
ON THE VARIANCE OF A TOTAL ESTIMATE OVER A SUBPOPULATION 

Shien S. Perng, Internal Revenue Service 

1. Introduction 
In sampling surveys it often occurs that a 

sample has to be selected from a larger population 
which contains units of interest and other un- 
wanted units. Thus, the population of interest 
is a subpopulation of the population from which 
the sample is selected. Several methods have been 
introduced to estimate the total of a quantitati~ 
variable over such a subpopulation. The choice of 
methods depends on available information about the 
subpopulation. Cochran (1977), pages 35-38, pre- 
sents three methods. The first one is applicable 
when M, the total number of units in the subpopu- 
lation, is known. In this case an estimate of the 
total is M times of the sample mean of units which 
fall in the subpopulation. The second one is ap- 
plicable when the total of the quantitative varia- 
ble over the entire population is known. In this 
case a ratio estimate may be employed. The third 
one is applicable when neither M nor the total of 
the quantitative variable is available. An esti- 
mate is the sample total over the subpopulation 
times the reciprocal of the sample fraction. This 
method is sometimes referred to as the simple ex- 
pansion method. See Jones and Coopersmith (1976). 
Kish (1967), pages 204 and 438, mentions a ratio 
estimate using an auxiliary total over the sub- 
population. Jones and Coopersmith (1976) studies 
a ratio estimate where the auxiliary total over 
the subpopulation is estimated. Neter and 
Loebbecke (1975 and 1977) and Cox and Snell (1979) 
study methods of esti~m~t~ng total error in ac- 
counting population, including an equivalence of 
the simple expansion method. 

This paper concerns the simple expansion method. 
This method is especially useful in a large scale 
survey where a large volume of tables are produced. 
The estimation of each table cell may be consid- 
ered as an estimation over a subpopulation where 
the portion of the entire population satisfying 
the table cell definition is the subpopulation of 
interest. In this case, a simple expansion method 
is the easiest one to use and is often the only 
feasible one due to various reasons. 

Large scale surveys are usually multipurposed. 
Data are collected for many variables. There are 
rarely variables whose totals over all table cells 
are available and which are highly correlated to 
the survey variables and hence can be used as an 
auxiliary variable to reduce the variance of the 
estimate. The total numbers of units in the sub- 
populations(table cells) are often not available 
or too costly to obtain. Besides, these numbers 
are very often part of the items to be estimated. 
Sometimes the table cells are not well defined 
until a very late stage of the survey. In some 
circumstances, the census data may be used. But 
this may be rare due to different categorization, 
or data being out of date. Programming for the 
tabulation may further restrict the estimation 
methodology. Usage of simple expansion method 
could simplify the programming effort considerably. 
This is especially true when the auxiliary data 
are only partially available. 

For the Statistics of Income and Taxpayer Com- 
pliance Measurement Program reports compiled by 
the Internal Revenue Service, the tabulation is 

done for line items on the tax forms according to 
filing status, income classes, return types, etc. 
Due to the complexity of the tabulation, it is 
hardly possible to use methodologies requiring 
auxiliary variables to improve precision of the 
estimate. The simple expansion method has been 
basically used for these reports. 

The simple expansion method has been discussed 
in many sampling textbooks. Sukhatme and 
Sukhatme (1970), Cochran (1977), Hansen, Hurwitz 
and Madow (1953b), and Kish (1967), among others, 
present the estimation method and its variance 
estimation. Sukhatme and Sukhatme (1970), pages 
36-37, gives an example of sample size computa- 
tion using the coefficient of variation. Kish 
(1967), pages 434-436, and Cochran (1977), page 
38, compare the variance of simple expansion with 
the variance of an estimate when the subpopulati~ 
count is known. Netter and Loebbecke (1975) com- 
pare several estimation methods in accounting cor~ 
text, including simple expansion (mean-per-unit) 
and stratified simple expansion methods. 

