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1. Introduction

This paper deals with the problem of efficient
estimation of the mean and of the total when mea-
surements from times t, and t, are available for
the variable under study. We also consider esti-
mation of change from t{ and tp, change being ex-
pressed either as a difference of means and tot-
als or as a ratio of totals. These problems are
often thoroughly examined in standard texts when
the population is assumed to be infinite and com-
posed of the same units at t; and ty. See e.g.
Cochran (1977) and Raj (1968;.

Here, by contrast, we assume that
(i) The population is changeable, that is, units
may have joined or left the population between
ty and t,.

(i) The population is finite.

Linear minimum-variance unbiased (LMVU) esti-
mators and their variances are presented. Results
for the ratio estimator are presented also. Opti-
mum fractions are given for the matched part of
the sample taken at time t;, with the correspon-
ding minimal variances.

2. Basic concepts

We assume a situation where the mean and total
of a variable under study are to be estimated at
times t; and tp in a repetitive sample survey,
and where the change between tj and tp is of
special interest. The variable under study is
called x at time ty and y at time ty. The change-
able population is called U at t1 and U' at t2,
with size N and N* respectively.

A sample of n units drawn at time t is
denoted s, (n).

At time tq1 the sample design is as follows
(see figure 1): n units are drawn with Simple
Random Sampting (SRS) from the N units of U.
Measurements are made of the variable x. Natural-
ly, at this time, the population U' is unknown.

At time ty it is assumed that:

- Between t; and tp, Ny units have left U and NZ
units have joined it. The corresponding subpopu-
lations are called U; and Up, respectively.

- The new population U' contains N' = Ny, + Ny
units where Ni2 is the number of units in

Urp, that is the intersection of U and U'.

- For the sample of n drawn at ty, nqy units be-
long to Uy and ny, to Uypp.

At time t, the sampling design is as follows:
-~ The sample consists of n' units and is parti-
tioned into three parts, namely

nkgm (m = matched) units are drawn with

SRS from St (n12)

Nou (u = unmatched) units are drawn with
SRS from U)-st, {(ny2)

n, units are drawn with SRS from the N,

2

units of UZ'

The sample is drawn in a way that the follo-
wing relations hold true:

n=n1+nqy

n' = Nyt N2y * N2

M2 = Ma2m * M2y
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Figure 1: The sampling design
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The relative size of the unmatched part of the
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3. Two useful theorems

The following two theorems will be useful in
the derivation of the estimators and their vari-
ances.

Theorem 1: Consider a poputation U which is
fixed over times ty and ty and contains M units.
The following sampling design is assumed:

At t, a SRS of u units is drawn from the M

units of U.

At t, a SRS of g units is drawn from s, (u)
and § SRS of v-g units is drawn from U';t|(”)

(Note that stz(v) = stz(g) LJstz(v—g) is
a SRS from U)
Assume also that x and y are variables under
study at t1 and t, respectively and that xy
and y, are siQple estimators of means and that
Cov(x,y) = p$S
Then _ _
Cov(ax , by lg) =

91y ¢?
ab(u-v M) pS

where a and b are arbitrary constants. This can
be proved easily.

In our case u, v and M correspond to nyy, Nipm
nygy and Nyp. With theorem 1 covariances are
easily calculated.

The next theorem is due to Rao, C.R. (1952).
See also Raj (1968).

Theorem 2: A necessary and sufficient condi-
tion for Tg to be the minimum-variance-unbiased
estimator ?MVU) of a parameter is that Tg is un-

biased and that Cov(Tg,z) = 0 for all 2

where z is a zero function, i.e., E(z) = 0.
Corollary 2.1: If TD is a M/U-estimator of a

parameter and T{ is an unbiased estimate of that

parameter then V(Tg) = Cov(Tg,T{). This follows

from Theorem 2 since

Cov(T,,T -T])= 0 %»Cov(TO,T0)=V(T0)=Cov(T0,T1)

0’0

Corollary 2.2: Let o and B be arbitrary con-
stants, |If T}’ and T§ are MVU-estimators of the
parameters P'' and P' respectively, then Dy =
= aT§'-BTH is a MVU-estimator of aPt'-gPt,

This follows from theorem 2 since

Cov(Té',z) = Cov(Té,z) =0

> Cov(Do,z)=aCov(T6',z)-8 Cov(Té,z) =0

Theorem 2.2 with corollaries will be used to
derive linear MVU-estimators (LMVU) and their
variances.

L,  LMVWU~ and MV-estimators

Linear MVU-estimators (LMVU) and their vari-
ances have been derived for the following para-
meters:

N
2% )
—ﬁl and X = NX in U at t

a. = 1
N
- LY ,
b, Y = g and Y = N'Y in U' at t,
c. Y-~-X and Y - X,

Minimum variance-estimator (MV) and its variance
have been derived for the parameter
d. Y/X.

Optimum variances have been calculated by mi-
nimizing the variances of the LMVU- and MV-esti-
mators with respect to 0 = 12u

M2
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The method of calculating LMVU-estimators and
their variances is, in principal, the same for
the above parameters a-c. The techniques to de-
rive the LMVU-, the MV-estimators and their vari-
ances are shown in Forsman and Garas (1982).

