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1. Introduction 

The problem of estimating the mean vector 
of a multivariate normal population has been 
studied through the Bayesian framework, the 
James-Stein framework and the empirical Bayes 
framework with the result of obtaining esti- 
mators with smaller risk than the classical 
estimator (see Albert (1979), James and Stein 
(1961), Thisted (1976), James Thompson 
(1968)). Thompson studied the problem for the 
univariate case and did so from a still dif- 
ferent viewpoint. His result was an estimator 
which possesses smaller mean square error 
(MSE) for a portion of the parameter space. A 
commonality of all these estimators is that 
each of them can be expressed as a shrinkage 
estimator which shrinks from a classical esti- 
mator toward a prior guess of the parameter 
value or else some data based value. 

The purpose of this paper is not to simply 
extend Thompson's approach to the multivariate 
case. Rather, we assume a stratified normal 
population where the aim is to find estimators 
of the stratified mean of the population which 
offer some improvement over the usual esti- 
mator. Once these shrinkage estimators are 
found, their structural properties will be 
noted and, through a simulation study, their 
mean square errors will be studied. It should 
be noted that the most complete results and 
the simulation study deal with the case of two 
strata, however generalizations are given in 
most cases. 

We assume that each of the p strata can be 
modelled by a normal distribution Hence X.. 

• 13 
denotes the jth observation from the ith stra- 
tum where X~ comes from a normal population 
with mean U. and variance o~ • Furthermore, 
we assume t~e stratum weights, the proportions 
that the strata represent of the total popula- 
tion, are known and equal to ~. for 

1 
.... mean s i=1,2, ,p The stratified , which i to 

be estimated, is then U = y. ~iUi • The usual 

estimator of ~ is X = ~. ~.X. where 
I n~ 1 1 

.- X X.. and n i is the sample size from 
I n. 13 

the ithlstratum. We will use the notation V i 
to stand for q2./n. ,the variance of 
X i,and VX , t~e variance of X . 

In order to estimate U. , the component 
part of ~ , ± we consider estimators of the 
following forms : 

a) (1-ci)(Xi-@i)+@. I 

b) (1-ci)(X i- X)+X . (I) 

In the first ease, O. is some pre-conceived 
i 

value believed to be near the true value 
~ . In the second ease, we shrink toward 

t overall stratified mean. In any ease, the 
value of the shrinking factor c i determines 
whether the estimator is nearly the same as 

X. or if its value is nearer the value to 
which X. is shrunk towards. With this 
flexibil~ty built into the estimator of U~ one 
hopes to find the MSE of o~r estimators t8 be 
less than the variance of X . 

An added restriction could be put on these 
estimators by requiring the shrinking factors 
to take on a common value, i.e.,ci=c for 
i=1,2,...,p . Such a restriction leads to 
quite different shrinking factors from those 
of before and the resulting estimators of U 
can prove valuable in different settings than 

the estimators in (I). 
One should note that the values of the 

shrinking factors will depend upon unknown 

~i's and possibly unknown Vi's. The 
performance of the estimators, when we must 
substitute estimates of these unknown 
parameters, will be analyzed in section 5 by 
the use of a Monte Carlo study. In sections 3 
and 4, the estimators are studied in their 
pre-substitution form. 

2. The Development of the Estimators 

Before proceeding with finding these esti- 
mators, we must decide on a criterion upon 
which the estimators will be judged. Since we 
are generally dealing with biased estimators 
of U and ~i ' we attempt to minimize the 
MSE. We must find the value of c or else of 
c i that insures such a minimization. This is 
done by differentiating the MSE with respect 
to the shrinking factor, setting the result 
equal to zero and solving for the factor. 

If we define ~i as the subsequent estimator 
of Ui , we ar~ dealing with Z~i~i as the 
estimator of U . We can develop the esti- 
mator ~i which minimizes the component MSE 
of ~i or else we can choose to minimize the 
MSE of E~.6. directly. If we note that 

1 1 

MSE( I gi~i ) 
i:1 

p P P 

: ~ ~MSE~i+ ~ ~ ~i~jE(~i-~i)(~j-Uj), (2) 
i:i i:lj~i 

we can see that minimizing the component MSE's 
only assures us of minimizing the first sum on 
the right-hand side of (2). But minimizing 
the MSE of ~.~. assures us of minimizing the 
entire right-hand side of (2). 

