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I. INTRODUCTION 

Techniques for estimating means and their 

variances from stratified multistage sampling 
survey data are well-known [1,2]. Often, we 

would like to perform multivariate analyses of 

such data. This would require estimates of 
variances and covariances of individual obser- 
vations. Estimation of components of variances 
in the case of simple random sampling is dis- 
cussed extensively in the literature [3,4,5]. 
However, there is a very limited discussion of 
the estimation of variance components in the case 
of unequal probability sampling [ 6,7] • In this 

paper, we discuss concepts related to multivariate 
analyses and develop estimators for variances 
and covariances for multistage sampling with un- 

equal probabilities. Application of the esti- 

mators discussed here to stratified multistage 

sampling surveys is illustrated by showing the 

correspondence with a large Bell System survey. 
The Bell System survey discussed here is the 

Measured Impairment Survey (MIS) which was aimed 

at estimating the quality of the Bell System 

network as a function of central office measure- 

ments. A sampling of customer telephone calls 

was performed in three stages. In the first 
stage, 27 central offices were chosen from ten 

geographic strata with probabilities proportional 
to the number of loops (telephone lines) in the 
central office. In the second stage, a sample of 
loops was selected from each office with the 
probabilities proportional to one plus the number 
of outgoing toll calls in a recent month. In the 

third stage, only one outgoing call (toll or 

local) was chosen from each sampled loop for 

study. 
This paper discusses the estimation of means, 

variances and covariances from multistage 
sampling survey data such as in the MIS. These 
estimates can be used to perform several types 

of multivariate analysis. Section 2 gives some 
notation and a linear model which describes 

individual measurements as a sum of the contri- 

butions of different sampling stages. Section 3 
gives the partition of the total variability into 

within and between first-stage units. Section 4 
discusses the estimation of population parameters 
for an individual stratum. Section 5 discusses 

how the estimators developed in Section 4 can be 
used in various multivariate analyses. Section 6 

gives five estimates of the unknown sizes of the 

second stage units. Section 7 discusses how the 
estimators for individual strata are combined to 
obtain estimators for the whole population. 

Section 8 gives a summary. 

2. NOTATION AND MODEL 

In this section we develop the notation used 

in the subsequent sections. While the defini- 
tions below are in general terms, the correspond- 

ing specific definitions for the MIS are 
indicated in parentheses to facilitate understand- 
ing of the statistical methodology. Let 

q = stratum number, q = 1,2,...,L 

M = total number of first-state units 
q (central offices) in stratum q; 

m = number of first stage units in the 
q sample from stratum q, m < M ; q-- q 

N . = total number of second-stage units 
ql (loops) in first-stage unit i in the 

stratum q; 
N = total number of second-stage units in 
q" stratum q; 

Wqi = Nqi/Nq. = probability of selection of 

first-stage unit i in stratum q on a 

single draw ; 
n . = number of second-stage units in the 
ql sample from first-stage unit i in 

stratum q, n . < N .; ql -- ql 

C .. = total number of third-stage units 
qiJ (telephone calls - outgoing toll and 

outgoing local) for second-stage unit 
j in first-stage unit i in stratum q; 

A .. = first estimate (all outgoing and incom- 

qiJ ing telephone calls in an 8-hour period, 
called peg count) of the total number 

of third-stage units, subject to a con- 
stant of proportionality, for second- 
stage unit j in first-stage unit i in 

stratum q; 
T .. = second estimate (i + outgoing toll 
qij telephone calls in a month) of the 

total number of third-stage units, 
subject to a constant of proprotionality, 
for second-stage unit j in first-stage 

unit i in stratum q; 
T . = total of the second estimate of the 
ql. number of third-stage units in first- 

stage unit i in stratum q; 
Z = T /T = probability of selection of 
qij qij qi. 

second-stage unit j in first-stage unit 
i in stratum q on a single draw; 

Xqijg k = measurement on variable k (k = 1,2,...,K) 
on third-stage unit g (g = 1,2,...,C . .) 
in second-stage unit (q,i,j); qij 

Cqij 

xqij.k = X xqijzk~ - = x k/c g=l Xqij .k qij- qij 

N . N . 
q~ ql 

:Xx =Ic.  
Xqi. -k j=l qij -k qi- j=l qij 

Xqi.-k = Xqi..k/Cqi-; 

M M 

x Xqi..k; C = C . ; q~.-k 
i=l q'" i=l ql- 

X =x /C ; 
q-.-k q-..k! q-- 
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.-'-k 

L 

= [ X ; C 
q=l q" • -k • • • 

L 

= [ C ; 

q=l q" " 

and 

.... k = X .... k/C .... 

