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ABSTRACT
This paper deals with the probiem of selecting
the t best of n independent and identically dis-
tributed random variables which are observed se-
quentially with sampling cost ¢ per unit. Assume
that a decision for acceptance or rejection must
be made after each sampling and that the reward
for each observation with value x is given by
px - ¢ where p is 1 if the observation is accept-
ed or 0 otherwise. The optimal decision procedure
(strategy) for maximizing the total expected re-
ward is obtained. The critical numbers which are
necessary to carry out the optimal decision pro-
cedure is presented by two recursive equations.
The Timit values of the critical numbers and the
expected sample size are also studied.
KEY WORDS: Sequential decision problem, total
expected reward, dynamic programming, sampling
cost.
1. INTRODUCTION
Let X],‘Xz, e

dent and identically distributed (i.i.d.) random
variables, each with cumulative distribution func-
tion (c.d.f.) F(x), and E(X)<e. It is assumed
that X's are observed sequentially and that the
sampling cost for each observation is a known con-
stant c.

This paper deal with the problem of selecting
the t best of X's. Indeed, the sequential deci-
sion model studied here is the one for which a
decision for acceptance or rejection must be made
after each sampling. Once rejected an observation

can not be reconsidered. When an observation X3=

X; appears, the reward is given by piX;-c where

p1=1 if the observation is decided to be selected,

, Xn be a sequence of indepen-

and pi=0, otherwise; the p's have sum t, l<t<n,

When t observations are selected, the search pro-
cess should be terminated.

The aim of this paper is to find an optimal de-
cision procedure (strategy) which maximizes the
total expected reward. Problems similar to the
one described but with t=1 have been treated by
many authors, such as MacQueen and Miller (1960),
Sakaguchi {1961), Chow and Robbins (1961), DeGroot
(1970) and Dhariyal and Dudewicz (1981) etc.. On
the other hand, in a paper by Derman, Lieberman
and Ross (1972), a sequential stochastic assign-
ment model which concerns with the optimal assign-

ment of n men (pi’s), 0<p;<T, to the n jobs (Xi's)

is presented and their results have been extended
by Albright (1974, 1976 and 1977). However, these
papers discussed the assignment problem only,
hence the sampling cost was not considered.

In Section 2, the problem is formalized and
an optimal decision procedure is described and
proved. The formulas for the optimal total ex-
pected reward and for the critical numbers which
are necessary to carry out the procedure are ob-
tained. The 1imit values of the critical numbers
as n approaches to infinity, and the expected
sample size {stopping time) are discussed in
Section 3 and 4, respectively.
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2. OPTIMAL DECISION PROCEDURE

Suppose that the search process progresses
through a series of stages S(j,m), ij<t, 0<j<m,
O<m<n. At initial stage S(t, n) T<t<n, the deci-
sion-maker observes an observat1on X=X and needs

to make a decision between acceptance and rejec-
tion. The search process enters stage S{t-1,n-1)
with reward x-c if the observation is accepted,
and enters stage S(t,n-1) with reward -c if it is
rejected. Using the functional equation technique
in the theory of dynamic programming, Bellman(1957)
we can easily determine the structure of the opti-
mal decision procedure for the problem.

Let us define two sequences of functions:

rj m(x) = the total conditional experted reward

obtained by using an optimal decision procedure
with the first observed value x at stage S{(j,m),

and im = the expectation of s, m(X)

Here 0<J<m j<t, O<m<n.

The fo]1ow1ng theorem which will be proven by
induction gives an optimal decision procedure that
maximizes the total expected reward for any t,n
and c(>0). For simplicity, all X's will be assumed
to be either discrete or continuous random vari-

ables. Let us denote F(d~) = P(X<d). It is clear
F(d) = F(d~) if F is absolutely continuous.
Theorem 1. 1In any S(t,n), 1 <t <n, c >0, stage

search process there exist numbers

- = dO n < d],n <. < dn—],n <d

such that the optimal choice at the 1n1t1a1 stage
S(t,n) is to select the random observation X] = X