The simple expansion estimate is obtained by 
expanding the sample total of units falling in 
the subpopul at ion by the reciprocal of the sam- 
ple fraction. When the proportion of the subpop- 
ulation is close to l, most of the sample units 
fall in the subpopulation. Hence the charac- 
teristics of the estimate are expected to be close 
to those of an estimate for the entire population. 
But when the proportion of the subpopulation is 
small, the number of sample units usable for 

the estimation may be few. In this case, the 
characteristics of the estimate may be completely 
different. Our uncertainty about the character- 
istics of the subpopulation estimate motivates the 
present investigation. We study how the variance 
of such estimate depends on the proportion and 
how the variance of its variance estimate behaves. 
We focus on the impact of the number of usable 
units on the reliability of the estimate when the 
proportion of the subpopulation is small. 

Section 2 examines the behavior of the variance 
of the simple expansion estimate. The variance is 
found to be approximately proportional to the pro- 
portion of the subpopulation, when the coefficient 
of variation per unit in the subpopulation is not 
less than I. Comparing to the estimate when the 
subpopulation count is available, the simple ex- 
pansion estimate performs well when the coeffi- 
cient of variation of the subpopulation is larger 
than or equal to 2. 

Section 3 considers variance analyses. Two 
decompositions of the variance are discussed. The 
two components in the first decomposition are due 
to the variation of unit measures in the subpopu- 
lation and to the variation of the number of sam- 
ple units falling in the subpopulation, respect- 
ively. To describe the second decomposition, re- 
call that the unit measures for units not in the 
subpopulation are set to 0. The second decomposi- 
tion splits the variance into a component which is 
contributed by the deviation of unit measures from 
the overall average and a component which is con- 
tributed by the departure of the overall average 
from 0__the designated, value for..u~its n~ein the, 
s u b p o p f ~ l a t ~ o n .  Yn b o t h  d e c o m p o s ~ t l o n s ,  s e c o n d  
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component contributes most of the variance when 
the coefficient of variation per unit in the sub- 
population is very small. 

Section 4 examines the variance of the variance 
estimate. The variance is graphed under several 
different configurations of the subpopulation. It 
is approximately linearly increasing with the mag- 
nitude of the proportion of the subpopulation when 
the coefficient of variation per unit in the sub- 
population is not less than I. 

Some concluding comments are offered in Section 
5. 

2. Simp.le Expansion Estimate and. . i,t.s Var.iance 
Let C be a subpopul at ion of the population from 

which a simple random sample has been taken. Let 
N = total number of units in the entire popula- 

tion, 
M = total number of units in the subpopul at ion 

C, 
n = total sample size, 
m = number of sample units falling in subpopu- 

lation C, 
Yi' = a unit measure in the entire population 

where y'. is set to 0 if the unit is 
i 

not in subpopulation C, 
Yi = a unit measure in subpopulation C, 
Y = total of y-variable in subpopulation C, 
v[ = Y/M. 

Without loss of generality, we shall write ' Yl' 

Y2" "''Y'n' as units of the sample and YI' Y2'"" 

Ym as units of the sample which fall in subpopula- 

tion C. Similar notations are used for units in 
m n 

the population. Write ~ = Z Yi/m and y' = 1 ~ y.~/n. 
1 

The simple expansion estimate of Y is given b "Ya i 

N m I 
= . _ _  z y i  = N m y =  N y , .  ' I  

n 1 

n hal! Note  t h a t  m i s  a random v a r i a b l e  which  
h y p e r g e o m e t r i c  d i s t r i b u t i o n  w i t h  mean and 
given by 

E[m] = nP, (2~2)~ 

N-n (2.3) 
V[m] = nP(I-P) N-I ' 

where P = M/N is the proportion of the subpopula- 
tion C. 

From (2.2), Y is unbiased; 

^ N 
E(Y) = E[E(YIm) ] = ~ E [ m ] Y  = b97 = Y. 

