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i. INTRODUCTION 
There is considerable controversy regarding 

the appropriateness of the use of prediction mod- 
els for inference in finite populations. The 
Randomization Principle states that the only prob- 
ability distribution on which reliable inferences 
can be made is that provided by the sampling plan. 
Adherents to this principle reject the contention 
of prediction theory that inferences should be 
made conditional upon the observed sample. Others, 
while admitting that superpopulation models are 
useful still relegate their role in inference to a 
secondary position, after that of the sampling 
plan. One implication of prediction theory re- 
garding inference is the possibility of a bias in 
the ratio estimator when the sample chosen is not 
balanced. Since a simple random sampling (SRS) 
plan provides balance in expectation and since for 
large sample sizes the chance of getting a severe- 
ly unbalanced sample is small, an important ques- 
tion to ask is how well does this sampling plan 
provide balance. Is it true for large sample sizes 
that one can ignore the problem of bias that may 
result from imbalance? To answer this question we 
examined the effect of increasing sample size on 
bias in the ratio estimator in two real popula- 
tions when using a simple random sampling plan. 

2. IMPLICATIONS OF PREDICTION THEORY 
The ratio estimator is defined when two numbers 

are available for each population unit, one a pos- 
itive constant x, known for all units, and the 
other an unknown y. A sample s of n units is drawn 
from the population; the ratio estimator for the 
population total 

r=~y i is T=(ZlXi)(Zsy i)/(Z sXi ). 

The prediction approach to estimation assumes 
that the y's are realizations of random variables 
YI,Y2,...,YN. After the sample is observed, n of 
these Y's are known and N-n remain unobserved. 
Since the sample total can be written as T=Zsyi+ 
ZrYi, the sample sum plus the sum over the non- 
sample units r, estimating T from the sample is 
equivalent to predicting the value Z ry i of the 
unobserved random variable Z rY i. 

Relationships among the variables are expressed 
in a model for the joint distribution of the Y's; 
a model frequently used with the ratio estimator 
(Cochran 1953) specifies that the regression of Y 
on x is a straight line passing through the origin 
with variance proportional to x: 

E(Yi)=~i 
Var (Yi) =~ x i 

Cov(Yi,Yj ) =0 i#j (i) 

Let Xr,Xs, and x denote the average x values in 
the nonsample units, the sample units, and the 
whole population respectively. Define Y--r,Ys, and 

similarly. Under the simple prediction model (i) 
the ratio estimator T has minimum variance among 
linear unbiased estimators of the population to- 
tal. Royall and Herson (1973) investigated what 
happens to the ratio estimator when the regression 
function is not as specified. They showed that T 
can incur a serious bias when the regression is 
not a straight line passing through the origin. 

For example, if in fact E(Yi)=~o+BI X- then the 
ratio estimator has a bias NBo(X-Xs)/Xs which can 
be large if x s is much different from ~. Note 
that the bias does not depend directly on the 
sample size n. This bias vanishes if the sample s 
is balanced on x (~s=~). If the sample is balanced 
on higher powers of x as well, say on xJ for 
j=l,2,...,J then the ratio estimator is unbiased 
under any Jth degree polynomial regression model. 
Royall and Cumberland (1981) carried out an empir- 
ical study of the ratio estimator with sample size 
n=32 using six real populations for which the 
model (i) was a reasonable description of the log- 
ical relationship between two measurements on each 
population unit. This study verified that the bias 
of the ratio estimator can be substantial for 
those samples where Xs is much larger (or smaller) 
than x. 

Royall and Herson (1973), continuing their dis- 
cussion, showed that the argument regarding bal- 
ance generalizes not only to moments of x but also 
to any arbitrary function h of x which might show 
up as a linear term in the regression equation. 
Thus, if the sample is balanced on x and on h(x) 
(i.e. ~s=~ and (i/n)Zsh(xi)=(i/N)Z~h(xi)) then the 
ratio estimator will be unbiased under the model 

E(Y i) = Bo+BlXl+Yh(xi). (2) 

This model actually includes the case of over- 
looking an important regressor, say z, in speci- 
fying the model. Letting h(xi)=z i we see that the 
ratio estimator is unbiased under (2) when the 
sample chosen is such that both Es=E and Es=E. 