= 4+ o

and enters stage S(t-T,n-1) if x > dy_t n other-

wise reject it and enters stage S(t,n-1). The
search process will be terminated at stage S{0,m)
for some m, 0 <m < n-t, i.e. when t observations
are selected. Furthermore, if an optimal decision
procedure is followed, the optimal expected reward
for a S(t,n-1) stage search process is

t

r = 5 d . . (M
t,n-1 j=1 n-j,n
Proof: Suppose that there exist numbers d
j=l,....m+15 m=1,...,n-1, such that the opt1ma1

choice in the 1n1t1a1 stage of a S(j,m) stage
search process is to select the observation x and
enters stage S(j-1,m-1) if x > dy e otherwise

reject it and enters stage S(j,m- 1) Then in the
S(t,n), 1 < t < n, stage search process the total
cond1t1ona] expected reward given X7=X under an

optimal decision procedure is
rt,n(X) = mgx {(x + rt-1,n-1)1{xzd}(x) +

rt,n-11{x<d} (x)} -c. (2)

Its expectation, the total expected reward, is

max {
>

re1,n-1{1=F(

r =

t.n xdfF(x) +

rt,n-1F(d ) +

d })} - c.

—
w
~—



For any j,n, 1 < j < n-2, let dn-' be defined as

Jsh

the expected incremental value of the total expect-
ed rewards under an optimal decision procedure be-
tween S(j,n-1) stage and S(j-1,n-1) stage search
processes, that is

" rj 9n"‘]

(4)
Then the total expected reward ry n-1 of a S(t,

dn-3,n = T5o1,n-1.

n-1) stage search process is given by (1).

On the other hand, no matter X's are discrete
or continuous random variables, the right hand
side of (3) can be rewritten as

[ d—
mgx {é xdF(x) + {m (rt,n-1 - rt_1,n_])dF(x)
ey ny) T C (5)

It is easy to see that
d= Tton-1 = Tt-1,n-1 7 dn—t,n (6)

gives a maximum value of (5). Because the result

is trivial for case n=1 completes the induction.
The following corollary indicate how to obtain

the critical numbers dy .5, 1 <t <n+l, 1 <.

Coroliary 1. Define dO,n = - o, dn,n = + «,Then
dn n -
dn,n+] - Id x dF(x) + dn—],nF(dn-1,n)'C
n-1,n (7)
and d:
= N X dF(x) +d, , F(dT ., )+
dine =S g " X AP0 dy Ly (F(AT

i-1,n

di’n(]-F(di’n)) (8)
for i=1,...,n~1, where ~ =<0 and «-0 are defined
to be 0.

Proof: Recall that d =

n-j,n " Tia1,n-1°

T<jsn2,2<nandrg, =0 forall m Hence

"5,n-1

we have by induction that

dn,n+1 = r],n “"o.n T M,n
= é x dF(x) +ryp o gF(d 4 )+ 0
n-1,n
(1-F(dr_y D¢
= é x dF(x) +d g (Fld 4 ) -c
n-1,n
and
4 n+1 = Tntl-i,n T Tneiyn
= g x dF{x) + di_]’nF(di_1’n) +
i-1,n
Moignel T € (X ARG g (PG sy

i,n
~c)
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Lemma 2.

d
1,N
f x dF(x) +dy_q 4

Fldi 1,0

) +

l"n—i,n-]
i-1,n

" Maei-lna T di,nF(di,n)
jd'l oM
= di-] ﬁ dF(x) + di-],n

; n)) for i=1,...
L
Under any affine transformation Y = aX + b
where 0 < @ <o and - « < b<w and ¢' = ac, it
can easily be shown by induction that the critical
numbers bi n corresponding to Y's satisfy the
k]

= ad,
i,n

)+ d.

F(d T,N

i-1,n (1-F

(d ,n-1.

relations b +b forall 1<i<n

i,n

where di n's are the critical numbers associated

s
with X or distribution function F and sampling
cost ¢ per unit. Hence if Y's have location-scale
parameters p and ¢ where 0 <o < .and -eo<y<e |,
and the sampling cost per unit is c, then we can
standardize Y's and use the critical numbers
di,nls based on the standardized distribution and

new sampling cost c' =
the search process.
3. BEHAVIQOR OF d1 n'§

H]
Some basic behavior of the di n‘s, the critical
b

c¢/o per unit to progress

numbers, are studied in this section under the
assumptions ¢ > 0 and the c.d.f. of X's has finite
mean.