The v a r i a n c e  o f  Y i s  

= N 2 
V(Y) = N2V@ - ' )  n ( l - n / N ) S 2  y '  ( 2 . 4 )  

where $2 1 N -- 2 =I( M 1 M 

y '  N-1 1 N - ' I  

By using (N-I)S 2 M M 2 1 1 M = y . y 2 _  1 (~Yi)  + ( ~ - g ) ( g Y i  )2 
y' I i M I I 

we can r e w r i t e  ( 2 . 4 )  as  
^ M-I 2 _ . M  M 

V(Y) = EL(1 - -~)(N--Z-i- Sy + N-l(1 - ~)V~ (2.5) 
n 

._N 2 _n_ S 2 + ( l _ p ) y 2 )  ( 2 . 5 ' )  
n ( 1 - N ) P (  y 

2 M H 
where Sy = ll(Zy2 - 1 (~yi)2 1 i M ). In the last 

approximation, I/N is assumed to be negligible. 
This form of the variance has been given in many 
sampling textbooks. See, e.g. Sukhatme and 
Sukhatme (1970) page^35, or Cochran (1977), page 
38. It expresses V(Y) in terms of the mean and 
variance in the subpopulation C. 

The variance V(Y) varies with P. The manner 
of variation depends on the distribution of the 
y variable in the subpopulation C and, in particu- 
lar, on S 2 and ~2. To examine such variation, 
let G(P) Ybe the right-handed side of (2.5') and 
R 1 (P) = G(P)/G(1). Then 

R 1 (P) = P(1 + ( 1 - P ) / C 2 ) ,  ( 2 . 6 )  

where C = S]Y, the coefficient of variation of 
y per unit Yin subpopul at ion C. (Note that C is 
used to denote both the coefficient of variation 
and the subpopulation. The meaning will be clear 
from the context.) For any fixed C ~ 0, R I(P) is 
a bounded function of P for 0 < P < I. Since the 
derivative 

! 
R 1 (P) = (C2 + 1 - 2 P ) / C  2, 

RI (P )  h a s  a maximum 1 / 4 ( 1  + 1/C 2) a t  P = (C 2 + 1) /  

2 when C 2 < 1 and has a maximum 1 at P=I when C 2 
> I. However, considering R I as a function of C, it 
Ts not bounded above for C c±ose to 0. This will 
not present problems since in most social and 
economical surveys, the value of C is usually not 
less than 1/4. See Hansen, Hurwitz and Madow 
(1953a), pages 138-148, for examples of values for 
C in applications. 

Figure 1 shows plots of R I(P) for C = 1/4, 1/2, 
I, 2, 4. RI(P) is very much proportional to P 
when C > I. For C < 1/2, RI(P) is less stable. 

-- • N 2 n 2 
Since V(Y) if(l-~)SyRI(P), for fixed N, n, 

and S 2 the behavior of V(Y) as a function of 
P is Ysimilar to that of R I(P). It is bounded 

A 

for mos~ practical values of C. For C > I, V(Y) 
is very much proportional to P. It is especiall~ 
worthwhile to note that for small value of P, V(Y) 
is relatively small compared to its value when 
P = I. I~zile this does not really guarantee that 
the estimate ~ is reliabile, it is somewhat com- 
forting to know that its variance does not go wild 
when P is small. We discuss the estimate of V(Y) 
and the variance of such estimate in Section 4. 

The square of the coefficient of variation of 
Y is obtained by dividing y2 = (My)2 into (2.5) or 
(2.5 ' ) . Thus 

C2(~) = I(i n N 2 M-I 2 M (I M 
n - ~ ) ~ ( 7 - - {  ~ + N-ZY - ~ ) )  ( 2 . 7 )  

• 1 n 2 
= n ( 1  -~)  (C + 1 - P ) / P  ( 2 . 7 ' )  

The value of C2(y) is not bounded for any fixed 
C, n and N; it approaches infinite as P approaches 
O. For small P, it takes a large sample size n to 
bring down the C(Y) to desirable level. This is 
in contrast to the estimation of the total of a 
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quantitative variable in the entire population 
where C2(~) = 4 (I - N)C 2. The situation is sim- 
ilar to the estimation of the proportion or total 
of a subpopul at ion where C2(M)= I(I- N)~. 

