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I. I nt roduct ion 

This paper deals with the problem of efficient 
estimation of the mean and of the total when mea- 
surements from times t I and t 2 are available for 
the variable under study. We also consider esti- 
mation of change from t I and t 2, change being ex- 
pressed either as a difference of means and tot- 
als or as a ratio of totals. These problems are 
often thoroughly examined in standard texts when 
the population is assumed to be infinite and com- 
posed of the same units at t I and t 2. See e.g. 
Cochran (1977) and Raj (1968]. 

Here, by contrast, we assume that 
(i) The population is changeable, that is, units 
may have joined or left the population between 

t~] ~nd t2. 
t l i j  The popu la t ion  is f i n i t e ,  

Linear minimum-variance unbiased (LMVU) esti- 
mators and their variances are presented. Results 
for the ratio estimator are presented also. Opti- 
mum fractions are given for the matched part of 
the sample taken at time t2, with the correspon- 
ding minimal variances. 
2. Basic concepts 

We assume a situation where the mean and total 
of a variable under study are to be estimated at 
times t I and t 2 in a repetitive sample survey, 
and where the change between t I and t 2 is of 
special interest. The variable under study is 
called x at time tl and y at time t2. The change- 
able population is called U at t I and U' at t2, 
with size N and N r respectively. 

A sample of n units drawn at time t is 
denoted st (n)" 

At time t I the sample design is as follows 
(see figure I)- n units are drawn with Simple 
Random Sampling (SRS) from the N units of U. 
Measurements are made of the variable x. Natural- 
ly, at this time, the population U' is unknown. 

At time t 2 it is assumed that" 
- Between t I and t2, N I units have left U and N 2 
units have joined it. The corresponding subpopu- 
lations are called U I and U2, respectively. 
- The new population U' contains N' = NI. 2 + N 2 
units where N12 is the number of units in 
U12, that is the intersection of U and U'. 
- For the sample of n drawn at tl, n I units be- 

long to UI and n12 to U12. 
At time t 2 the sampling design is as follows- 

- The sample consists of n' units and is parti- 
tioned into three parts, namely 

n (m = matched) units are drawn with 

s~mfrom Stl (n12) 

n12 u (u = unmatched) units are drawn with 

SRS from U12-st1 (n12) 

n 2 units are drawn with SRS from the N 2 

units of U 2. 

The sample is drawn in a way that the follo- 
wing relations hold true" 

n = n I + n12 
n' = n12m+ n12 u + n 2 

n12 = n12 m + n12 u 

Figure I" The sampling design 
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The relative size of the unmatched part of the 
sample of U12 at t 2 is denoted 

n12m n12u 
e - which impli.es tha t  I -  0 - 

n12 n12 

The r e l a t i v e  change of  the popu la t ion  is deno- 
ted by QI and Q2' where 

N N 12 I 
QI = --N- I - QI = E- 

N N 
12 2 

Q2 = ~ I - Q2 = Er 

The population means, totals and variances for x 
and y in UI, U12 and U2 are defined by 

N 1 N 
Z x. ~I (x i_~112 

2 
' X ; = -I = " ; X1 = ml I S1 m I 

N N 
rl 2x", - 2 r12(xi-x12 )2 

N 2 X ; = ; X12 = 1 12 $12x = N12 1 X12 N12 
N N 
r12 - - 2 T12(yi -Y12 )2 

Yi y H 2 ~ ; -I 
Y 1 2 -  N12 ' 12 = 1 12 S l2y  = N12 

N 2 N 
T~ Yi T~2 (Y i -72 )2 - 2 

= ; Y2 = N2Y2 ; $2 = N 2 -I Y2 N 2 

Furthermore, it is assumed that 

S 2 ~2 = S 2 
t2x = 512y 

Then p, the coefficient of correlation between 

x and y in U12 , is 

Cov(x,y) =~ Cov(x,y) = pS 2 
P = ~ ~¢2 

where N 

T.12 (xi-X121 (Yi-Y121 
Cov(x,y) = N -I 

12 
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3. TWo useful theorems 
The following two theorems will be useful in 

the derivation of the estimators and their vari- 
ances. 

Theorem I" Consider a population U which is 
fixed over times t I and t 2 and contains M units. 
The following sampling design is assumed: 

At t I a SRS of u units is drawn from the M 
units of U. 

