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ABSTRACT. Suppose a sample survey is taken to 
learn about the proportion of a population in 
favor of a particular statement. A significant 
proportion of the sample does not respond to the 
survey and a priori the experimenter feels that 
the groups of respondents and nonrespondents 
possess different attitudes towards the statement. 
A prior distribution is developed which can 
reflect vague prior beliefs about the differences 
in the attitudes of respondents and nonrespondents. 
This distribution is used to develop an interval 
estimate of the population proportion. 
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i. INTRODUCTION. Suppose a mail survey is sent 
to learn about the attitudes of a population 
toward a particular subject. Let n denote the 
total number of surveys sent out and let n (n s) 

r 
denote the number of people who respond (don't 
respond). The n respondents are classified 

r 
dichotomously into the two groups "favorable" and 
"unfavorable"; let nfr (nur) denote the number 

observed in the favorable (unfavorable) group. 
The observed counts and corresponding probability 
model are shown below. 

Resp. Nonresp. 

Fav. nfr Pfr Pfs Pf 

Unfav. n p ur Pur Pus u 

n n n Pr Ps r s 

(Note that two cells in the count table are 
empty, since these counts are unobservable. ) If 
the population is assumed infinite, the 
probability of observing the triple 

x ( nfr, nur, = ns) is proportional to 

n 
nfr nur~ ) s One general problem of 

Pfr Pur ~Pfs+Pus " 

interest is to estimate pf, the probability that 

a given member of the population is favorable. 
From a classical point of view, there is no 

data available to estimate Pfs (the probability 

an individual does not respond and is favorable), 

and therefore the probability pf = Pfr + Pfs is 

not estimable. The usual practice is to use the 
statistic nfr/n r, the proportion of respon- 

dents in favor, as an estimate of pf. This 

estimator is unbiased for pfr/Pr , the condi- 

tional probability that a respondent is favorable. 
However, if the bias pfr/Pr - pf is large, 

nfr/n r will be an unsuitable estimate of the 

probability of interest pf. (Birnbaum and 

Sirken (1950) and Hansen and Hurwitz (1946) have 

studied the errors incurred from using the 

estimate nfr/nr.) 
This classical problem of estimability can be 

avoided by means of the Bayesian method. A user 
states his prior beliefs about the vector 

= (pfr,Pfs,Pur,Pus) in terms of a prior 

distribution placed on ~ and a posterior 
distribution for p is computed which combines 
the prior beliefs ~f the user with the observed 
sample counts. The posterior distribution is 
then used to provide point and interval estimates 
for pf. This Bayesian method of estimating pf, 

of course, depends strongly on the form of the 
prior distribution chosen. The most convenient 
family of prior distributions on ~ is the 
Dirichlet, with density given by 

Knfr-I Knfs-I Knur-i Knus-I 
(I.I) ~D(PlK,~) ~ Pfr Pfs Pur Pus 

where K > 0, n.. > 0 for all i,j, Ij 

~fr + nfs + nur + nus = i and 

= (nfr'nfs'nur'nus)" To use this family of 

prior distributions, a user specifies ~, which 
represents a guess at the vector of probabilities 
~, and K, which reflects the precision of the 
guess ~. Kaufman and King (1973) use the 
Dirichlet family of priors to develop a posterior 
mean estimate of pf and, in addition, develop 

solutions to various two-stage sampling problems. 
The Bayesian method of estimating pf using 

the Dirichlet family of priors is attractive 
because of its computational simplicity. However, 
before this Bayesian procedure is recommended in 
practice, we should investigate whether typical 
prior beliefs about ~ can be modeled by the 
Dirichlet family. One common prior belief that 
the user may possess is that the group of 
respondents are not representative of the entire 
population. To state in terms of conditional 
probabilities, it may be believed that 
Pf.r = Pfr/Pr ' the probability a respondent is 

favorable, is significantly different than 
= the probability a nonrespondent is Pf-s Pfs/Ps ' 

favorable. Alternatively, the user may believe 

that Pr-f = Pfr/Pf ' the probability a favorable 

subject responds is much smaller or larger than 
Pr.u = Pur/Pu ' the probability an unfavorable 

subject responds. In either case, the user is 
making a statement a priori about the association 
structure in the 2x2 table formed by the classes 
response/nonresponse and favorable/unfavorable. 