Thus, one should be cautious when P is small if a 
small C(Y) is desired. 

It is noted that when P is small the coeffi- 
^ 

cient of variation C(Y) is large, but the standard 
error s.e.(~) is small. The precision is good in 
absolute sense, but not in relative sense. In 
this case, the requirement of a small coefficient 
of variation is debatable since its magnitude does 
not really reflect the reliability of the estimate. 
The standard error may be a better choice as mea- 
sure of sampling variability. 

3. Variance Analysis 
We consider two different decompositions of the 

variance V(Y). First, the variance can also be 
derived as follows. 

V(Y) = E[V(YIm)] + V[E(YIm)] 

N 2 m N 2 
=-n--2E[m(l - ~)]S 2y + n-2 V[m]Y 2 

. N 2 N 2 (I - n 2 n n ~)P Sy +--n (I - ~)P(l _ p)~2, 

using (2.2) and (2.3). This expression is the 
same as (2.5) or (2.5'). This derivation is more 
informative. The first term is due to the varia- 
tion of the y- variable in the subpopulation C 
and the second term to the variation of m. It is 
interesting to know how these two terms vary with 
P for different values of C. Let R3(P) be the 
ratio of the second term over the first. Then 

R3(P ) = ( 1 - P ) / C  2 ( 3 . 1 )  

For f i x e d  C, t h e  r a t i o  r a n g e s  f rom 0 to  1/C 2 and 
d e c r e a s e s  l i n e a r l y .  The c o n t r i b u t i o n  o f  t h e  
second  t e r m  n e v e r  e x c e e d s  a ( 1 / C 2 ) t h  o f  t h e  f i r s t .  
However,  f o r  s m a l l  C, t h e  c o n t r i b u t i o n  can be 
e x t r e m e l y  l a r g e  a Thus,  i f  C i s  known t o  be s m a l l ,  
t h e  v a r i a n c e  V(Y) may be l a r g e l y  due t o  t h e  v a r i a -  
t i o n  o f  m, e s p e c i a l l y  when P i s  s m a l l ,  In  t h i s  
c a s e ,  t h e  s i m p l e  e x p a n s i o n  method s h o u l d  be 
a v o i d e d .  That  i s ,  i t  may e a r n  a good p a y o f f  t o  
s c r e e n  o f f  unwanted  u n i t s  in  t h e  p o p u l a t i o n  b e f o r e  
s a m p l i n g  i f  i t  i s  p o s s i b l e ,  o r  in  mass t a b u l a t i o n  
s i t u a t i o n ,  f i n e  t a b l e  c e l l s  s h o u l d  be a v o i d e d .  
F i g u r e  3 shows t h e  g r aph  o f  R3(P) f o r  C = 1/4,1/2, 
1, 2, 4.  I f  C i s  l a r g e  ( C > 2 ,  f o r  e x a m p l e ) ,  V(Y) 
i s  m o s t l y  c o n t r i b u t e d  by t h e  f i r s t  componen t .  In  
t h i s  c a s e ,  s i m p l e  e x p a n s i o n  e s t i m a t e  i s  v e r y  e f -  
f e c t i v e  compared t o  My. 

We now c o n s i d e r  a second  d e c o m p o s i t i o n  o f  V(~) .  
Note t h a t  f o r  a u n i t  y '  s e l e c t e d  f rom t h e  e n t i r e  
p o p u l a t i o n ,  y '  i s  i n  s u b p o p u l a t i o n  C w i t h  p r o b a -  
b i l i t y  P and i s  no t  in  s u b p o p u l a t i o n  C w i t h  p r o -  
b a b i l i t y  1-P .  R e c a l l  y '  = y i f  t h e  u n i t  i s  in  C 
and y '  = 0 i f  t h e  u n i t  i s  no t  in  C. Thus,  t h e  
d i s t r i b u t i o n  f u n c t i o n  o f  y can be w r i t t e n  as  

