BFREG : BFONE : BFGAM 

35 : 20 : 18 
99 : 12 : 12 

I01 : 12 : 12 
40 : 24 : 22 
24 : 8 : 7 
19 : i0 : 9 

BFGAM 
8 groups 

19 
24 
18 
20 
i0 
13 

For oats and flax the comparison values are poor with 
regard to relative root mean square error. Nonetheless~ 

the Battese-Fuller estimation procedure using C i= r 1 
gave acceptable results across the eight groups for half 

the county oat estimates and four of the six county flax 
estimates. The most concentrated crop, sunflowers, is 
well estimated only in the one county that accounts for 
the bulk of the production. 

Because corn presented the best relative R MSE's 
using the Battese-Fuller formulas as well as the best 
comparison values some further study was done with this 
crop. R MSE's found from the Battese-Fuller formulas 
were compared against an interval estimate of the R MSE 
based on the 8 estimates obtained from the groups of 75 
segments each. This empirical RMSE was calculated by 
taking the square root of the observed variance of the 8 
estimates and adding the following interval estimate of 
the squared bias: 

standard , "] 
[average (comparison + deveation ofll 
| of 8 - \ value - comparison/| 
Lesti mates value J 

2. 

Using the estimated R MSE from column 5 together with 
the observed variance of the 8 estimates, the portion of 
M SE which is not attributable to bias was calculated. 

Although it is difficult to determine the bias, these 

calculations indicate that: 
I. bias is not a negligible portion of the R M SE for 

any of the estimators considered. 
2. for 5 of the 6 counties, the H uddleston-Ray and 

the attese-Fuller estimate which uses C=0 both 
contain substantially more bias than do the 
Battese-Fuller estimates which use C = F and C=I. 

Furthermore, it was discovered, that the closest 
agreement between formula based R MSE's and 
empirically estimated ones occurred for the Battese- 
Fuller estimate which uses C=I. For this estimate only 
one county displayed an empirical RMSE that was larger 
than the median of the 8 formula values. This happened 
for 4 counties using C = F and for 5 counties using C=0. 
Thus, the formula RMSE's for the optimal Battese-Fuller 
estimate appear to underestimate the actual R MSE. 

An absolute average relative bias was calculated 
according to the formula: 
average of the 8 estimates-comparison value . 

100%. 
co m parison value 

A plot of the results for corn showed that the larger 

relative biases were associated either with the 
regression line estimators or with the two smallest 
producing counties . This pattern was less pronounced 
for oats but the comparison values used for this crop 
have larger standard deviations. For flax and sunflowers 
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the only acceptably small biases occur in the largest of 
the producing counties. These results are, perhaps, 
accounted for by the large coefficients of variation for 
the co m parison values. 

Consider finally the importance of the cross strata 
portion of the correlation for the residuals. This was 
successfully estimated for corn using all 200 segments 
and using four of the eight smaller groups. To assess the 
percent change in the optimal estimateswe calculated: 

estimate using C = AIH -estimate using C = F . 
100% 

estimate using C = F 

and similarly for the root mean square error. Most of 
these quantities fell between 2 and 6 %. 

All of the results described in this section appear in 
greater detailin Walker and Sigman (1982). 

VI. CONCLUSIONS 

The analysis done thus far on the six county region in 
South Dakota supports the following conclusions: 

I. Models without strata-specific para meter values 
do not appear to be correct. 

2. The assumption of homoscedatic errors across 
counties within each stratum and county does not 
appear to be valid. 

3. Heterogeneity of regression slopes a~ross counties 
may be explained by low values of r = (coefficient 
of determination between cl~ssification results 
and ground truth). Large r-values appear to 
indicate near hom ogeneity of these slopes. 

4. The presence of a nonzero county effect appears 
to be both crop and strata specific. It may be an 
increasing function of crop proportion. 

5. RMSE's calculated according to the Battese- 
Fuller model were smallest for the coefficient 
matrices C = F and C = A -~ H as predicted by the 
theory. 

6. The optimal Battese-Fuller estimate gives 
relative R M SE's (from the equations of Setion IV) 
below the desired 20% level for corn and in 
certain counties also fo r  oats, flax and 
sunflowers. Thus, for this study, low relative 
R MSE's were associated with the largest crop 
proportion and the strongest county effect. 

7. Empirically estimated R MSE's for corn are larger 
than formula derived values; the discrepancy 
being greatest for C = O and least for C = I. 

8. A major portion of the empirical R MSE (for corn) 
is attributable to bias but, as predicted by the 
theory, bias is less when using C = F or C = I than 
when using C = O. 

9. Bias appears to be a decreasing function of crop 
proportion. 

I0. Battese-Fuller interval estimation based on the 
choice of C = I fit the comparison values better 
than those using C = O and C = F. 

ii. The cross strata correlation of residuals appears 
to be weaker than that within strata. 

12. Ignoring the cross strata correlation gives an 
optimal estimate whose RMSE is underestimated 
in most cases by 2-6 %. 
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