Both of these possible criteria are pursued 
and comparisons of the results are made. When 
dealing with minimizing the component MSE's, 
the resulting estimators are called the com- 
ponent-wise estimators. 

3. Component-wise Estimators 

Considering the two forms in (I), we now 
determine the shrinking factors that minimize 
the component MSE's. As we are considering 
each component separately, there is no need to 
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consider a common factor c. 
The first estimator of U to be considered 

is given by 60C= E ~i((1-ci)(Xi-Si)+Si) • The 

subscript C denotes componentwise minimization 
and the subsequent 6i is the Thompson 
estimator. Thompson found the minimizing 
value of V,/ (V.+(p.-O.) 2) and found that 

beats Xi in estimat- this 6 i uniformly i i 
ing Pi • This do~s not mean, however, that 

6.= beats X in terms of overall MSE. 
E~i I 68C 

In order to show that 60C does often 
improve upon X note that, 

defining Ri: I , 

Vi+ (Pi-Si)2 

VX-MSE 68C : i:I ~iVi2 2Ri (1_(p_1)Ri(pi_Si)2) 

+ i!j (~iViRi(ui-Si)-~jVjRj(PJ-SJ))2" 

From this, one can see that 6 is better -- 8C 
than X if one of the following conditions is 
met: 

a) p=2, 

b) 18i-Pil <~vi/(p-2) for i=1,2, ... ,p, 

meaning that our prior guess for Pi is good or 
else the variation within a stratum is quite 
large when 8. is not close to Ui ' 

I 

esp~mall 
for thelstra~a w~ere 18i-~il> W Vi/(P-2) • 

Now consider 6=_= E ~i[(1-ci)(Xi-X)+X].~ 
With this estimat~ no prior guesses are 
needed in order to estimate U . If all 
the Pi's are nearly equal, one would 
expect 6~_ to do well as it shrinks to a 
common va~ue X . Should the Ui's be widely 
dispersed, it may still be better to shrink to 

than an arbitrary set of 8i's if these 
! 8 i s are poorly chosen. 
The superiority of 6~C to X will be shown 

explicitly when an equivalent estimator is 
developed later. 

Minimizing the component MSE leads to a 
shrinking factor 

ci:(1-~ilVi/ ((~i -~)2+V(g'-g)1 ) " (3) 

When the difference Xi-X has a large 
variance or when the variance_ of X i is small 
or when Ui is not near p , the value of c i 
will be nearly equal to zero which, in turn, 
makes_ the estimator of Pi shrink very little 
to X . This is an expected result because in 
all three cases the value of X i i~ likely to 
be a better estimator of Pi than X . 

The value of c i is always greater than zero 
and usually less than one, but, to be sure we 
are dealing with a true shrinkage estimator, 
we could further define c i to be 

min (1,(1-~i)Vi/ ((~i-~)2+V(Xi-X))) . 

This precaution is taken in the simulation 
studies. 

P 
4. Estimators Minimizing MSE i(~I Wi6i): 

4.1. The Common Shrinking Factor 

Let us find shrinkage estimators of the 
form E~i6 i that not only minimize the total 
MSE, but also assume a common shrinking 
factor, c. Notationally let the two forms in 
(I) be 6 and 6-- , respectively• 

Consi~eringXthe MSE of 68 ,we find 

MSE68: MSE( ~ ~i((1-c)(Xi-Si)+@i) ) 
i=I 

:E ((~-c)(~-~)÷~-~) ~ 

where 8: I ~.8.. But this is simply a 
special caselo~ the univariate Thompson 
estimator where c=VX/ (VX+(~-8) 2) • 

The MSE of 6~ gives 

MSE( ~ ~i((I-c)(Xi-X)+X) ) 
i=I 

:MSE( (I-c) ~ ~i (Xi -~)+~) 
i=I 

:MSE(X) : VX . 

Hence any constant value of c leads to 
X itself showing that we are unable to 

improve upon X with the form 6~ . 