Lemma 1. £ d
i=1

Proof: The proof will be omitted since it is

straight forward induction proof on n by using

the recursive formulas (7) and (8).

For any fixed value of s, 0 < s <n,

is increasing in n. Note that by

is decreasing in s for fixedn

= n{E(X) - ¢) for all n. (9)

i,n+]

dn—s,n+1
Theorem 1 d

n-s,n+l
Proof: We will prove this Temma by using induc-
tion on n. First we consider the case s = 0. In

this case, let bn = d then when n = 1

n,n+1?

by = x dF{x) - ¢ > - = = by.

-00

Suppose b, _; > b, 5 is true for some n > 2, then

x dF(x) +
n-1

by = J bp1Flbpq) - ©

- by b

= Ib x dF(x) - f x dF(x) + [
n-2

bn-2

n-1

bn_]dF(x) -cC

bn-2 ba-1
x dF{x) + [ bn_1dF(x) + jb
bn-2 -0 n-2

(byoy=x) dF(x) - ¢

o

-

- b
> fy x dF(x) + [ "2 b
n-2

n-1.

nop 9F(x) - ¢

-0

=b



The inequality above is a result of the induc-
tion hypothesis. Therefore the proof is completed
for the case s = 0.

For the case s # 0, 1 <'s < n, the proof is
almost the same, hence it is omitted,

Let us now introduce a nonnegative, convex and
strictly decreasing function

A(X) = [ (y - %) dF(y),
X

(10)

- 0 < X<oo

Because

A(x) = ém t dfF (x + t)

o

- {
0

(1 - F(x+t)) dt

we have

A(x) » 0 as x + =, (1m
Theorem 2. If ¢ > 0, then the sequence dn,n+1
converges and the 1imit value o is given by

A(x) = c. (12)

Proof: With function A(x), (7) can be rewritten
as dy ey = Ad Ly )+ dy g e, foralln > 1,
or (13)

dynel ~ 91 T A(dn-1,n)'c’ for all n > 1,

(14)

By Lemma 2, d is increasing in n, so the left

n,n+1
hand side of (14) is nonnegative for all n. On the
other hand, if dn n+1 diverges, then dn nty T 38

n > o, This implies the right hand side of {14)
has 1imit value -c¢ <0, contradicting what we just
proved. Therefore dn n+] converges with Timit

value, say a. Let n » = on both sides of (14),
the proof is finished.

Example:
(a) Standard normal distribution N(0,1)

o(a) + ad(a) = (15)
where ¢ and ¢ are p.d.f. and c.d.f. of standard
normal distribution, respectively.

(b) Exponential distribution () with p.d.f.

A exp(-Ax)

o = -A_]ln(kc).

(c) Uniform distribution U(0,1)
1
=1 - (2c)*

(d) Poisson distribution with frequency

(16)

(7)

function e_klx/x!

APy (X2a) - aPy (X >0+ 1) = (18)
Theorem 3. For any fixed nonnegative integer s,
1f ¢ > 0 then d converges to o as n » o,

n-s,n+1 s

Proof: Since dn n+l has Timit value o and
dn-s,n+1 is less than or equal to dn,n+1f°r all n,
we have

Tim dn—s,n+1 = d(s) < o for all fixed s,

N>
0 <s <n. and d(s) is decreasing in s. By (7)
and (8] we have
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d(s-1) _
a(s) = Jye) x OFG) + d(IF(A(s)7) +
d(s-1) (1-f(d(s-1)7))
that is
d(s-1)
0="4(s) (x-d(s)) dF(x) + (d(s-1) - d(s))

(1-F(d(s-1)7)).

But this can be true only if d(s) = d(s-1). Since
the value of s is arbitrary, the proof is finished.

4, EXPECTED STOPPING TIME (SAMPLE SIZE)
Let random variable N be the stopping time

(or, equivalently, the samp]e size) for which the
search process started at stage S{t,n) will be
terminated under the optimal decision procedure.
If the sampling cost ¢ for each observation is
positive and is less than E(x), then the expected
stopping time E(Nt n) is given by

=R

- cE(Ny ) (18)

rt n t.n

where rt n is defined as before and R N is the

total expected reward which is ca1cu1ated as if
there were no sampling cost.