One implication of the Dirichlet prior is that 

and pf the conditional probabilities Pf.r -s 

(or Pr-f and Pr.u ) are independent. Thus this 

convenient class of priors will be unsuitable for 
reflecting prior beliefs about the similarity or 
dissimilarity of these conditional probabilities. 
In other words, the Dirichlet family is not a 
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rich enough family to incorporate certain prior 
beliefs about the bias due to the non-availa- 
bility of all the subjects. 

In the estimation of cell probabilities from a 
2x2 table, Albert and Gupta (1982) introduced a 
class of priors, a mixture of Dirichlet distribu- 
tions, which is designed to reflect prior beliefs 
about the association structure of the table. 
This class of priors accepts the input of two 
parameters s 0 and K. The parameter s 0 is a 

guess at the cross product ratio 

= (pfrPus)/(pfsPur), reflecting one's prior 

belief about the cross-classification structure. 
To understand how one guesses at ~ in this 
situation, note that the measure can be rewritten 
as 

( 1 . 2 )  ~ = 

or 

(1.3) ~ = 

Pf.r/(l-Pf. r) 

Pr. f/( l-Pr. f ) 

In either expression, ~ is written as a ratio 
of odds of conditional probabilities. To 
illustrate the use of (1.2), one interpretation 
of the guess s 0 = 2 is that the odds of a 

respondent favoring is believed twice as large as 
the odds of a nonrespondent favoring. The 
parameter K reflects the precision of the guess 
at ~, or equivalently the sureness of one's 
prior belief about the association in the table. 

Using the prior of Albert and Gupta (1982), 
section 2 gives the posterior distribution for 
pf and uses this distribution to find posterior 

moments for pf. Since this prior is a mixture 

of Dirichlets, these results are built on results 
in the Dirichlet prior case given in Kaufman and 
King (1973). These posterior moments are then 
used in the development of an approximate 
(l-y)100 percent credible interval for pf. In 

section 3, we conclude our discussion by 
illustrating the computation of the posterior 
moments in examples. Our main concern is to 
investigate the effect of the choice of s 0 and 

K on the estimate and the precision of the 
estimate of pf. 

2. PRIOR TO POSTERIOR ANALYSIS. Albert and Gupta 
(1982) in%7oduced the following two-stage prior 
distribution to reflect prior beliefs about 
association in a 2×2 table" 

Stage I" The vector ~ possess the Dirichlet 
density (T.I), where the components in n have 
row margins nf, I - ~f, column margins ~r' 

i - ~r' and cross product ratio s 0. That is, 

the prior means satisfy the configuration 

(2.1) 
nfr( nf, n r ) 

nr-nfr(nf, n r) 

nf-nfr(nf,n r) 

l-nr-~f+Dfr( nf, n r ) 

nf 

l-nf 

n r l-n r 

where s 0 = [nfr (.,.)(l-nr-nf+nfr(.,.))]/ 

[(nf-nfr(-,.)(nr-nfr(.,.))]. From (2.1), it can 

be shown that 

nfr(nf,n r) : d-sgn(~0-1)[d2-~O(~0-1)-infnr] ½ 

~0/I 

= nfn r s 0 = i, 

where d = [(~0-1)-l+nf+nr]/2. 

Stage II" The parameters nf and n r 

represent guesses at the probability of favoring 
pf and the probability of responding Pr' 

respectively. We assume that the user is unable 
to make guesses at either probability, and there- 
fore, (nf,n r) is given a noninformative uniform 

distribution on the unit square. 
The resulting prior density for p is given by 

i I 

(2.2) ~i(2): / /~D(21K,~ )dnfdn~, 
0 0 

= ~ ~ * * ) is the vector of where ~* (n r'n s'nur'~us 

prior means with configuration (2.1). To use 
the prior (2.2), the user need only specify two 
parameters s O and K. As mentioned in section l, 

the parameter s 0 is a guess at the cross-product 

ratio of the table. The prior parameter K 
represents the precision of this guess. Typically, 
vague prior information will exist about the 
association structure in the table and a small 
positive value will be chosen for K. 