4.2 Varying ShrinkingFaetors 

Again we minimize the MSE of E ~i6i , as in 
the previous section, but in allowing the 
shrinking factors to differ from stratum to 
stratum the results are not nearly as simple 
and automatic. It is of interest to compare 
the results of this section with those dealing 
with the component-wise estimators as both 
sets of estimators utilize shrinking factors 
that vary across the strata. 

Notationally, we define 60i and 6~i as the 
estimators for the two forms in (I) respec- 
tively, where the subscript i denotes the fact 
that the shrinking factors,c i, differ for each 
stratum. 

Beginning with 68i , we must minimize 
MSE 68i where 

MSE(68i ) : 

P 

E( ~ ~i((1-ci)(Xi-@i)+@i-~i )2) • 
i=I 

We find that I-c i equals 

P 

~i ( (Ui-0 i ) (~-~)- (~i-8 i ) J ~ i~j (pj-Sj ) (1-cj) ) 

2 (Vi+(Pi_ 8 )2) ~i i 

for i=1,2,...,p, 

creating a system of p equations and pun- 
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knowns. 
To clearly see the form of the shrinking 

factors, we study the case where p=2 and solve 

for 1-ci: 

vj#i(~i -e i)~-~ ) 
1-ci: ~( ViVj+Vi(~ j_~ j) ~ +Vj (~i_~ i) 2 ) for 

(i,j)=(1,2) or (i,j)=(2,1). 

When p=~ , giving our prior guess the mark 
of perfection, we find I-c=. to be equal to 
zero for i=I and 2. Thus @gi~ becomes 
simply ~ . 

Since ~i minimizes the total MSE 
while ~C only minimizes the sum of the 
component MSE's, we should expect the former 
to obviously dominate the latter. With p=2 

and ~1=@2=0 , we find 

MSE6~ c-MSE~ i 

~( (~ v~-~ v~ ) ~+v~ v~v~) 

2 2 2 (Vl V2 +V1~2+V2~1 +]J 1]J.2 ) (Vl V2 +V1~2+V2~ 12 ) 

> O. 

To show that_ both ~i and ~C perform 
better than X for p=2, we consider 

(IT i ~12 V i -IT2~ 1V 2 )2+V 1V2VX 

VX-MSE6~c= ~+V2p2 2 z > O. 
Vl V2 +Vl]J 1 +~ 1]'J 2 

Because of the extensive algebraic diffi- 
culties in dealing with the estimator 6Xi , we 
initially consider the estimator for the case 
p=2. Generalizations will be commented upon 
for p>2 later in the paper. 

The problem is simplified when one consid- 
ers the following: 

MSE(6~i):E(~((I-cl)(X~-X)+X) 

+~((~-c~)(~-~)+~)-~) ~ 

:E(~(c~-c~)(~-X~)+(X-~)) ~ . 
Here we see that only the minimizing value 

of c2-c I is needed. Any selection of c 2 and 
c I which gives the minimizing value for the 
difference would make ~Xi the optimal esti- 
mator. If the solutions for c I and c 2 were 
found by differentiating the MSE with respect 
to c I and c 2 individually, a system of two 
equations would lead to the same result as 
considering the difference c2-c I. 

The optimal value of c2-c I subsequently 
becomes (~2V2-~V~)/ I~2(V~+V2+(U~-U2)2)) 
and the minimized MSE can be expressed as 
MSE~.=VX-(~2V2-~IV~)2/ (V~+V2+(U~-U2)21. 

Th~s expression not only shows the obvious 
superiority of ~Xi to X , but also expresses 
the amount of superiority. The improvement is 
maximized with respect to the stratum means 
if ~=U2 , an_intuitively pleasing result as 
this is when X would seem to be the best 
expression to shrink toward. But the question 
of improving upon X versus not improving lies 

in the values of ~i' ~2' VI' and V 2 . These 
are the terms that, in a sense, dictate the 
relative weighting of the two strata. 