A linear model which describes an individual 
measurement as a sum of the contributions of 

different sampling stages is as follows" 

Xqijgk : X .... k + (Xq---k -~ .... k ) 

+ (Xqi . .k -Xq. . .k )  

+ (Xqij .k-Xqi --k ) 

+ aqijgk ' 

where 

Sqi-~k0r = variation among third-stage units in 
measurement on variable k for second- 

stage unit (q,i,j). 
As indicated earlier, only one third-stage 

unit was chosen in MIS (i.e., £ = i). In this 
case we cannot separate out the effects of 
second and third stage units. A partition of the 

variance of Xqij£ k into contributions due to the 

first and second stages is discussed in the next 

section. 

3. PARTITION OF VARIATION IN STRATUM q 

In stratum q, the population variance within 

first-stage units (Vqk(W)) and the population 

variance between first-stage units [Vqk(B) ) for 

for variable k can be defined as follows 

M N . C .. 
ql qi8 [ ]2 
~ ~ xqijzk-xqi--k 

V (W) = i=l j=l g=l 
qk M N . 

q ql 

i c 
i=l j =i qi3 

and 
M 

v (B)= ~=I 
qk M N . q ql 

i=l j =i qmo 

The total population variance for variable k is 

the sum of the above two components" 

Vqk(T) : Vqk(W) + Vqk(B) 

This breakdown of variance into within and 

between components can also be extended to 
covariances. The population covariance within 

first-stage units (Cqkk1(W) , k # k l) and the 

population covariance between first-stage units 

(Cqkk,(B) , k # k') for variables k and k' 

follows : 

are as 

cqk k , (w) 

M N . C . 

X ~ xqijzk-xqi..k xqijZk,-Xqi..~, 
i=l j=l £=i 

M N 

i=l j =i qiJ 

and 
M 

Cqi [Xqi-k-Xq -k] ('- - . . . .  [Xqi..k'-Xq. • .k' ] 

Cqkk,(B) = i=i M N . 

i=l j=l qmj 

The total population convariance for variables k 
and k ~ is the sum of the above two components" 

Cqk~,(T) : Cqkk,(W) + Cqkk,(B) 

In a multivariate setting, we can use the pre- 
ceding formulas to define covariance matrices 

(and hence correlation matrices) at three levels" 

overall (T), within (W), and between (B). 

Suppose that we wish to perform a multivariate 

analysis which requires the covariance matrix of 
the variables involved. We must first determine 

which of the matrices described above should be 
used. The proper choice depends on the purpose 
of the analysis. 

To illustrate the partition of the total vari- 

ation into within and between components, we 
discuss a small example. Consider a bivariate 
population with two first-stage units, each of 

which has two second-stage units, each of which 
has just one third-stage unit. In this case 

and 

M = 2; 
q 

N . = 2 for i = i, 2; 
ql 

C = i for i = I, 2 and j = i, 2; 
qij 

k = 2. 

The population values for the two variables are 

shown in Table i and the means, variances and 

correlations are given in Table 2. 
Suppose we were interested in the correlation 

between the two variables. By ignoring the office 
structure, we can use the four observations (tele- 

phone calls) to compute an overall correlation 

PT ~ -0.84. This number, however, does not tell 

the whole story. For example, let the first vari- 

able correspond to some physical characteristic of 
the central office building and the second vari- 
able relate to the quality of service. If we were 
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interested in designing new office buildings, then 
we should use the between offices correlation 

0 B = -i.00. 

On the other hand, suppose the first variable 
corresponds to some physical attribute of the 
line itself• If we were interested in determining 
the optimal value of that variable for future 
lines, then we should probably use the within- 
office correlation 0W = +i.00 in our analysis. 

Table. i. Population Values for the Two Variables 

"--...<.Stage First 

Variable ~ Second 

i 

i 2 i 2 

5 6 

30 40 

2 3 

70 80 

Tab!e 2. Means~ Variances and Correlations for 
the Two Variables 

( i ) Means 

X = 5.5, X = 2.5, X 
ql- "i q2--i q-- -i 

=4.0 

B _ m - -  

Xql.. 2 - 35, Xq2.. 2 = 75, Xq... 2 

(ii) Variances and Covariances 

T = I 2.5 -27.5~ 

-q 27 5 425.O! 

m .  