The following theorem gives a recursive formula
for calculating E( ) for all 1 <t < n.

Theorem 4, NO N 0 N = n and
E(N, o) = Fldr_, n)E(Nt,n-l) (-F(dr )
EN t-1,n-1)
+149f 1 <t <n-1, (19)
Proof: N0 .n = 0 and N N = n are trivial. It can

be seen that for all 1 <t <n-l

Ren = fdn txndF(x) R naFldpe ) *
Rt-],n-1(] F(dn t, n)> (20)
From (18) and (20) we have by induction
CE(Nt,n) = Rt,n " Tt
B (Rt,n-1 i rt,n—1)F(dn t, n)+
(Rt-1,n-1 B rt-],n-1)(]'F(dn—t,n))+C
= CE(Nt,n-1)F(dr—1—t,n) * CE(Nt-],n-1)
(1-F(dn_t’n)) +C.

Dividing both sides by ¢ we have (19).

Corollary 2. If X's have an uniform distribution
U(0,T), then

B dn-t,nE(Nt,n—1) O - dg )

t,n
E(MNg_y pg) + T
Example: If X's are U(0,1) distributed and c=0.1,
then E(N],S) = E(N],4)d4,5 + 1

= (E(Ny 3)d3 4+ 1)dy 5
= (({dy o + N)dy 5+ 1)dg 4 +
1.9916 = 2.

+ 1

1)d + 1

4,5



= E(N; 3)dy 4+ E(Ny 5)(0-dy 4) + 1
= (2dy 5+ (dy H)(0-dy 3) + T)d, 4 #
((1+d]’2)d2’3 + 1)(1-d2’4) + 1

3.0545 = 3,
The critical numbers used in this example are
listed in Table I.
Let a4
Bt = Tim Rt,n
n-oo
then (12) and (20) gives

2,4)

"

and v, = lim E(Nt n)

n-<o

oo

[ x dF(x) / | dF(x)
o
1 (1 - Fla™)

Although our assumptions and goal are different
from Chow and Robbins (1961), the results about
the Timit values of R and E(N1 n) are the same.

(21)
(22)

B] =
and o
Y )-].

If t # 1 but fixed and small then from (20) we

have g -8y = [T x dF(x) / [ dF(x)
o o
hence
By = tBy and vy, = tyq. (23)
5, COMMENT:

The main results of Theorem 1 and Corollary 1
go through in the same manner when the cost ¢4 of

sampling X; are unequal and X's are independent
but not necessary identically distributed.

T,n
TABLE I
Critical values d(j,m) under U{(0,1) distribution with sampling cost C per unit
J
1 2 3 4 5 6 7 8 9 10
C =0.05
= 2 0.4500
m= 3 0.3488 0.5512
m= 4 0.2879 0.4601 0.6019
= 5 0.2465 0.3957 0.5266 0.6312
m= 6 0.2161 0.3478 0.4663 0.5707 0.6492
m= 7 0.1928 0.3107 0.4180 0.5165 0.6013 0.6607
= 8 0.1742 0.2810 0.3789 0.4705 0.5539 0.6232 0.6683
= 9 0.1590 0.2567 0.3466 0.4316 0.,5112 0.,5824 0.6392 0.6733
m=10 0.1464 0.2364 0.3195 0.3985 0.4737 0.5435 0.6045 00,6509 0.6767
m=11 0.1357 0.2192 0.2964 0.3702 0.4409 0.5080 0.5695 0.6218 0.6596 0.6789
C = 0.1
m= 2 0.4000
m= 3 0.3200 0.4800
= 4 0.2688 0.4160 0.5152
m= 5 0.2327 0.3656 0.4690 0.5327
m= 6 0.2056 0.3258 0.4259 0.5008 0.5419
m= 7 0.1845 0.2939 0.3883 0.4661 0.5205 0.5468
= 8 0.1675 0.2677 0.3561 0.4328 0.4936 0.5328 0.5495
m= 9 0.1534 0.2459 0.3285 0.4026 0.4655 0.5127 0.5404 0.5510
m=10 0.1417 0.2274 0.3048 0.3755 0.4382 0.4836 0.5258 0.5452 0.5518
m=11 0.1316 0.2116 0.2842 0.3514 0.4127 0.4657 0.5074 0.5348 0.5482 0.5522
C=0.2
= 2 0.3000
m= 3 0.2550 0.3450
1= 4 0.2225 0.3180 0.3595
m= 5 0.1977 0.2922 0.3454 0.3646
m= 6 0.1782 0.2691 0.3285 0,3578 0.3665
=7 0.1623 0.2487 0.3107 0.3477 0.3633 0.3672
= 8 0.1491 0.2310 0.2934 0.3356 0.3578 0.3658 0.3674
m= 9 0.1380 0.2154 0.2770 0.3223 0.3501 0.3629 0.3668 0.3675
m=10 0.1285 0.2017 0.2619 0.3087 0.3407 0.3583 0.3654 0.3672 0.3675
m=11 0.1202 0.1896 0.2479 0.2954 0.3303 0.3522 0.3628 0.3666 0.3674 0.3675
TABLE II
Critical values d(j,m) under N{0,1) distribution with sampling cost C per unit
J
1 2 3 4 5 6 7 8 9 10
C=0.05
m= 2 -0.0500
= 3 -0.4244 0.3244
m= 4 -0.6466 -0.0354 0.5320
m= 5 -0.8028 -0.2606 0.1934 0.6701
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-0.
.0188
.0992
.1679
.2278
.2808