To demonstrate how the structure of 
6~i dictates how it works, let us recall that 

the form of ~i~ was shown to be 

~z~2(c2-cl)(X~-Xz)+X or more particularly 

IT2 V2-1T 1Vl 

(V1+V2+(~1_p2)z) (X1-X2)+X • (4) 

Should we _want to express ~Xi as an 
estimato~ of ~ ~hat is shrinking 
between X I and X_z , it is a_simple result to 
find that 6Xi equals (I-K) X I + KX 2 where 

K : V1+V2+(U1-p2)z and O<K<I. (5) 

Each of the preceding forms gives us 
reasonable insight into ~Xi • 

From (5) we _see that ~Xi shrinks more 
heavily toward X 2 if V I is relatively larger 
than V 2 or if ~2 is larger than ~1 • This is 
intuitively pleasing because we would expect 
smaller error when shrinking toward the sample 
stratum mean with smaller variance. m 
Furthermore, since we are shrinking toward X 
in ~Xi , it also makes sense that we are 
shrinking more heavily toward the stratum mean 
with larger stratum weight as this tends to 
reduce the bias in estimating U . Also note- 
worthy is that, as the difference between 
UI_ and ~2 expands to infinity, ~Xi goes 
to X . This demonstrates that the sensitive 
relationships of stratum variances and weights 
no longer matters in the face of such differ- 
ent stratum means. 

We also study the structure of ~Xi w~th 
respect to how its value compares with X by 
using expression (4). If we assume, without 
loss of generality, ~ha~ X I is less than X 2 , 
then the difference XI-X 2 is negative. In the 
case of equal _stratum_weights, ~Xi takes a 
value between X I and X when V 2 is larger than 
V~. Again this is a reasonable result as 
X I will contribute less variance to the final 

measurement of MSE. 
If we now assume equal values of V I and V 2 

and a 3alue of ~2 greater ~han ~, this will 
force X closer to X 2 than X I . When we in- 
spected (5) we saw where such a value of ~2 
would also force ~Xi closer to X2 than X I . 
But here we use (4~ to determine on which side 
of X the value ~f ~Xi w~ll fall. Although 
~Xi is nearer ~2 than X I ± we also see that 
~i is on the X I side of X . The estima- 

tor OXi in attempting to reduce MSE by being 
less biased, also attempts to minimize MSE by 
shrinking to the side of X where the smaller 
stratum weight will reduce variance. So 
~Xi is balancing variance and bias in its 

attempt to minimize MSE. 
The comparison of ~XC and ~Xi is now a 

relevant issue. When ~ = 2 3 ] i t  can be shown 
from (3) that ci= Vi/ ~j~VI+Vz+(UI-U2)2)j 

where (i,j):(1,2) or (i,j)=(2,1). With these 
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values for the two shrinking factors, we find 
the value of c2-c to be 

(~2V2-~IVl) / (~1~2(VI+V2+(UI 1-~2 )2)) . But 
this is the minimizing value for c2-c I for the 
estimator 6~ . This implies that, for p=2, 
the component-wise values of c I and c 2 not 
only minimize the sum of the component MSE's 
but the sum of the cross product terms in (2) 
as well. 

To study the case of 6~i for p> 2 and to 
learn more about the relationship be- 
tween 6~i and 6XC we now consider: 

MSE6~i= E( ~ ~i ((1-ci)(Xi -~)+~- Pi ) )2 
i=i 

• . ]_ j j ]_ z j 
i= 1 J:~l 

Again we must concentrate on solving for the 
minimizing values of the differences of 
shrinking factors. After differentiating, we 
get a system of{~)equations from Which we hope 
to find unique solutions for the p - I unknown 
values of ci-c j (i=j+1,j=1,2 .... ,p-l). 

A typical equation in the set results from 
differentiating with respect to c2-ci: 

2~2t~22(c2-ct)E(Xt-X2)2 

+ 2~ I ~2E(XI-X2) (X-p) 

+ 21f~2 ( k~l 1 - ~ k ( C k - C  )E(]~I-X2)(%t-X k) ) 
k~2 

k~2 

+ 2~ t~2 (k~ l~k~C l -Ck )E(%z-X2) (Xk -X1) )  =O- 
k,l~1 
k,l~2 

Simple examples can be constructed to show 
that subsequent values of ci-c. (i=j+1) can be 
solved for and that they do no~ agree with the 
differences of the factors obtained from 
component-wise minimization. So the perfect 
relationship between the estimators 
6~i and 6~C ceases for p>2. 

