
A System for Replaeing Primary Sampling Units When the Units Have Been Exhausted 

Charles H. Alexander, Lawrence R. Ernst and Michael E. Haas 
Bureau of the Census 

Abstract 
This paper describes a theoretical investigation of 

alternative methods for replacing primary sampling 
units (PSU's) when the units are not large enough to 
last for the lifetime of a continuing survey. The aim is 
to keep the sample unbiased while minimizing the 
expected number of replacements which are 
necessary. The present method used for the Census 
Bureau's recurring surveys is compared to a general 
class of alternatives. It is shown that when the 
present method is applied using optimal groupings of 
PSU's, it is at least as good as any of this class of 
alternatives. 

1. INTRODUCTION 
For the Current Population Survey (CPS) and other 

Census Bureau current surveys after the 1980's sample 
redesign, primary sampling units (PSU's) be counties or 
groups of counties. The most populous PSU's will be in 
sample with probability one (self-representing or SR 
PSU's). Non-self-representing (NSR) PSU's will be 
grouped into strata of similar PSU's and one or two 
PSU's wil l  be selected f rom each stratum with 
probability proportional to size. Regardless of which 
PSU's are selected for the sample, approximately the 
same number of housing units will be sampled; this 
leads to an equal-probability or "self-weighting" 
sample. In most NSR strata, a single interviewer will 
handle the entire selected PSU. The stratum sizes and 
sampling rates are selected so as to provide an 
efficient workload for the interviewer while yielding 
the desired national sample size. 

Because of these features of the current surveys, 
it is sometimes necessary to replace small sample 
PSU's during the life of the survey. This happens when 
the assigned sampling rate is so large that there are 
not enough housing units in the county to supply the 
necessary sample for the decade, or until the next 
sample selection. To avoid undue respondent burden, 
one should avoid including the same address in sample 
twice during the decade. The assigned sampling rate 
cannot be changed without losing the self-weighting 
property of the design, so replacement is the only 
course left. The problem is how to make such 
replacements without biasing the sample. 

The 1970's CPS design dealt with this problem 
through the use of "rotation clusters." Small PSU's 
were formed into groups so that each group was large 
enough to supply housing units for the life of the 
sample. If any PSU in the group was selected, then 
interviewing rotated among the PSU's in the cluster 
during the decade. The length of the time each PSU 
spent in sample was chosen so that the PSU's in sample 
at any future time constitute an unbiased sample of 
PSU's. 

This rotation of PSU's is expensive and 
inconvenient, usually requiring the training of a new 
interviewer. For this reason, it is desirable to reduce 
the expected number of rotations, while keeping the 
sample unbiased. 

As part of the current surveys redesign, an 
attempt was made to develop an alternative unbiased 
method which reduced the expected number of 
rotations. A class of unbiased methods was developed, 
which we call the Length of Time in Sample Methods 

(LTSM). Depending on how the rotation clusters are 
formed, these methods may reduce the expected 
number of rotations compared to the present method. 
However, when the rotation clusters are formed in an 
optimal fashion, the present method always does at 
least as well as any LTSM. 

For this paper, we have developed an idealized 
version of the present method, which we call the 
Random Arc Method (RAM). The present method has 
not been documented in its entirety. The resulting 
rotation schedules are given in Brooks(1972). Related 
work is contained in Brooks (1971) and Brooks and 
Hanson (1975). The principle themes of this paper are 
to determine an optimal clustering for RAM, i.e., one 
which minimizes the expected number of rotations 
when RAM is used, and to establish that with an 
optimal clustering RAM reduces the expected number 
of rotations compared to any LTSM. The 1970's 
sample selection did not use the optimal clustering in 
all cases. 

While RAM does not always minimize the expected 
number of rotations among all methods which keep the 
sample unbiased, it is shown that it gives at most one 
more than the minimum possible expected number. 
RAM is known not to be optimal for certain 
distributions of PSU population (see example 3.1); 
however so far there does not appear to be a generally 
applicable method which is superior. 

The LTSM are presented to document our 
investigation and because if a different cost function 
is used they may be admissible competitors to RAM. 
For example, if rotation of a PSU into sample for the 
second time is regarded as cost-free because a new 
interviewer need not be trained, LTSM is in some cases 
superior to RAM (see example 3.3). However, for the 
Census Bureau's current surveys, the appropriate cost 
function is based on the expected number of PSU's. 