-1
-1
-1
-1
-1

-0.
-0.
-0.
-0.
-0.
.0274
.1065

-1
-1

-1.
.2333
.2857

-1
-1

-0.
-0.
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-0.
.0464
.1226
.1882
.2457
.2967
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-1
-1
-1
-1
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9224

1000
4509
6643
8160
9329

1742

2000
5069
7026
8448
9558

-0.
-0.
-0.
-0.
-0.
-0.

-0

-0.
-0.

-0

0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

4231
5493
6520
7381
8121
8768

.2509
-0.
-0.
-0.
.5627

0726
2846
4404

6628
7471

.8198
-0.

8835

1069
1521
3373
4791
5929
6873
7677
8374
8988

-0.
-0.
-0.
-0.
-0.
-0.

-0

0.
0.
-0.
-0.
L3719

-0

-0.
-0.
-0.

Critical values

.9500
.6133
.4584
.3677
.3077
.2649
.2327
.2076
.1875
.1709

.9000
.5934
.4476
.3608
.3029
.2613
.2300
.2054
.1857
.1695

.8000
.5507
L4234
.3452
.2919
.2532
.2237
.2004
.1816
.1661

OO CoCOoOoOoO— oo CcOoOoO0OoO—

COOOOOOO -

2

.2867
.8787
.6754
.5511
.4665
.4050
.3581
L3211
.2912

.2066
.8466
.6579
.5400
.4588
.3993
.3538
.3177
.2884

.0493
771
.6185
.5145
.4410
.3861
.3435
.3096
.2818

OCOOCOCOO—~— OO0 ——

OO OOOOO—-

0276
1903
3183
4233
5119
5884

.4369
L1457
-0.
.2116
-0.
-0.
-0.
-0.

0576

3345
4362
5226
5974

2547
0430
1250
2603

4662
5474
6185

-0
-0

0.
0.
0.
-0.

-0

.3528
.1382
.0227
-0.

1505

.2562
-0.

3459

.5549
.2946
.1020
-0.
-0.
-0.
-0.

0480
1696
2713
3582

3391
1687
0193
1071

.2145
-0.
-0.

3069
3875

TABLE II (continued)
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0.
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-0.
-0.
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OO O

OO OO

cooOoo
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.4538
.3024

.7393
.5568
.3979
.2641

L4467
.3630
.2659
L1697

[N N

[ No el

0
0
0

.9566
L7129
.5265

7729
6116
.4636

L4615
.3965
.3142

0.9970
0.7689

0.7989
0.6567

0.4714
0.4214

1.0308

0.8194

0.4782

d(j,m) under EXP(1) distribution with sampling cost C per unit

3

.5129
.0737
.8426
.6968
.5955
.5207
.4630
A7

.4058
.0303
.8189
.6818
.5852
.5131
.4572
4124

.1995
.9355
.7648
.6469
.5607
.4950
L4432
L4014

OO —— OO0 wt—

OO0 OO—~—

4

.6832
.2297
.9808
.8200
.7064
.6214
.5552

.5510
L1752
L9511
.8012
.6934
L6119
.5479

.3008
.0556
.8823
.7567
.6623
.5889
.5303

OO — — —

oo Oo——

OO O = et i
e a4 e & e e
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7703
4733 0.8470
2657  0.5689
1076 0,3684
0193  0.2135
1248 0.0882