In our previous discussion it was pointed 
out how 6~i uses the relationships of the 
different strata in determining the values of 
the differences of the shrinking factors. But 
when p=2, the expression (I-c i) (Xi-X)+X 
in ~XC immediately involves the special 
relationship between the two strata and 
hence ~XC is able to account for the cross- 
product terms in (2) in this way. But 
(I-c i) (Xi-X)+X does not sufficiently weigh 
the relationships between all the strata when 
p>2 , and hence there is a discrepancy 
between ~XC and ~Xi for p>2 . 

To utilize the above system of equations in 
solving for ci-c~ (i=j+1), we must, in 
practice, substitute estimates for the unknown 
parameters and use a computer routine to solve 
for the factors. From this solution, the 
estimator ~Xi can then be formed. 

5. Monte Carlo Results for p=2 

So far, we have discussed shrinkage estima- 
tors of U that perform better than the usual 
stratified sample mean. These estimators, 
however, depend upon unknown population 
parameters. In fact, they depend upon the 
stratum means which are essentially what we 
hope to estimate. In order to use these esti- 
mators in practice, sample statistics must be 
substituted for the unknown parameters. The 
ensuing estimators are not necessarily going 
to maintain all the good properties that we 
have discussed, but will still show merit 
themselves. Because the distribution of these 
more practical estimators are difficult to 
derive, we must depend upon a simulation study 
in order to judge performance. 

Five thousand sets of sample stratum means 
and variances are generated (for the case 
p=2), from which the expected values of the 
estimators and their MSE's are approximated. 
We find that the simulated MSE's of the 
estimators, when stratum variances are assumed 
unknown, are only from I to 4 percent larger 
than the MSE's when only the stratum means are 
assumed unknown. 

Let us first inspect the performance of 
~Xi " First we check its behavior for 

different settings of stratum variances and 
weights. Then, from these results, we 
compare ~Xi to both ~C and ~i , where we 
assume (VI,V 2) is known, 01=e2=0 and n1=n2=10. 
To do this we use the information on Table I. 

When (u u2) =(0,2), the value of XI will 
clearly beiless than X_ most of the time so 

z 
the setting of the discussion on (4) and (5) 
exists. If we let the location of the star 
(*) on the graph show where the average 
simulation value of 6Xi lies, we can see that 
this location is on the left side of the 
respective value of U when ~2V2-~IV1 is 
positive and on the right otherwise. This 
agrees with our discussion involving (4). 

Also note that the starred location is 
closer to 2 than 0 whenever ~_ is larger than 
I/2. Furthermore, this locatzon seems to be 
tugged to the left when V I is small and to the 
right when V 2 is small. This shows the 
estimator is favoring, to some degree, the 
stratum with smaller variance. On the fifth 
line the starred location is at .973 which is 
very reasonable considering that p=1 and that 
the strata show balanced weighting with 

! respect to the ~i s and the Vi's. The com- 
ments of this paragraph agree with our discus- 
sion involving expression (5). 

When (~2V2-~tVl)2 is_ large, 6~i does its 
best improving upon VX since 
MSE6~i=VX-(~ zv -~ V I )2 /(V1+V +(~I_U $)2) • 

This is upheld ~n [he simulatign studzes as 
columns 5 and 6 in Table I show. Note that, 
even under_total balance of the strata, 6~i 
dominates X . 
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Also note that the dotted lines give some 
indication of the bias of the estimator ~Xi " 

To compare ~Xi to the estimators 
69C and 6~i , we see from columns 7 and 8 of 

Table I that ~Xi usually performs worse than 
either of the other two. This result is not 

=0 was used surprising considering that 61 62 
and that the true means (UI,~ 2 =(2,0) are 
reasonably close to (0,0). 

When the values of the means are not close 
to (0,0) relative to the variation within the 
strata, we can expect ~C and ~6i to lose 
their dominance over ~Xi " 

If we set (~I'~2)=(3'2)' (V1'V2)=('3''6)' 

(~,~):(½,½), (~,e~):(o,o) 
and (n l , n2 )= (10 ,10 )  , we f i nd  

MSE~-- 
MSE6xi - .8090 and Xi .7526 
MSE68c MSE66i 

In relation to (VI,V2), the stratum means are 
far from (6~,~ 2) and subsequently 6--.Xz not only 
dominates X but also dominates 6^^ and 6^. 