W I 21 
~q 5 25 

B = 

~q 30 400 0] 

= 55 

( iii ) Correlations 

0 = - 0.84 
T 

= + 1.00 o W 

o- : - 1.00 

4. ESTIMATORS OF POPULATION PARAMETERS IN 
STRATUM 

In this section we develop some estimators of 
population means, variances and covariances. 

4.1 Estimators of Means for First-Sta~e Unit i 
in Stratum 

We consider the case in which only one third- 
stage unit is selected from each second-stage 
unit, as in the case of MIS. An estimate of the 
total of the measurements of variable k for all 
third-stage units in second-stage unit (q, i, j) 
is given by 

Xqij. k : CqijXqijl k , (i) 

where a hat is used to denote an estimator of a 
population quantity• In a more general case in 
which two or more third-stage units are selected, 
^ 

Xqij-k would be based on the mean of the sampled 

third-stage units in second-stage unit (q, i, j). 
Next, an estimate of Xqi ..k, the total of the 

measurements of variable k for all third-stage 
units in first-stage unit i in stratum q, based 
on second stage unit (q, i, j) is 

C .X ik / / Z , qij qij qij 

where Z .. is the probability of selection of 
qij 

second-stage unit (q, i, j). By averaging over 
n . second-stage units in the sample, an estimate 
ql 

of X . is given by 
qm • .k 

n . 

- C .X lk / . Z • (2) Xqi--k n . qi3 qij qij 
ql j=l 

The estimator given by equation (2) can be 

computed only if the Cqij(J = 1,2,...,Nqi) are 

known. Here, we will consider the case in which 
the C .. are unknown even for the sampled second- 

q13 
stage units, as in the case of the MIS. In this 
case, it is necessary to estimate the C ... Let 

qmj ^ 

C .. denote an estimate of C ... Five choices 
q13 qij 

for estimating C .. are discussed in Section 6. 
qi3 ^ 

By replacing Cqi j by its estimate Cqij..' we obtain 

n . 

ql 
X I ~ x z (3) 

Xqi''k- nqi j= qi3 qijlk/ qij 

and 
n . 

ql 

Cqi- - n . qij ' 
qm j=l 

(4) 

and an estimate of Xqi ..k, the mean of variable k 

for first-stage unit i in stratum q, is 

xqi..k = xqi.-~/~qi- (~I 

4.2 Estimators of Means for Stratum q 
_L , 

Estimates of X C , and X are 
given by q---k' q-- q---k 

m n 

x 
q-.-k m n W qij qij Zqi 

(6) 
q i=l qi qi j=l 

m n 

q-- = m- n W Cqi j/Zqi j, (7) 
q i=l qi qi j=l 

a n d  Xq.. -k q-- -k q- • 

By substituting the values of X and C 
q---k q-- ' 
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we obtain 

X 
q--.k 

m n 

i q i ~i 
m-- ~ n W g C .X /Z 

_ g i=l qi qi j=l qij qijlk qij 

m n . 

~- n W Cqi j/Z 
q i=l qi qi j=X qij  

(8) 

4.3 Estimators of Variances and Covariances 

The population variance of Xqijl k within 

stratum q is 

V[XqijZk] = E IXqijlk-Xq. . .k] 2 • (9) 

In the last subsection, we derived a ratio esti- 
mator of the mean X . Since the population 

q.-.k 
variance is also a mean, a similar ratio esti- 
mator of the population variance is given by 

V(Xqijg k) 

m n 

12 m-- n W Cqij [ qijlk-Xq ...k / Zqij 
_ q i=i qi qi j=i 

m n . 

fq~ 1 1 ^ 
m-- n W /Z q i=l qi qi j=l Cqij qij 

(zo) 
The numerator of the right hand side of 

equation (i0) can be decomposed into three parts 
as follows : 

m n 

! 
Xqij k qij m n W Cqi j lk-Xq. . .  / Z 

q i= qi q± j 

m n 

[ 12j i q i ^ -~ 
- m ~ n W ~ C Xqi j .k qij q i:l qi qi j=l qij ik-Xqi • Z 

m n . 

m ~ n W qi . . . .  k 
/z 

q i=l qi qi j=l j qij 

m n 

+ - ~ / z  . • k-Xq • m n .W qij qij 
i ql qi j=l 

(Ii) 

By substituting the above three parts for the 
numerator in equation (i0), we obtain 

V(XqijZ k) 

m n . 