In Section 2 we state the model and briefly 
describe the steps involved in the clustering and 
rotation of PSU's. In Section 3 we define the methods 
under consideration and present several theorems on 
the conditional expected number of rotations for the 
chosen cluster. In Section 4 we prove theorems on the 
expected number of rotations for the entire stratum, 
and obtain the two results described above. Finally, in 
Section 5, some extensions of the method are 
discussed. 

Although a final decision has not as yet been made 
on whether a one or two PSU's per stratum design will 
be employed, for simplicity a one PSU per stratum 
design will be assumed throughout the remainder of 
the first four sections of this paper. In Section 5 the 
two PSU's per stratum case will be briefly discussed. 

2. THE MODEL AND OUTLINE OF BASIC STEPS 
For the selection of a sample for a single survey 

the problem may be considered separately for each 
stratum S of PSU's. 

Assume that the survey of interest interviews 
housing units continuously and uniformly in the 
interval [0,T) months, such that for 0 < t -< T, nt/T 
units are interviewed in [0,t). Thus in the entire life 
of the sample the number of units interviewed is n. 
This model is only an approximation; for example, for 
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some surveys interviewing occurs only at the start of a 
month, while for others rotation is feasible only at 
certain intervals. 

There are three steps in the process of rotation of 
PSU's for all procedures under consideration. First the 
set of PSU's in the stratum is partitioned into {L >- 1 
clusters, C ,...,C each consisting of one or more 
PSU's. Th I total'number of housing units in each 
cluster must, of course, be at least n. The formation 
of clusters will be discussed in Section 4. 

The second step is to select one of these clusters 
PPS. 

The final step is to specify for any time t E [0,T) 
which PSU in the chosen cluster is in sample at that 
time. Procedures for such designation will  be 
discussed next in Section 3. 

Note that even though it is possible to devise 
procedures which do not involve the clustering of 
PSU's, such procedures may be viewed as a special 
case of the three step process just described, for which 
there is only one cluster consisting of all PSU's in the 
stratum. 

The aim of all the methods is to make each PSU's 
expected share of the T interview months equal to its 
share of the cluster population. For LTSM, the PSUs' 
lengths of time in sample are chosen randomly subject 
to certain constraints. Some PSU's in the selected 
cluster may have a positive probability of spending no 
time in sample. To make up for this, the PSU's share 
of the T months will sometimes be greater than its 
share of the cluster population. Once the lengths of 
time have been selected, the order in which the PSU's 
enter the sample is determined. The first PSU in the 
sample spends part of its time at the beginning of the 
decade and part at the end; the others are in sample 
for a single interval of time. LTSM are defined in 
more detail in Section 3.2. 

RAM simultaneously determines the order of entry 
of the PSU's into sample and the length of time in 
sample, using a simple geometric technique which is 
described in Section 3.3. 

3. ROTATION OF PSU's IN SELECTED CLUSTER 
We fix notation in 3.1, define LTSM and RAM in 

3.2 and 3.3 respectively, present the main results of 
this section in 3.4, and discuss the methods and results 
in 3.5. 

3.1 NOTATION AND TERMINOLOGY 
Let C denote the selected cluster, consisting of 

PSU's A1,...,A k. Let the population of A i be ~(A i) and 
let 

k 

~(C) = ~ ~(A i ) 

i=1 

A: is said to be a small PSU if ~(Aj)<n, a large PSU 
otlherwise. Let m be the number of small PSU's in C 
and assume that A4,...,A are the small PSU's. It will 
be understood t~at t~roughout this section all 
probabilities and expected values are conditional on C 
being the sample cluster. They will be denoted Pc and 
E c respectively. 

A rotation schedule00 for C specifies for t ~ [0,T) 
which PSU is in sample at time t. Let I t be the PSU 
which is in sample at time t. It is assumed for every 
rotation schedule and each i=l,...k, that {t: I t = A i} is 
either empty or a finite union of nonempty intervals; 
the sum of the lengths of these intervals, i.e. the total 

amount of time during which A i is in sample, will be 
denoted by T(Ai). A rotation method is a method of 
randomly selecting a rotation schedule. A rotation 
method is defined to be unbiased if 

~(A i ) 
P c ( I t  = A i ) = 

~(c) 

i = l , . . . , k ,  t¢ [0 ,T)  . ( 3 . 1 )  

Let R( ~0 ) denote the number of times PSU's are 
rotated into sample during the entire life of the 
sample using rotation schedule 00. (When the first PSU 
enters at time t=0 this is not counted as a rotation.) 
Finally, throughout this section we assume that k>2, 
since otherwise there is only one possible rotation 
schedule ~0, for which R(00 )=0. 