C = 0.1

.6363
4045 0.6952
.2231  0,4894
.0781  0,3193
.0412 0,1798
1420  0,0632

c=0.2

.3912
.2555  0,4247
1245 0.3176
.0079  0.2042
.0942  0.0978
.1837  0.0017

TABLE 111

J

5 6

€ =0.05
8190
3599 1.9312
0991 1.4716
9273 1.2027
8042  1.0225
7111 0.8919

¢=0.

.6630

.2944  1.7526

.0633  1.3951

.9047  1.1608
.7886  0.9961

.6997  0.8738

C=0.2

.3731

1503 1.4265

.9795  1.2267

.8504  1.0618
7507 0.9318
6718 0.8289

— e N

—— o —t

—_— 2

.0261
.5693
.2949
.1083

.8259
.4818
.2468
.0780

.4666
.2892
L1321
.0033

—_

—_—

8

.1080
.6560
.3779

.8870
.5575
.3236

L4973
.3410
L1929

9

2.1795
1.7338

1.9385
1.6243

1.5210
1.3841

10

2.2426

1.9824

1.5395



TABLE IV
Critical values d(j,m) under Poisson distribution with parameter 1,0 and sampling cost C per unit

1 2 3 4 5 6 7 8 9 10
C=0.05
= 2 0.9500
= 3 0.6005 1.2995
= 4 0.3796 0.9322 1.5382
= 5 0.2400 0.7289 1.1173 1.7139
=6 0.1517 0.5490 0.9313 1.2749 1.8431
=7 0.9059 0.4028 0.7906 1.0474 1.4251 1.9382
=8 0.0606 0.2899 0.6480 0.9355 1.1472 1.5607 2.0082
= 9 0.0383 0.2056 0.4163 0.8297 1.0152 1.2564 1.6774 2.0612
=10 0.0242 0.1440 0.4020 0.7144 0.9414 1,0789 1.3677 1.7676 2,1099
m=11 0.0153 0.1000 0.3071 0.5995 0.8579 0,9993 1.1552 1.4733 1.8378 2.1547
C = 0.1
= 2 0.9000
= 3 0.5689 1.2311
= 4 0.3596 0.9025 1.4379
= 5 0.2273 0.7028 1.0798 1.5901
= 6 0.1437 0.5279 0.9118 1.2147 1.7020
=7 0.0908 0.3865 0.7705 1.0243 1.3434 1.7844
=8 0.0574 0.2778 0.6293 0.9220 1.1086 1.4600 1.8450
=9 0.0363 0.1967 0.4999 0.8143 1.0000 1.2014 1.5617 1.8896
m=10 0.0229 0.1377 0.3884 0.6987 0.9317 11,0532 1.2966 1.6484 1.9224
m=11 0.0745 0.0955 0.2962 0.5845 0.8460 0.9839 1.1175 1.3896 1.7208 1.9466
C=0.2
m= 2 0.8000
m= 3 0.5057 1.0943
= 4 0.3197 0.8431 1.2373
= 5 0.2021 0.6505 1.0050 1.3424
m= 6 0.1277 0.4855 0.8727 1.0941 1.4198
= 7 0.0807 0.3539 0.7303 0.9781 1,1802 1,4768
= 8 0.0510 0.2534 0.5918 0.8869 1.0395 1.2586 1.5187
m=9 0.0323 0.1790 0.4673 0.7784 0.9688 1.0974 1.3273 1.5495
m=10 0.0204 0.1250 0.3613 0.6639 0.8988 1.0143 1.1582 1.3860 1.5722
m=11 0.0129 0.0865 0.2743 0.5526 0.8124 0,9665 1.0523 1.2184 1.4352 1.5889
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