I q i ^ -~ . /Z 
m-- ~ n W ~ Cqij Xqijlk-Xqi--k qij 

= q i=l qi qi j=l 

111 n . 

i q i ~z ^ 
m ~ n W g Cqij/Z 
q i=l qi qi j=l qij 

m n . 

+ ~ m nqm "~m" Xqi--k-Xq ---k j= C q i j / Z q i j  
1 " ~ -  . . . . . . . . . .  

m n . 

m-- n W Cqi j / Z 
q i=l qi qi j=l qij 

+ [Xq...k-Xq...k] 2 • (12) 

The estimator of the variance given in equation 
(12) is the sum of three components. The first 
component is an estimate of the variance within 
first-stage units in stratum q. The second com- 
ponent is an estimate of the variance between 
first-stage units in stratum q. The third com- 
ponent cannot be computed because X is 

q---k 
unknown. However, if we ignore the bias, it can 

b~ esbimated by V(i ) which is given later. 
q---k ' 

Since the sample size in MIS is quite large, it 
is expected that the bias will be small. 

Similarly, an estimate of the population 
covariance between Xqijg k and Xqijl r can be shown 

to be the sum of (i) the covariance within first- 
stage units, (ii) the covariance between first- 
stage units, and (iii) the product of the 
differences between population means and their 
estimates. Equation (13) gives the formula for 
an estimate of the population covariance: 
^ 

Coy( Xqijl k ,Xqijlr ) 

=i i i 

m -i=l n W •-k q [ qi qi j=l 

^ 

Ix i r] / 
j -- Zqi j 

[ m n 
1 1 ^ 

i ~ n W Cqij/Zqi 
z qi qi j=l 

m 

i q i 
~- ~ n.W. 

+ ~ i=l qz qz 

n . ^ 

Xqi..k-Xq. -k Xqi -X Z . ,  
• .-r q.-.r j qi3 

m n 

~- n W Cqi j / Z 
q z qi qi j=l qij 

^ 

+ (x .k) (f -x ) ( is)  q" • "k-Xq • • q. • .r q- • -r " 

The last term on the right-hand side can be esti- 
^ 

~t~ ~y c o ~ ( x  x ). 
q'''k' q---r 
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As indicated earlier, the third component on 
the right hand side of Equations (12) and (13) can 
be estimated by the variance and covariance of the 
means for stratum q. These estimators are given 
by the following expressions: 

v(iq...~) 