L.1. Results for the LMVU- and MV-estimators
LMVU- and MV-estimators, their variances and

optimal variances are given in this_section

for the parameters X, X, Y, Y, Y-X,Y-X and Y/Xlet

us introduce the following concepts:
An LMVU-estimator, here considered,

by e Mvu* Then

is denoted

"2y

12
) is denoted 0 ., .
- LMVU min
+land @ ~> 1= v(eLMVU) i'vopt(eLMVU .

p=0= vopt(eLMVU) is independent of 0.

v ) where 0=

opt(eLMVU)=mén V(e » 0<e <
The ©-value minimizing V(e

If p =

LMVU

The formulas below are valid for - 1 < p < 1.
The above mentioned about e is also valid

for the MV-estimator, although negative p is not

considered here.

a. Estimator of total at tj
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d. Estimator of mean at tg
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e. Estimator of difference between totals
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f. Estimator of difference between means
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For the calculation of © .
Case 1: 0 < p < 1 min

) . dv(e)
LMVU’ ~do

>

v(e) = V(Y- =0 gives

2 2
Q,+Q,-2Q.Q, p
kinz—L; k=t 27172 7
2 2, 2
(Q1+Q2)p ~2Q,Q,0

(4.1.1)

we consider two cases.
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It can be proved that V(0) <V(1) when 0 < 0 < 1
and 0 < p < 1.
Then it follows that

a. If there exist a solution 00,1 [ then 0=0 .

in’

which gives Vopt (Y=X) | -

b. If there does not exist such a solution,

then emin = 0,

Case 2: -1 < p <0

According to (k4 .1) o = ki'sz-l
It can be proved that V(g) > v(0)
and -1 < p < 0.

Then it follows that B
a. |If there exist a solution_© E_JO,I:] then

when 0 < © <1

0 = emin’ which gives Vopt(v_X)LMVU’
b. If there does not exist such a solution,
then emin = 1.

g. Estimator of ratio between totals
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For the calculation of Omin we here only consider
0 <p <.

The minimum variance of Rmy is obtained below
by minimizing V(Ryy) with respect to ©. This
leads to a second degree equation of O.

Let R > 0,0 < p < 1 and V{(0) = v(RMV).

dv(0) _ 0
5 -

Then leads to
2
20 = LR 2R)
p(o+pR"-2R)
It can be proved that V(0) <V(1) when 0<0<1, R>0
and 0<p<1. Then we can calculate optimum values

of @. .
a. |If there exist a solution OGBJ,I[ then

6 = k+ and % = 17
Y

0 =6 . which gives Vopt(RMV)'

b. 1f there does not exist such a solution,

then 0 . =0,
min



4,2 Design comparisons

Thé variances of the LMVU-estimators of the
design described above have been compared to the
variances of the estimators of the same paramet-
ers under a simple design. This design is at tj
a SRS of n units drawn from the N units of U and,
at tz, a SRS of n units from the N' units of U',
independent of the sample at ty. The following
simplifying assumptions have been done: Q1=Q2=Q,
0<e<1, ny=ny, n2/n=N3/N and n12/n=N12/N. The po-
pulation variances of U, U', Uy,U;p and Uy are
assumed equal and the sampling fractions are
assumed ignorable.

The estimators for the simple design and their
variances are shown in Forsman and Gards (1982).

In table T (levels) and table 2 (differences)
the reductions of varfances by using the matched
design described in section 2 instead of the
simple design, are expressed as the ratio
Vopt(LMVU—estimator, matched sample design)

Z =

V(estimator, simple design)

Table 1: Z=1-Qp(levels)

p

Q 0.99 0.80 0.60 0.40 0.20

0.99 0.57 0.80 0.90 0.96 0.99
0.90 0.61 0.82 0.91 0.96 0.99
0.80 0.66 0.84 0.92 0.97 0.99
0.70 0.70 0.86 0.93 0.97 0.99

Table 2: z=(1-Q) + Q£1i~§l:ﬂi) (differences)
p
Q 0.99 0.80  0.60 _ 0.40  0.20
1 0.01  0.20 0.4  0.60  0.80
0.99 | 0.02 0.21 0.41  0.60  0.80
0.90 | 0.11  0.28  0.46 0.6k  0.82
0.80 | 0.21  0.36 0.52 0.68  0.84
0.70 | 0.31 0.4k  0.58  0.72  0.86
0.60 | 0.41  0.52 0.64 0.76  0.88
0.50 | 0.50 0.60 0.70  0.80  0.90

The results are following:

Large variance reductions can be achieved
with the matched sample strategy for the estima-
tors of change, even when the population is
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changeable. For the estimators of levels there
are also variance reductions when using the
matched sample strategy, but they are smaller.
5. Concluding remarks

The variances of the LMVU-estimators for levels
and differences and of the MV-estimators for
ratios are minimized with respect to the relative
size of the overlapping part of the samples at tj
and tg. The optimum size of this part differs
depending on whether the estimation concerns
levels or changes. In practise the size chosen is
a matter of judgment. As for the comparisons made
between the sampling design and a simpler one
with independent samples a numerical example
shows that considerable variance reductions are
possible. This is true even if the change between
t1 and t2 is as large as 10 to 20 percent pro-
vided that the correlation coefficient in the
overlapping part of the population is large. The
variance reduction is especially large for esti-
mation of change.
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