Although these results were derived without 
reference to the sampling plan used to select s, 
they might be interpreted as supporting the use of 
simple random sampling (or stratified random sam- 
pling) with the ratio estimator. An argument sup- 
porting this contention follows from Chebychev's 
inequality. Under simple random sampling, the 
probability of obtaining a sample s for which 
l~s-~l exceeds any fixed constant, say 6, is 
bounded above by a quantity proportional to 
n-l(l-nN-l). Thus as n increases, the chance of 
drawing a sample which is badly balanced 
(l~s-X|>6) decreases. When we apply this argument 
to the case of an overlooked regressor z it ap- 
pears even more appealing. We can recognize 
samples that are badly balanced on x (and possibly 
reject them or adjust them) but we cannot do the 
same for unknown quantities E s and z. One could 
perhaps draw some comfort from the knowledge that 
although he cannot be certain that his sample is 
well-balanced on z, he did use a sampling proce- 
dure which rarely produces badly balanced samples. 

The problem with this argument lies in the pre- 
cise meaning of the expression "badly balanced" 
samples. Although the difference l~s-~ =6 might 
represent negligible imbalance for a small sample 
size n, the same difference could signify severe 
imbalance for a larger sample size. The reason 
for this is that the severity of imbalance (and 
hence of the bias) must be compared to the vari- 
ability of the estimator which also decreases with 
increasing n. Thus it is the rate at which balance 
improves (and bias vanishes) as n increases that 
it is critical and not simply the fact that as the 
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sample size grows balance improves. Royall and 
Herson pointed out that the balance must improve 
faster than at the rate provided by simple random 
sampling if the bias is to become negligible rela- 
tive to the standard error of the estimate. 

Royall and Cumberland (1978) elaborated on this 
point in their evaluation of a collection of sta- 
tistics for estimating the variance of the ratio 
estimator. Studying a group of variance estimators 
which includes the usual formula (derived under a 
random sampling plan) as well as the jackknife 
estimator, they showed that the coverage probabil- 
ity of the approximate 95% confidence interval 
T+l.95v½ converges to a value at least as great as 
.95 if balance improves faster than the random 
sampling rate. 

As an illustration of these ideas consider the 
following. Suppose the true model is as follows: 

E (Yi) =~o+~ix i 
Var (Yi) =o2xi 

Cov(Yi,Yj)=0 i#j (3) 

Under this model, the b~as is N(x/xs-l)Bo, and 
the error-variance Var(T-T) equals 
N(N-n)Xr~(nxs)-lo 2. We describe the bias as asymp- 
totically negligible if the relative bias, 

E (T-T) [Var ( T-T ) ] -½=n ½ ( I-nN- i) -½ (X-ms) Bo ( XXsXr ~2 ) -½ 

(4) 
converges to zero as n grows and f approaches 0. 
Regularity conditions which ensure that key popu- 
lation parameters remain stable as N grows must 
also be imposed. (For a discussion of these re- 
strictions see Royall and Cumberland (1978).) 
Under these conditions, when the units are selec- 
ted using simple random sampling, 
n½(l-nN-l)-½(~-~s) converges in law to a normally 
distributed random variable, not to zero. Thus in 
order that the relative bias (4) converge to zero, 
balance must improve faster than at the rate pro- 
vided by simple random sampling. When balance 
improves at the simple random sampling rate the 
bias and the standard error are of the. same order 
of magnitude. For example, if ~s=~-kn-~(l-nN-l) ½ 
for some fixed k then the relative bias converges 
to a constant. 

Also of importance is the behavior of variance 
estimators as the sample size grows. In particu- 
lar, the effect of increasing n on the size of 
the relative bias in a variance estimator must be 
investigated. ^ 

Five variance estimators for T were studied in 
Royall and Cumberland (1981). One of these, the 
least squares variance estimator, proved to be an 
unreliable estimator. Another, commonly recommen- 
ded in many sampling texts, was 

vc=Nn-i (N-n) Zsd2/(n-l) 

where di=Yi-(ys/Xs)X i. This estimator showed a 
serious bias in the empirical study in badly bal- 
anced samples. An approximately unbiased estima- 
tor (under general variance models) that was also 

studied'vD=Nn-2 (N-n) (XrX/Xs 2) Zsd2/[i- (xi/nxs) ] 

performed better than v C. Its performance was 
generally very similar to that of VH, introduced 
by Royall and Eberhardt (1975). The last estima- 
tor studied the jackknife, 

vj=N(N-n) x2 (n-l) Y~sD(j) 2/n 
where for every j in s, D(j) is the difference 
between the ratio (n~s-Yj)/ (n~s-Xj) and the aver- 
age of these n ratios. Although agymptotically 

equivalent to v D and VH, vj did perform differ- 
ently fro~ these two in tracking the mean square 
error of T. 