3.2 LENGTH OF TIME IN SAMPLE METHODS (LTSM) 
This class of methods consists of the following. 

For each PSU Ai, assign a number 1:(Ai)~ [0,T ] giving 
the length of time in sample for PSU Ai, (hence the 
name for this class of methods). The values 
T(A ), ,T(A k) are random variables from some . o e  

specified joint distribution. It is required that 

k 
~ T(A i) = T, (3 .2 )  

i=1 

and a l s o  t h a t  

T(A i) -< ~ .  ~ (Ai)T (3 .3 )  
n 

(The latter condition is necessary in order that the 
n • (Ai)/T housing units which are interviewed during 
T (A i) months do not exceed ~(Ai)). Note that (3.2) and 
(3.3~ must be satisfied by all rotation methods, not 
only LTSM. 

If • (A i) = T for some i, then A i is in sample for the 
entire time interval [0,T). 

Otherwise, once the values T (AI),...,T (Ate) have 
been specified, the s PSU's for which T (A i) e 0 are 
placed in random order. Let A()..., ,A(~;=~ denote the. 
PSU's in the chosen order. Then c~oose x at random m 
the interval [0,T). Let u be the smallest positive 
integer for which 

u 

x < ~ I: (A(j)). Then A(u ) will be in sample at the 
j=l 

beginning and again at the end of the period, during 

u 

the intervals [0, ~ T (A(j))-x) 
j=l 

U-I U-1 

and IT+ ~ I: (A(j))-x,T). (If x = ~ I: (A(j)), then A(u ) is 
j=l j=l 

only in sample once, for the. interval . [0,T(A. (u)))" 
However, this event occurs wlth probabfllty 0, and 
will be ignored in the subsequent discussion.) The 
other PSU's A i for which T (A i) > 0 will rotate into 
sample in the order A(~+I)," A(u+2),...,A(~), AI, 
A2,...,A(u_I). In general ~(i) is in sample for the 
interval 
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i -1 i 

[ X T ( A ( j ) ) - x ,  ~ T ( A ( j ) ) - x ) ,  
j= l  j=l  

i = u + l , . . . , s ,  (3 .4)  

i -1 i 

[ X ~ (A( j ) )  + T-x, X T(A( j ) )  + T-x ) ,  
j=l  j= l  

i = 1 , . . . , u - 1 .  (3 .5)  
Geometrically, this definition may be viewed as 

follows. Partition the interval [0,T) into s half-closed, 
half-open intervals of length T (A(~)),...,T (A(s)), and 
then bend the interval [0,T) to 1orm a clrcle of 
circumference T, w i t h  clockwise orientation, 
partitioned into s arcs. For any a,b e [0,T) the arc ab 
will denote the half-closed, half-open arc with initial 
point a and final point b when viewed clockwise. A 
starting point x on the circumference is selected 
randomly according to a uniform distribution. At any 
time t our location on the circle will be t units 
measured clockwise from x. If this point is in the i-th 
arc of the partition then A(i ) is in sample at time t. 
Intervals 

U 

[0, X T ( A ( j ) ) - x )  and (3 .4)  co r respond  to 
j=l  

time periods when located in the arc x0, while 

u- I  
i n t e r v a l s  (3 .5 )  and [ X A( j )+T-x ,T)  

j=l  

correspond to time periods located in the arc 0x. 
Since the circle is traversed exactly once in the time 
interval [0,T), at the end of the time interval we are 
located in the same arc of the partition as in the 
beginning. 

It is clear that for LTSM we have 

Pc l I t  = Ai I T(Ai ) ] = ~(Ai ) ' 
T 

i = 1 , . . . , k ,  t~ [ 0 , T ) .  ( 3 . 6 )  

Consequently, for such a rotation method to be 
unbiased it is necessary and sufficient for 

E c [ ~ ( A  i ) ]  = T ~ ( A i )  , 
~(c) 

i = l , . . . , k ,  (3 .7 )  

since (3.6) and (3.7) imply (3.1). (Note that (3.7) must 
hold for all unbiased rotation methods by (3.1).) 

In summary, for the class of rotation methods 
considered, it is only necessary to specify the joint 
distribution of ~(AI~ { ~(A k) satisfying (3.2) and (3.3). 
Provided (3.7) is ~so satisfied, then the rotation 
method is unbiased. 