U~ i " 

If we set (~,~2) = (4,2) and (VI,V2~ = 
(48,60) while holding the other values the 
same as before, we find 

MSE6~i MSE6~i 
= 1.5841 . MSE~c = 1.7947 and MSE6~i 

Here the means are more distant from 
(@i,@2) than before, yet they are much closer 

relative to the stratum variances. 
To more graphically represent the 

performance of these estimators, Figure I 
considers the case of equal stratum means, 
(V1,V 2) = (3.75,5), (~i,~2) = (I/2,1/2) 
and (nl,n 2) = (8 12). If we choose to utilize 
Neyman allocation for these choices of (VI,V 2) 
and (~I,~2) , we would find (8,12) to be _the 
optimal choice of (~i,~2) . Therefore, X not 
only represents the classical stratified 
estimator, but also the optimal choice of 
X based upon Neyman allocation. From this 

graph we now can make clear statements on the 
performances of the estimators. 

It was known previous to the simulation 
work that ~Xi dominates X and that 
~@i dominates ~@C which dominates X . From 

Figure I it is clear that the estimators 
perform much worse when (U ,~ ) is assumed 
unknown. But also assumin~ u~known stratum 

variances adds very little further loss. 
As to be expected, ~@i and 6@C perform well 

when (~ ,U ) is near the value ,~2t 2 = ( o , o )  . 

(@Also" note tha t  the MSE 6Xi does not change 
at all as the common value of p changes. 

(~2V2-~iVl)2 
Since MSE (~i) = V(~) - Vl+V2+(~l_~2)2 and 

Figure I assumes U1=~2 and constant values for 
the stratum variances and weights, this result 
is expected. 

Finally, note that the simple Thompson 
estimator (I-c) (X-@)+@ does as well or better 
than many of the estimators in this paper for 
many values of the common mean U • Again it 
must be pointed out that the stratum weights 
and variances are either equal or near 
equal. The advantage of these estimators over 
Thompson's is that a different shrinking 
factor is employed for every stratum. So one 
would expect the best improvement when the 
strata are quite different in weights and 
variances. Columns 7,8,and 9 on Table I show 
clearly that the Thompson estimator of ~ is 
consistently beaten when the strata are 
reasonably different in this way. 

6. Conclusion 

Our estimators do improve upon X for at 
least a portion of the parameter space. The 
estimators ~@i and ~@C perform well if the 
value of (81,~ ) is relatively near the 
actual (UI,~2 2. The estimators also fare 
well against a Thompson-type estimator 
of ~ and even the estimator X under Neyman 
allocation. 
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TABLE i 

(~i '82 ) (V I ,V 2) (~i, ~2) U 

1 3 
(0,2) (5..0,1.0) (~,~) 1.5 

1 3 
(0,2) (3.0,3.0) (~,~) 1.5 

1 3 
(0,2) (1.0,5.0) (~,~) 1.5 

i i 
(0,2) (1.0,5.0) (~,~) 1 

i i 
(0,2) (3.0,3.0) (~,~) i 

MSE OF SHRINKAGE ESTIMATORS RELATIVE TO THE 
USUAL ESTIMATOR UNDER DIFFERENT CONDITIONS 

~LINE GRAPH~ 
MSE _._~ MSE ~ MSE ~eC MSE 

(~2V2_~IVI) 2 ei 
0 

. . . .  I .5 1.0 1 5 2.0 
vx vx vx vx " I ! 

.9589 .9841 .9238 1.0520 
16 

36 .9211 .7925 .8123 .8842 ~- 
16 

196 . 7708 .6619 . 7140 . 7543 ~ . . . .  i 

16 

64 
16 

0 
16 

.8487 .6727 .6774 . 7025 

. 0750 . 7004 . 6577 . 7025 

FIGURE i 
MSE OF SHRINKAGE ESTIMATORS FOR THE STRATIFIED MEAN for UI=U2=U and VI=3.75, V2=5 
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