Failure of the condition E(Yi)=Bx i in (i) in- 
creases the expected value of each of the variance 
estimators and the mean squared error. If the sam- 
ple is balanced so that T is unbiased then v D and 
VH are conservative in that their expected values 
exceed the actual mean square error. The relative 

-2 -i_i bias in vc is approximately Xs(E~ r) which van- 
ishes only in samples balanced on x. 

3. EMPIRICAL STUDY 
These implications were studied empirically in 

two of the six real populations used in previous 
empirical studies of prediction theory in finite 
population sampling. Detailed descriptions of the 
populations including scatter plots appear in 
Royall and Cumberland (1981). The two populations 
chosen for this study (Hospitals and Counties 60) 
were the two in which the ratio estimator showed 
the clearest bias as a function of Xsin an earlier 
study with n=32 of that estimator (Royall and 
Cumberland (1981). The other populations show re- 
sults similar to those presented here and are 
omitted for brevity. 

From each population, I000 simple random sam- 
ples of sizes 16, 32, and 64 were drawn. ̂ For each 
sample we calculated the ratio estimate T and the 

^ 

actual error T-T as well as three of the five 
variance estimates which were studied in Royall 
and Cumberland (1981): vc, VD, and vj. For each 
sample size the i000 samples were arranged in 
order of increasing values of Xs, and then grouped 
into 20 sets of 50 each. For each group we calcu- 
lated the average value of Xs, the average error, 
the mean square error (MSE) and the average value 
of the three variance estimators. We then plotted 
the average errors and values of (MSE)~, (v C) ~, 
and(~j)½ against the average values of Xs. 

Figures i through 6 show plots of the five tra- 
jectories. The one showing average error is label- 
led error, the ones showing (~C)~, (~D)½, and 
(~j)½ are labelled C, D, and J. The population 
mean ~ is shown on the abscissa. For the different 
sample sizes the scales were changed to best 
accomodate the decreasing bias and error as n 
increased. 

The most noticable feature of the three figures 
for each population is the bias curve. Regardless 
of the sample size, there is a clear bias when 
Xs#X. Furthermore, the sign and magnitude of the 
bias at the extremes relative to the MSE remains 
nearly the same for each sample size. The bias 
curves all cross the axis in the vicinity of Xs=~, 
and for each population they have a slope which 
remains relatively unaffected by the change in 
sample size. Thus the extreme values observed in 
the bias decrease as n increases only because the 
range of the average values of Xs becomes smaller 
as the sample size increases. The value of the MSE 
at balance decreases as n increases by an amount 
commensurate with the increase in sample size. 
What is clear from these figures is that increas- 
ing the sample size is not sufficient to guarantee 
that ~s will sufficiently close to ~ so as to make 
the relative bias in T resulting from imbalance on 
x negligible. 

The bias in v C persists as well, as n increases 
four-fold although the relative bias at the ex- 
tremes becomes less severe as n grows. Increasing 
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n has helped v C somewhat, but not enough to con- 
sider it as a serious competitor to the bias- 
robust estimators VD and vj which are much better 
in tracking the MSE than v C. However, it is also 
clear that these bias-robust variance estimators 
are still only dependable as an estimate of the 
variability when the sample is balanced on x. As 
expected, as n increases, v D and vj have trajec- 
tories that become more and more alike. 

4. DISCUSSION 
These results demonstrate again the importance 

of making inferences regarding finite populations 
based on prediction models, not on the probability 
sampling distribution. It is the property of the 
sample (balance) not the sampling plan that is 
important. Although a simple random sampling plan 
produces samples which are approximately balanced 
it does not force balance fast enough to guaran- 
tee that we can ignore properties of the sample 
when making inferences even for large sample 
sizes. 
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