At t 2 a SRS of g units is drawn from s (u) 
and a SRS of v-g units is drawn from Uteri(U) 

(Note that UI 2(v) = st2(g) Ust2(v-g) is 
a SRS from 

Assume also that x and y are variabl:es under 
study at t I and t 2 respectively and that Xu 
and Yv are simple estimators of means and that 
C o v ( x , y )  = p S .  
Then 

- I S 2 
Cov(aXu, bYvlg) = ab(u--~v. - M) p 

where a and b are arbitrary constants. This can 
be proved easily. 

In our case u, v and M correspond to n12 , n12 m 
n12 u and N12. With theorem I covariances are 
easily calculated. 

The next theorem is due to Rao, C.R. (1952). 
See also Raj (1968). 

Theorem 2- A necessary and sufficient condi- 
tion for TQ to be the minimum-variance-unbiased 
estimator (~MVU) of a parameter is that T O is un- 
biased and that Coy(To,z) = 0 for all z 
where z is a zero function, i.e., E(z) = O. 

Corollary 2.1" If T O is a MVU-estimator of a 
parameter and T I is an unbiased estimate of that 
parameter then V(T O) = Cov(To,TI). This follows 
from Theorem 2 since 
Cov(T0,T0-T1)= 0 :~Cov(T0,T0)=V(T0)=Cov(T0,T1 ) 

C o r o l l a r y  2.2- Let ~ and 13 be a r b i t r a r y  con- 
s tan t s .  I f  T~ ~ and T~I are MVU-estimators of  the 
parameters P "  and P' r e s p e c t i v e l y ,  then D O = 
= ~T~I'-I3T~) is a MVU-estimator of ~P''-I3P'. 

This follows from theorem 2 since 
Cov(TI~',z) = Cov(TI~,z) = 0 :~ 

, , ',z) = 0 =~Cov(D 0 z)=~Cov(TI~' z) -B Cov(T 0 

Theorem 2.2 w i t h  c o r o l l a r i e s  w i l l  be used to 
der i ve  l i n e a r  MVU-estimators (LMVU) and t h e i r  
va r iances .  

4. LMVU- and MV-est imators 
L inea r  MvU-est imators  (LMvu) and t h e i r  v a r i -  

ances have been der ived f o r  the f o l l o w i n g  para-  
meters • 

N 
~ . .  

a. X = ~ and X = NX in U at t 1 

N' 

b. ~ = ~ , i  and Y = N'Y in U' at t 2 

c. Y - X and Y - X. 
Minimum variance-estimator (MV) and its variance 
have been derived for the parameter 
d. Y/X. 

Optimum var iances have been ca l cu l a ted  by mi-  
n im iz ing  the var iances of  thenLMVU- and MV-es t i -  
mators w i th  respect  to @ = 12___~u . 

n 12 

The method of calculating LMVU-estimators and 
their variances is, in principal, the same for 
the above parameters a-c. The techniques to de- 
rive the LMVU-, the MV-estimators and their vari- 
ances are shown in Forsman and Garbs (1982). 

4.1. Results for the LMVU-and MV-estimators 
LMVU-and MV-est imators ,  t h e i r  var iances and 

opt imal  var iances are given in t h i s  sec t ion  
fo r  the parameters X, X, Y, Y, Y-X,Y-X and Y/)LLet 
us in t roduce the f o l l o w i n g  concepts" 

An LMVU-est imator,  here cons idered,  is denoted 
by eLMVU. Then 

Vopt(eLMVU)=m~)n V(eLMVU) where @= n l2u ,  0 < 0 < 1 
n12 - _ 

The O-value min im iz ing  V(eLMVU) is denoted 0 ; . 
I f  p = + 1 and @-> 1 =~V(eLMVU) ->Vopt(eLMVUln. 

p = 0 :~ Vopt(eLMVU) is independent o f  (9. 

The formulas below are v a l i d  fo r  - 1 < p < 1. 
The above mentioned about e is a lso  v a l i d  LMVU fo r  the MV-est imator ,  a l though negat ive  p is not 

considered here. 
a. Es t imator  o f  t o t a l  at  t 1 

" " - o ( I - o ) 0  2 ~ )  + o ( x  - x  
XLMvu=X1+X12 1-p - ~;2 Y12m-Y1 12 12m 

V(XLMvu)=N I S I n I "~'i ) + N12 n12 i_p~2@ 2-N12 

O = 1 " rain 1* ¢1-p 2=~ V° ( )=N 2 2(1__. _ pt XLMVU 151 n 1 

+ N12 n12 2 NI2 

~ ) + 

b. Estimator of mean at t 
I 

XLMVU ; XLMvu/N 

V(~LMVU ) =V(XLMvU)/m 2 ; Vop t 

c. Estimator of total at t~ 
. . . .  