F y , (  ) = PFc ( ) + ( 1 - P ) F d ( )  

where Fc(  ) r e p r e s e n t  t h e  ( c o n t i n u o u s )  d i s t r i b u -  

tion function of y variable in subpopulation C 
and Fd( ) is a degenerated distribution function 
with all its probability mass on the point 0. 
From this we get 

E ( y ' )  = PEc(Y' ) + ( 1 - P ) E d ( Y ' )  = PY, 

_ 2  
V ( y ' )  = PE ( y '  - PY) + ( l_P)Ed(Y,  _ pg).2 

C 

where Ec( ) and Ed( ) are the expectations with 

r e s p e c t  t o  ~c(  ) and F ~ ( ) ,  r e s p e c t i v e l  S ince  
Ec(Y , . py--)  Ee (y_g)~  + (g_pg)2  = S~ y'+ 

( 1 - p ) 2 y  - 2  and Ed(Y' - p¥--)2 = p2~2, we have 

S 2 = V ( y ' )  = P(S 2 + ( l - P )  2 ~2) + ( l _ p ) p 2 ~ 2  
Y' y 

(3 .2 )  

Thus 
2 

- -  = ~) (S 2 V(~) = V(Ny' )  N(1 - n p + ( l - P )  
n y 

2 g2) 

N 2 +_ (i_ n 2 n N) (I-P) P2Y- (3 .3 )  

The first component represents the contribution 
of the deviation of y variable from E(y') = PY and 
the second the contribution of the deviation of 0 
from E(y'). This decomposition enables one to 
assess the contribution of designating y' = 0 for 
units not in sub~opulation C to the variance V(Y) 
of the estimate Y. The contribution reaches its 
maximum 4/27 of Y -2, when P = 2/3. 
The ratio of these two components is 

R 4(p)  = ( 1 - P ) P / ( C  2 + ( l - p ) 2 ) .  

Figure 4 shows the graphs of R4(P) for C = 1/4, 
1/2, I, 2, 4. For small C and moderately large P, 
the contribution of the second term may be ex- 

A 

tremely large. In this case, the variance V(Y) is 
mainly due to the deviation of y' = 0 from PY, the 
expected value of y'. 

4. Variance of the Variance Estimate 
The accuracy^and precision of the estimate of 

the variance V(Y) have been a great concern when 
the obtained m in the sample is small, or when P 
is small. There are not many Yi in the sample 
which can be used for the estimation. In this 
case how reliable is the estimate of the variance? 
In this section, we examine the variance of the 
variance estimate. We study how the precision of 
the variance estimate depends on P. 

A 

From (2.4), V(Y) may be estimated by 

v(~) = N~I- n 2 n ~ ) Sy, (4.1) 

where 

m~ 1 m 2) 
s 2 _ 1 ( r y  - ( r y )  (4 .2 )  
y' n-i 1 n I i 

Our main concern will be the variance of s2,. For 
Y 

simplicity, we shall assume sampling with replace- 
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ment for the remainder of this section. Thus, the 
result will be only an approximation of the result 
when the sampling is without replacement. The 
approximation will be close when N is large and 
n/N is small (e.g. less than 0.05). Under the 
new assumption, we may rewrite (4.1) 

v (~/) = N22 ( 4 . 1 )  
n--Sy, • 

The question is how reliable is s 2 as an estima- y' 
tor of S 2 or s . as an estimator of S. ,? 

Y' Y' Y 2 '  
. From It is clear that s , is unbiased for Sy ! 