3.3 THE RANDOM ARC METHOD (RAM) 
To define this method we first let ),(A i) = 

T~(Ai)/n for i=l,...,k, and ~(C)= T~(C)/n. I.e., ~,(Aj) 
is the time it would take to exahust PSU A i and k(C) is 
the time which would be required to exhaust every 
PSU in the cluster• Note that ),(C)>_T. 

Place the k PSU's in random order. Let 
A(1),...,A(k ) denote the PSU's in the chosen order. 
Then ChOOSe x at random in the interval [0,k(C)). Let 
u be the smallest positive 

U 

integer satisfying x < X ),(A(j)). Then A(i ) is defined 
J = 1  

to be in sample for the following time intervals, some 
of which may be empty. 

i -1 i 
[ ~ X ( A ( j ) ) - x ,  ~ X ( A ( j ) ) - x )  n [ 0 , T ) ,  

j= l  j=l  

i = u , . . . , k ,  

i -1 i 
[ ~ ) , (A( j ) )+) , (C)-x ,  ~ %(A(j))+~,(C)-x) 

j=l  j=l  

n [ 0 , T ) ,  i. = l , . . . , u .  
RAM may also be viewed geometrically in terms 

of a circle, but one of circumference ),(C) partitioned 
into arcs of length X(A()), ,%(A(k )) A point x is . . o  • 

chosen at random along tfie'circumfei~ence. The PSU's 
will corn e into sample in the order 
A ,A + , ,A ,A , . ~  _ (u I) "'" . (k) (I~....,A(u). However ,  when 
AtwJ>T, the entire circle wm not be traversed, just a 
random arc of length T (hence the name of the 
method), and PSU's at the latter part of the order may 
not actually come into sample. On the other hand, in 
some cases A ~  and only A(u), may come into 
sample twice, s is possible .my 11 

~ :k(A(j)) < T or, 
j#u 

e q u i v a l e n t l y ,  i f  

~ (A( j ) )  < n. 
j#u  

We next show that RAM is an unbiased rotation 
method. Clearly (3.2) is satisfied• Furthermore, (3.3) 
is satisfied since the total amount of time A(i ~ is in 
sample does not exceed k(A¢i ~) = T ~(A¢i~)/n. Finally, 
the method is unbiased since ~fbr any te']:0,T), A(D is 
in sample at time t if and only if x is in the a ~  of 
length ),(A(i )) obtained by translating the i-th arc of 
the partitibn t units counterclockwise. Since the 
i-th arc has length ),(A¢i)) , this event occurs with 
probability k(A(i))/),(C) ='~(A(i))/~(C), and hence (3.1) 
follows. 

3.4 MAIN RESULTS 
Our main results on the expected number of 

rotations of PSU's for the selected cluster are 
contained in the following three theorems: 

Theorem 3.1• For any unbiased rotation method, 

E c [ R  (co)]  > nk - 1 .  
~(c) 
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Theorem 3 .2 .  For any LTSM, 

( a )  Ec[R(co) ] > nm 
(C) ' 

and f u r t h e r m o r e ,  

(b) Ec[R(oo)] > n(m+l)  
~(c) 

if  0 < ~ ~(A i) < n. 
i=l  

Theorem 3 .3 .  For RAM, 

Ec[R(00) ] = nk 
~(c) 

Proofs of these three theorems are available from the 
authors. 

3.5 DISCUSSION 
By Theorems 3.2 and 3.3, the expected number of 

rotations for RAM never exceeds that for any LTSM if 
either k = m (i.e. all PSU's in C are small), 

m 
or k= m+l and ~ ~(A i) < n (i.e. C contains exactly 

i=1 

one large PSU and the total number of housing units in 
the small PSU's is less than n). Although for some 
other types of clusters, E c[R( co )] could be less for 
some LTSM than for RAM, it will be proven in Section 
4 that if the optimal clustering is used for RAM, then 
the expected number of rotations over the entire 
stratum is less than or equal to the expected number 
for any LTSM. 

From Theorems 3.1 and 3.3 we have that for 
RAM, Ec[R( c0)] exceeds the optimal by at most I. 
The following two examples illustrate that the lower 
bound given in Theorem 3.1 can sometimes be 
attained, but not always. 