If 2 is given the Dirichlet (n,K) prior, 
then Kaufman and King (1973) show t~at the 
posterior density of pf can be represented by 

n 
s 

(2.3) ~2(PfIX,n)N : C [ fBb(J[Knfs,Kns,ms) 
j=0 

• fB(pf[Knf+nfr+j Knu+n +n -j) 
' ur s ' 

where fs(.la,b) is the beta density with 

parameters a,b, fBb (-[a,b,c) is the beta- 

binomial mass function as defined in Raiffa and 
Schlaifer (1961), p. 218, C is a proportionality 
constant, and ns,n f and n u are the prior means 

of Ps' Pf and Pu respectively. Using this 

representation, one can show that the posterior 
mean and variance of pf are given by 

nfr +Kn f+nsn f s/n s 
<2.4) E<pflx, ~) = n+K 

and 

i ~<Pr Ix,~)( l-~< Pr Ix, ~ ) ) <2.5) Var<pf Ix, n ) n+K+l 

n ( Kn s ) s nfsnus ns+ 
+ 

2 (1+Kn) " ( n~-K )( n+K+i  ~) n s s 

Note that (2.3) is the posterior distribution 
of pf conditional on a value of the prior mean 

~. If p is given the two-stage prior (2.2), 
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then the posterior distribution of pf 
by 

i i 
(a.e) N ( % l x )  = f f ~a(pfl~,ng) 

0 0 

is given 

where 

(a.7) 

"~3 ( ~f' qr Ix )dqfdnr, 

~3(nf,nrlX) 

r( Kn~r+nfr )F( Kq~+nur )r( K( l-q r )+n s ) 

F( Kn~r ) F( Kn~ ) F( K( l-n r ) ) 

Using conditioning arguments, we can use the 
representation (2.6) together with (2.4) and 
(2.5) to find posterior moments of pf. To 

illustrate, the posterior mean of pf is given 
by 

(2.8) E(pflx) = E[E(pflx, qf,nr) ] 

= E fr+Knf+nsnfs/( 
- n+K I 

* /(I-~ )1~) nfr+KE( nf Ix )+risE( nfs r 

n+K 

Using similar techniques, the posterior 
variance of pf can be computed and is given by 

(2.9) Var(pflx) = (n+K+l)-IE(pflx)(l-E(pf[x)) 

. (~*K)-i(~*K*i)-i 

n +K(I-n r ) ,~f.* (i-~* ) s 5 ) 
[%~( s f.s l.K(i-n r 

+ Var(Knf+nsn~. s)], 

where q~-s = nfs/(l-nr )" 
The posterior mean (2.8) can be used as a 

point estimate of the probability pf. A credible 

interval for pf can be easily developed by 

assuming that the central portion of the distri- 
bution is approximately normally distributed. 
With this assumption, a (l-y)lO0 per cent 
credible interval is given by 

(2.10) (E(pflx)-Zy/2[Var(pfl~)] ½, 
1_ 

E(pf [x)*zy/2[Var(pf Ix)] 2 ), 

where zy/2 is the upper ¥/2 percentage point 

of a standard normal distribution. 

3. EXAMPLE. In this section, we will conduct a 
preliminary investigation of the behavior of the 
posterior distribution of pf (2.6). In 

particular, we will investigate the effect of 
one's choice of s 0 and K on the posterior 

mean and variance of pf. 