YLMVU = 2 12u ]- p202 12m- 12u ) 12 12m 

" 2 2 (I__ 1) 2 S 2 [I-p2@ n121 
V(YLMvu)=N 2 S 2 n 2 - N2 + N12n--~2 1 0"20"2-N12 j 

(XLMvU) =Vop t iXIMvU)/N 2 

0 = I =~V (Y 2 2(I___ _ I 
rain I+ ~1-p 2 opt LMVu)=NmS2 n 2 "N-22) + 

.2 $2 I(I+ V l-p 2) n12] 
+ N 12n-~2 2 • N12 

d. Estimator of mean at tz 

YLMVU = YLMVU/N' 

V (YLMvU)=V (YLMvU)/m L2 = - ;Vop t (YLMvU) =Vopt (YLMvU)/N'2 
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e. Estimator of difference between totals 

(Y-X)LMVU = YLMVU--X - Y 2  - X + Y - X + LMVU 1 12u 12 

V (Y-X) LMVU 

O Y12m-Y12u ) + P(X12 - X12m) 

2 2 ( I . _ _  1 2 2( I  _ 1 
= N2S 2 n 2 E22) + N 1S 1 ~ "~-1 ) + 

2N 2 $2 I 7 12 ( l - p )  1 nl 2 

n12 " 1 - ~  - -- N12 _ 

(3m,n = 0 => V (Y-X) 2 2 1 I 
• o p t  LMVU = N2S2(n 2 N 2 ) + 

0<0<I 
+ N~S 2 (1. I 2 2 1 1 

1 n I - NT ) + 2N12S (I-p) (nl 2 NI 2 

~v 2 2(1 I__ 
(3rain = I => Vop t(,.-A)LMV U = NmS 2 n2 - N2 ) + 
- I<p<0 

- -- I- nl--~2 (l-p) 
+ NISI (~]'I N]-I ) n12 N12 

f. Estimator of difference between means 

(Y-X) LMvu=YLMvu-XLMvU = ( 1-0. 2) ~/2- ( I -QI ) Xl +Q2 y 12u- 

-Q1x12 + (I-(3) (Q2+Q1p(3)i~Y12m_~12u)+P(X12_X12m)] 
1-02(32 

- " 2(1___ _ 1 2S2(1_._ _ 1 
V(Y-X)LMVU=(1-Q2)2S2 n 2 -N-~2)+(1-Q1) 1 n I "~1 )+ 

I( 2 2 lO2~)-2Q Q2j0(1 Pl S 2 QI +Q2 ) ( I- -~) n 
+ -7 °5  3 1  _ 1__22 2+Q~_2Q 0 
n12 _ I N12(QI 1 2 

For the calculation of (3 . we consider two cases. 
Case I" 0 < p < I mln 

- " dV((3) = 0 g ives V(@) = V(rf-X)LMVU; dE) 

2 2 
, 2 f - f -  QI +Q2-2Q1 Q2 p 

(3 = k+ Yk -f~; k= 
2 2 

(QI+Q2) 02-2QIQ20 

I And ~ = -- -  2 
P 

(4.1.~) 

I t  can be proved tha t  V(@) <V(1) when 0 < e < 1 
and 0 < p < 1. 
Then i t  f o l l o w s  tha t  
a. If there exist a solution (3(~0,1[then @=emi n , 

which gives Vopt(~-X)LMVU. 

b. If there does not exist such a solution, 
then @ . = O. m,n 
Case 2- -1 < 0 < 0 o t "~ - -  
Accord ing to (4 .~ .1 )  (3 = k +  V~-~ 
I t  can be proved tha t  V(O)--> V((3) when 0 < (3 < 1 
and -1 < p < O. 
Then i t  f o l l o w s  tha t  
a. I f  there  e x i s t  a s o l u t i o n  (3 ~ 0 , 1 ~  then 
(3 = (3rain' which g ives Vopt(?-R)LMVU. 
b. I f  there  does not e x i s t  such a s o l u t i o n ,  
then (3 . = 1. rain 
g. Es t imator  of  r a t i o  between t o t a l s  

- YLMVU 
RMV = =----- = 

X LMVU 

y2+Y12u + (I-(3)[YI - - )I 2(32 ( -Y )+p(X -X (I -p ) 2m 12u 12 12m 

XI+X12 ( l - p  ) 2u 1 12m - 2(32 12m-Y1 )+p (X 2-X 

" ~ I [N~ 2 (1__  I 2 2(I___ _ I 
V(RMv) 7 $2 n2 "~'2 )+R2NISI nl "~I ) - 

- N 2 $2 [n12 P] 
12 n17 (I+R2-2 R + 

+ N12 n1-"~ L" ~ ('1-p2(32)' 