Example 3.1. Let k=2,~(A I)=~(A 2)=n/2. Then 
consider the rotation method sucn that with 
probability 1/2, I t = A 1 for t e [0,T/2) and I t = A2 
for t ~ [T/2,T), and with probability 1/2, I t = A 2 for 
t ~ [0,T/2) and I t = A 1 for t e [T/2,T). C]:early this 
defines an unbiased rotation method for this cluster 
with E [R( co )] = I, which is the lower bound given 
in TheorCm 3.1 for this example. (Note that for RAM, 
Ec[R(m)] = 2.) 

Example 3.2. Let k= 2, ~(A I)= 2n/3, ~(A 2) = n/3. 
The lower bound given in Theorem 3.1 is again l, but it 
will be shown that for this example E~R(c0)] > 1 for 
all unbiased rotation methods. In facf, there are only 
four rotation schedules for which R(c0) = I, namely 
the schedule I t= A 1 for t ~ [0,2T/3) and I t=  A 2 for 
t ~ [2T/3,T), the schedule I t = A 2 for t ~ [0,T/3) and 
I t = A for t e [T/3,T), and the two equivalent 1 
schedules in which the first interval is closed and the 
second is open. However I t # A 2 for t~ (T/3,2T/3) 
for any of these rotation schedules, and hence any 
unbiased rotation method mus t  assign positive 

probability to some other rotation schedules, for which 
R(~) _> 2. 

RAM gives good results in part because it entirely 
uses up those PSU's which come into sample, except 
for the first and last ones. It is desirable to keep 
PSU's in sample as long as possible when they do come 
into sample, because then the probability of not 
coming into sample can be larger, while still satisfying 
(3.7). In this respect, it is similar to those LTSM which 
are designed to keep sample PSU's in sample as long as 
possible. Both LTSM and RAM define a length of time 
in sample for each PSU and determine a starting point 
in the initial PSU. The methods differ in that for 
LTSM the selection of the starting point is made after 
the lengths of time have been selected, while for RAM 
the selections are made simultaneously. 

As mentioned in the introduction, it may be of 
interest to ignore rotation into sample for the second 
time. This is equivalent to minimizing the expected 
number of PSU's in sample, rather than the expected 
number of rotations. The following example shows 
that in some cases the expected number of PSU's in 
sample may be smaller using LTSM than using RAM. 

Example 3.3. Let k=2, ~ (A1)=n/3 , ~ (A2)=5n/3. In 
this case ~(AI)=T/3 , ~(A2)=5T/~ , and ),(C)=2T. Using 
RAM, the expected number of PSU's in sample is 5/3. 
However, consider the LTSM which gives probability 
1/2 to the event { T(A1)=0 , ~(Ao)=T} and probability 
1/2 to the event { T(AI)=T/3 , T~A2)=2T/3}. For this 
LTSM, the expected number of PSU's in sample is 
3/2. For both methods, E~[R(~0) ]=I. 

For both  RAM an~d LTSM, unbiased sample 
selection is achieved even if the PSU's are not placed 
in random order. There may be cost savings if 
replacements are made in a particular order, for 
example, if geographically contiguous PSU's are placed 
consecutively around the circle. However, there is a 
danger that a nonrandom order may introduce 
undesirable patterns into estimates of change from one 
time period to another, especially if the order is 
correlated with the characteristics being measured by 
the survey. 

4. CLUSTERING OF PSU'S 
In this section we prove results on the expected 

number of rotations over the entire stratum S, obtain 
the optimal clustering for RAM, and make comparisons 
with LTSM. 

We first introduce notation. For i = 1,...,£ let 

Eci , Pci denote respectively expectation and 

probability conditioned on C i being the sample 

cluster. For any rotation schedule 0~ denote by R(~0) 
the number of rotations for the entire stratum, which 
is the same as the number of rotations in the selected 
cluster. 

Note that 
£ 

E[R(0J)] = ~. ~'(Ci ) Ee i [R(co)  ] .  ( 4 . 1 )  
i=1 ~(S ) 

For i = I,...,£ let k;, m i be respectively the number 
of PSU's and the number of small PSU's in Ci, and then 
let G={i:ki> 1}~ £ 
Finally, let M = i=l )' mi' K =i ~'ki'~G Thus M is the number 

of small PSU's in S, and K is the number of PSU's in S 
that are in clusters containing more than 1 PSU. Note 
that since Eci[R(~)] = 0 if k i = I, (4.1) reduces to 
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E[R(co)] =i !G ~(S)~(Ci ) Ec i [R(co) ] "  (4 .2 )  