To begin, a few comments are necessary about 
the computation of the posterior quantities (2.8) 
and (2.9). These expressions all involve 
expectations using the posterior density of 

(qf,qr) (2.7), which is not expressible in closed 

form. Thus it is necessary to compute expecta- 
tions of the form 

(3.1) E[g(nf,nr)l~ ] = 

I i 
/ f g( ~f,n r)w3 (nf,n r)dnfdq r 
0 0 

I I 

~ ~3 (nf,n r)dqfdn r 
0 0 

where g is an arbitrary function of nf and 

n r. One efficient way of computing the integrals 

in (3.1) uses the notion of importance sampling. 
First if s 0 = I and the parameter K approaches 

infinity, then it can be shown that 

(3.2) K-x~lim w3(nf,nrlX) = WL(nf,nrlX) 

= fB(nf ]nfr+l,nur+l )fg(nrlnr+l,ns+l), 

a product of two beta densities. The limiting 
distribution (3.2) can serve as a rough 
approximation to w3(nf,nr) for values of S 0 

near one and moderate values of K. Next rewrite 
the expectation (3.1) as 

(3.3) E[g(nf,nr)]X] = 

~ g(qf n r) WL( )dnfdn r o o ' bT,~f,~~LI " f ' ~  

. . . .  "f'"r -1 
Oi Ol ~T(Tlf,rlr-)-jTrT(r/f,qr)dTlf dnr 

Finally, to approximate the integrals in (3.3) 
using simulation, n O values of (qf,n r) are 

randomly generated from the beta densities in 
(3.2). Call the randomly generated values 
(efi,eri), i = i ..... n O . Then (3.3) is 

approximated by 

n O 

7. g( efi ,eri )~3 ( efi ,eri )/WL( efi, eri ) 

n O 

i!i~3 ( efi' eri )/~L ( efi, eri ) 

In Table T, the posterior mean (2.8) and 
posterior variance (2.9) have been computed for 
the table of counts x = (70,48,78) and for 
different values of the prior parameters s 0 and 

K. In each case, the approximation (3.4)was used 
with n O = i0000 iterations. A few general 

observations can be made about these posterior 
estimates. First, note that the posterior mean 
of pf (2.8) can be expressed as a weighted mean 

of three terms: 
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n K 
(3.5) E(pflx ) _ r nfr + ~ E(n Ix) 

N n+K n n+K f 
r 

n 

+ ~ ~(* I~) 
n+----K nf.s N • 

• represents the user's prior The parameter nf. s 

guess at Pf-s' the probability a nonrespondent 

is in favor, and the posterior expectation 
• I~) appears to roughly satisfy the E(n~ s 

equality 

( nfr/n f )/( l-nfr/n f ) 

= ~0" 
• Ix)/(l-E( * Ix)) E(nf.  s ~ nf .  s 

The posterior mean (3.5) appears to use the n 
s 

nonrespondent counts by first partitioning them 
into the (fs), (us) cells so that the cross- 
product ratio of the 2×2 table of counts is 
a O, and then pooling the counts in the favorable 

cells to estimate pf. A second general comment 

is that the posterior variance of pf appears 

to be a decreasing function of K and la 0 - I I . 

These posterior variance values can be contrasted 
in size with the variance of the "usual" estimate 
nfr/n r, which is equal to 

(nfr/nr)(l-nfr/nr)/nr = .00205. Typically, the 

user will possess vague prior beliefs about the 
differences between respondents and nonrespon- 
dents and thus will choose a small value of K. 
As indicated in Table I, this choice of K will 
result in a much larger posterior variance than 
the classical variance .00205. Thus, in this 
brief example, the posterior distribution 
appears to reflect both the belief in association 
(inputted through aO) and the strength of the 

belief in the association (inputted through K). 

TABLE I 

Computed Values of Posterior Means 
and Posterior Variances• 

n O .06 .25 

K = 4 

E(pf lx )  .702 .648 

Var(pflx) .0078 .0125 

x = ( 70,4s, 7s) t,J 

1 4 16 

.592 .520 .467 

.0167 .0145 .0159 

K= 25 

Var(pf Ix) 

.716 .665 .592 .514 .420 

• 0021 • 0041 • 0053 • 0047 • 0042 

K = i00 

F(Pfl~) 

Var( pf  Ix ) 

.713 .682 .591 .500 .414 

. 0010 . 0018 . 0028 . 0022 . 0012 
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