m n ^ 

i m~ I i Xqijlk-Xq -k 
mq(mq-l) "= qi ~qi j "" Zqij~ 

i 

i=l 
nqiWqi j=l Cqij / Zqi 

and 

^ ^ " 1 

Cov(X ,Xq ) : mq(mq-l) q- • -k • • -r 
m Wq I 
1 " - -  1 qi  

A ] 
U:l -. zqi j 

In~i [Xqijlr_X ] Cqij] / 

[ j = l  q" • - r  Zqi j 

~~~i I n~i ^ Jl 2 
• = nqiWqi j = l  Cqij  / Zqi 

(~5) 

5. APPLICATION TO MULTIVARIATE METHODS 

In this section, we discuss how the ideas and 
estimators developed in the preceding sections 
can be used in various multivariate analyses. 

5.1 Multivariate Normal 

The estimators described in Section 4 can be 
immediately applied to standard multivariate 
normal analyses in which the analysis requires 
only the sample mean vector and the sample 
covariance matrix. For example, principal com- 
ponents, linear discriminant functions, canonical 
correlations, and regression coefficients can be 
obtained for the within, between, or overall level. 
The choice of which level to use depends on the 
purpose of the analysis. 

5.2 Extensions to Logistic ' Re~ression 

Some multivariate analyses require more than 
a mean vector and covariance matrix. For many 
of these analyses, however, we believe that the 
ideas presented in the previous sections can still 
be useful, even if the specific estimators are 
not. In particular, we suggest weighted analyses 
of observations of second-stage units. We 
recommend that the observation of second-stage 
unit (q, i, j) be assigned the weight 

C . . 

ql0 

mn W Z 
q qi qi qij 

The MIS includes a number of dichotomous vari- 
ables. Logistic regression allows us to analyze 
the dependence of a dichotomous variable on other 
variables. In order to perform such an analysis, 
we suggest two modifications of the usual proce- 
dure. 

First, a logistic regression typically gives 

weights P . .(I-P . .) to the observations, where 
^ ql8 qlj 
P .. is the estimated probability of the dependent 
qm0 

variable taking on value i given the values of the 
independent variables for that observation. In 
order to make the weights proportional to both 
^ ^ 

Pqij (l-Pqij. ") and those recommended in the begin- 

ning of this subsection, we suggest weights pro- 
portional to 

5 
qi0 qi0 qi0 

m n .W .Z .. " 
q qm qz ql 0 

Second, since we are primarily interested in 
the variation within first-stage units, it is 
necessary to exclude the variation between first- 
stage units. We recommend that this be accomplished 
by introducing additional independent variables, 
one indicator variable for each first-stage unit. 
The variances and covariances of the variables of 
interest are then conditioned on these indicator 
variables. 

6. ESTIMATES OF THE SIZE OF SECOND-STAGE UNITS 

Before we can apply the estimators of the last 
section, it is necessary to estimate C ... Here, 

qij 
we discuss five estimates of C .. associated with 
the MIS. qij 

The first estimate of C .. (subject to a con- 
qIj 

stant of proportionality) is A .., which is the 
qmj 

total number of all outgoing and incoming tele- 
phone calls during an 8-hour period. 

The second estimate of C ..(subject to a con- 
qij 

stant of proportionality) is obtained by multi- 
plying the relative sizes of first-stage and 
second-stage units in the sample as follows: 

^ 

C .. =W .Z ... 
qic ql qij 

It may be recalled that 

N . T . 

W . = ql and Z .. = qlj 
ql N qij T . q" ql. 

The third estimate Cqi j is obtained by taking 

a weighted geometric mean of the first and second 
estimates given above. This estimate is 

^ 

c .. = (A ..)~ (w .z ..)1-~ , 
qij qIj ql ql8 
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where 0 < ~ < i. The first two estimates are 
m 

special cases of the third estimator, since they 
correspond to ~ = i and G = 0, respectively. 

The fourth estimate of C .. is designed to 
qij 

give equal weight to each third-stage unit in the 
sample. This estimate is given by 

C .. = n .W .Z .. . 
ql j ql ql qiJ 

The last estimate of C .. is designed to pro- 
qij 

duce the mean over the population of second-stage 
units. In this case, 

C . . -- l . 
qlj 

7. AGGREGATION OVER STRATA 

So far we have discussed estimators for an 
individual stratum. Estimators for individual 
strata can be combined to obtain estimators for 
the whole population: 

^ L ^ 

X --k ~ X 
• • q" • "k ' 

q=l 

L 

e e e  • 
q = l  q ° ' 

and 
^ ^ ^ 

X . . . .  k "- X . . . .  k /  C e • • 

By substituting the expressions given in equations 
^ ^ 

(6) and (7) in Section 4 for X and C , 
we obtain q..-k q-- 

m n . L qiA / 
Z < i Xqijl k Z n W Z Cqi j qij 

qi qi j=l q=l i 

-..-k m n . 
L q ~m 
Z i Z i ^ 

q:l ~qq i- nqiWqi j=i cqij/zqij 

(~6) 

by 

^ 

An estimate of the variance of X .... k is given 

^ 

}(% . . . .  k ) 

m In I L i q i i 

Z m (m -I) iZl - - Xqijlk-X ---k Zqi ~ q: i  q q ": qiwqi j : l  

~_ m 

i q i=l nqiWqi j=l Zqij J 

(~) 

8. SUMMARY 

Techniques for estimating means and their 

variances from multistage sampling survey data are 
well-known. In this paper, we have discussed 
some concepts related to multivariate analyses 
of such data. We have also discussed the 

estimation of variances and covariances which 
provide a basis for many multivariate analyses. 
Application of the estimators discussed here to 
multistage sampling surveys has been illustrated 
by showing the correspondence with MIS. 

The total variation was broken down into that 
within and between first-stage units. Which of 
these two components of variation should be used 
depends on the application. 

Estimators of means, variances and covariances 
in a specified stratum have been developed for the 
three-stage sampling scheme in the MIS. These 
estimators were combined over strata to obtain 
estimators for the whole population. 

In MIS, sizes of second-stage units are not 
known. Five estimators of these sizes were 
discussed. Software for implementing the esti- 
mators discussed in this paper has been developed. 
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