Note also that if k i= 1 then m i= 0, and hence 

~ m i = M. (4 .3 )  
i~G 

We next prove three theorems concerning E[R(co)]. 
Theorem 4.1. For any unbiased rotation method, 

nK - ~ ~(C i ) 

E[R(co)] > icG . 
~(s) 

Proof. This follows from (4.2) and Theorem 3.1, 

since 

E[R(co)] = ~ ~ ( C i )  E [R(co)] > c 
i~G ~(S ) i 

n ~Gki ~G~(Ci ) nK- ( C )  
i _ i = i ~G ~ i 

~(s) ~(s) ~(s) 

Theorem 4 .2 .  For any LTSM, 

nM 
(a) E[R(co)] >_ 

~(s) 
and furthermore, 

(b) if there exists some C.. for which m.-> 1 but 
the total number of housing uniJts in small PS~5's of Cj 
is less than n, then 

n(M+l ) 
E[R(co )] -> 

~(s) 

Proof. Combine (4.2), Theorem 3.2 (a), and (4.3) to 
immediately obtain (a). 

To prove (b), observe that by (4.2), Theorem 3.2 (a) 
and (b), and (4.3), 

E[R(co)] = ~ ( C j )  E [R(co)] + 
~(S)  cj  

~(C i ) 

i~G ~(S) 

i# j  

Eci [R(co)]  

n(m +1 ) _> j + 
~(S) 

n ~ m i 

i~G 

~(s) 
_ n(M+l  ) 

~(s) 

Theorem 4 .3 .  For RAM, 

n ~ k i 

i ~G nK 
E[R(co) ] = = 

~(s) ~(s) 

Proof. Combine (4.2) and Theorem 3.3. 
The following theorem concerning the optimal 

clustering of PSU's for RAM now follows from 
Theorem 4.3. 

Theorem 4.4. For RAM, a clustering that 
minimizes E[R( co )], and the minimum value of 
E[R(co)] are as follows: 

(a) If the total number of housing units in all 
small PSU's is at least n, then place all the small PSU's 
in one cluster, and all the large PSU's in clusters 
consisting of a single PSU. In this case, 

nM 
E[R(co) ] = 

~(s) 
(b) If the total number of housing units in small 

PSU's is less than n, then place all the small PSU's in 
one cluster together with one large PSU. Place all the 
other PSU's in clusters consisting of a single PSU. In 
this case, 

n(M+l ) E[R(co) ] = 

~(s) 
Proof. F r o m  Theorem 4.3 it follows that 

minimizing E[R( co )] for RAM is equivalent to 
minimizing K, the number of PSU's in clusters of more 
than 1 PSU. It is clear that the clusterings described 
in (a) and (b) do accomplish this. Furthermore, since 
K = M for the clustering of (a) and K = M+I for the 
clustering of (b), the given values for E[R(co)] in the 
two cases follow immediately from Theorem 4.3. 

Finally, we have the following result concerning 
the superiority of RAM to any LTSM. 

Theorem 4.5. If RAM is used together with the 
clustering described in Theorem 4.5, then the resulting 
value of E[R(co)] will be no more than for any LTSM, 
irrespective of the clustering used. 

Proof. If S satisfies the conditions of Theorem 
4.4 (a) then the result follows from Theorems 4.2 (a) 
and 4.4 (a). Otherwise, it follows from Theorems 4.2 
(b) and 4.4 (b). 

5. EXTENSIONS 
For application to the sample selection for the 

Census Bureau's current surveys, some modifications 
must be made to the methods described in the previous 
sections. These will be discussed only briefly, for 
reasons of space. 

One modification is necessary because several 
surveys will be in the field at the same time. If 
several surveys share a comon stratum, RAM is easily 
modified by forming clusters large enough to supply 
sample for all the surveys and then selecting a random 
arc for each survey. Start each one where the 
previous one leaves off .  This way two surveys are 
never in the same PSU at the same time. For some 
surveys, it is preferable to have several surveys in the 
same PSU, so the same interviewer can be used. The 
method can be modified to achieve this. If different 
surveys have different strata, this method can still be 
applied in some circumstances. 

Additional modifications are necessary if for 
some surveys two PSU's are to be selected from each 
stratum. This must be done so as to give unbiased 
sample selection and also to give each pair of PSU's a 
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positive joint probability so that unbiased variance 
estimation is possible. This places certain constraints 
on the sizes of the clusters which may be formed. A 
modified version of RAM for selecting two PSU's per 
stratum has been developed and will be documented in 
an internal Census Bureau memorandum. 
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