For t h e  c a l c u l a t i o n  o f  0 . we h e r e  o n l y  c o n s i d e r  
0 < 0 < 1 .  m,n 

The minimum v a r i a n c e  o f  RMV is o b t a i n e d  be low 
by m i n i m i z i n g  V(RMV) w i t h  r e s p e c t  to  O. Th i s  
l e a d s  t o  a s econd  d e g r e e  e q u a t i o n  o f  O. 

A 

Let  R > 0 ,0  < P < 1 and V(O) = V(RMv). 

dr(e) 
Then dO' = 0 l e a d s  t o  

0 - k ,  k ° (.1 + R . 2 - 2 R o )  - L 
- 2 P (p+pR2-2R) p 

It can be proved that V((3) <V(1) when 0<(3<I, R>O 
m 

and 0<p<I. Then we can calculate optimum values 
of O. 
a. If there exist a solution 6@[0,I l- then 

(3 =(3rain' which gives Vopt(RMv). 

b. If there does not exist such a solution, 
then (3 . = O. mln 
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4.2 Design comparisons 
Th°e Va-Fi~ances" o f  the LMVU-est imators of  the 

design descr ibed above have been compared to the 
var iances of  the es t imators  of  the same paramet- 
ers under a simple design. This design is at t I 
a SRS of n un i t s  drawn from the N un i t s  of  U and, 
at t2 ,  a SRS of n un i t s  from the N' un i t s  of U' ,  
independent of  the sample at t I .  The fo l l ow ing  
s i m p l i f y i n g  assumptions have been done" QI=Q2=Q, 
0<p<1, n1=n2, n2/n=N2/N and n12/n=N12/N. The po- 
pu la t ion  variances of U, U', U1,U12 and U 2 are 
assumed equal and the sampling fractions are 
assumed ignorable. 

The estimators for the simple design and their 
variances are shown in Forsman and Garbs (1982). 

In table I (levels) and table 2 (differences) 
the reductions of variances by using the matched 
design described in section 2 instead of the 
simple design, are expressed as the ratio 

L-Vnpt(LMVU-estimat°r , matched sample design) 
Z 

. . . .  V(e'stimator, simple design) 

Table I- Z=1-Qp(levels) 

p 

0.99 0.80 0.60 0.40 0.20 

0.99 

0.90 

0.80 

0.70 

0.60 

0.50 

0.57 0.80 0.90 0.96 0.99 

0.57 0.80 0.90 0.96 0.99 

0.61 0.82 0.91 0.96 0.99 

0.66 0.84 0.92 0.97 0.99 

0.70 0.86 0.93 0.97 0.99 

0.74 0.88 0.94 0.97 0.99 

0.79 0.90 0.95 0.98 0.99 

changeable. For the estimators of levels there 
are also variance reductions when using the 
matched sample strategy, but they are smaller. 
5. Concludin@ remarks 

The variances of the LMVU-estimators for levels 
and differences and of the MV-estimators for 
ratios are minimized with respect to the relative 
size of the overlapping part of the samples at tl 
and t 2. The optimum size of this part differs 
depending on whether the estimation concerns 
levels or changes. In practise the size chosen is 
a matter of judgment. As for the comparisons made 
between the sampling design and a simpler one 
with independent samples a numerical example 
shows that considerable variance reductions are 
possible. This is true even if the change between 
t I and t2 is as large as 10 to 20 percent pro- 
vided that the correlation coefficient in the 
overlapping part of the population is large. The 
variance reduction is especially large for esti- 
mat ion of change. 
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Q(!+ ~~_p2) 
Table 2" Z=(I-Q) + 2 -- (differences) 

I 

0.99 

0.90 

0.80 

0.70 

0.60 

0.50 

0.99 0.80 0.60 0.40 0.20 

0.01 0.20 0.40 0.60 0.80 

0.02 0.21 0.41 0.60 0.80 

0.11 0.28 0.46 0.64 0.82 

0.21 0.36 0.52 0.68 0.84 

0,31 0.44 0.58 0,72 0.86 

0.41 0.52 0.64 0.76 0.88 

0.50 0.60 0.70 0.80 0.90 

The results are following: 
Large variance reductions can be achieved 

with the matched sample strategy for the estima- 
tors of change, even when the population is 
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