(5.9) of Hansen, Hurwitz and Madow (1953b), page 
I01 we have the variance of s 2 , y, 

2 n - 3 4  ) ( 4 . 3 )  V(s ) = 1 / n ( p y ,  4 _  _ - y, n--2-- 1 y 

where 
N 

1 y, -- 4 
Py'4 = g E( - Y ' )  (4 4) 

1 i 

N 
2 _ ix -- 2 o = (y~ - Y ' )  ( 4 . 5 )  
y' N I 1 

N 
and Y' = r. Yi/N. These formulas are expressed in 

1 
terms of y!. It is more informative to express 

1 

them in terms of moments in the subpopulation C. 
Let 

1M _ j 
~. = ~ r . ( y  i - Y  ) , j = 2 ,  3 ,  4 .  ( 4 . 6 )  

J 1 

W r i t e  o 2 = ~2" Then,  bY a s t r a i g h t  f o r w a r d  a l g e -  
b r a i c  Y m a n x p u l a t i o n ,  we o b t a i n  

= --  + 6 ( 1 - p ) 2 # - 2  ( 2  ( 4 . 7 )  
l]y, 4 P{l~ 4 + 4 (l-P)Y ~3 Y 

+ (1-P)(1-3P + 3p2)y 4} 

o 2 = p o  2 + p ( 1 - p ) Y  -2 
y '  Y 

(4.8)  

Substituting (4.7) and (4.8) into (4.3), we have 

2 P{~4 + 6 ( 1 _ p ) 2 2  v(s ) = + 4 ( m - p ) g ~  3 y '  n y 

n---2-1 p ( n - 3  e2 + ( l - P )  + ( 1 - P ) ( 1 - 3 P  + 2p2)IV4 _ 
Y 

-_2 2 
Y) } 

(4.9)  

When P = I, (4.9) is in the same form as (4.3). 
For large n, (n-3)/(n-l) L- I. We shall employ 
this approximation. 

We are interested in how V(s 2 ) depends on P 
For this purpose, we write Y' 

2 4 
F(P) = nV(s ) / o  

Y' y 

= P{Y2 + 4 ( 1 - P ) Y 1 / C  + 2 ( 1 - P ) ( 3 - 4 P ) / C 2  

+ (3-P)  + ( l - P ) ( 1 - 2 p ) 2 / C  4} ( 4 . 1 0 )  

where Y1 = ~3/°3 = o 4 3 and C = o 
Y' Y2 ~4/ y - y 

/g. 

Note that Y1 and Y2 are the coefficients of skew- 
ness and kurtosis of the y variable in subpopula- 
tion C, respectively, and that C is the coeffi- 
cient of variation. F(P) is a polynomial of 
degree 4 in P with F(0) = 0 and F(1) = Y2 + 2. 
It has double peaks and a single valley for 
moderate values of YI' and Y2" Figures 5(a) - 
5(d) display F(P) for various combination of Y1 
and Y2 and for C = 1/4, 1/2, i, 2, 4. It is 
noted that for C > 1 and moderate value of Y2, 
F(P) is almost linear in P. For C <I, F(P) 
varies wildly. These properties carry over to 
V(s~,). Thus, if C < I, the variance V(s I is 
large for P in the interval (0,I) and hasY~aximums 
near P = 0.20 and 0.80. Therefore, the simple 
expansion method is not desirable when C < I. 

5. Concluding Remarks 
This paper concerns a simple expansion method 

of estimating the total of a quantitative random 
variable over a subpopulation. This method is 
used when the units of interest are in a subpopu- 
lation of the population from which the sample is 
selected. In a simple survey, the sampling is 
designed in such a way that the subpopulation is 
as close to the sampled population as possible 
and the proportion of the subpopulation is very 
close to one. In this case, the simple expansion 
estimate should have similar characteristics as 
an estimate using the entire sample. The loss in 
precision of the simple expansion estimate is not 
expected to be large. 

In some surveys, the result is post-stratified 
and tabulated. The estimation in each table cell 
may be considered as a subpopulation estimation 
problem. In this case, the proportion of such 
subpopulation is usually small. For instance, if 
there were I0 table cells, some of these cells 
would have proportion of no more than I0 percent. 
Due to such low proportion of the subpopulation, 
the characteristics of the estimate may be quite 
different from those when the proportion is close 
to I. Does the estimate have normal distribution 
approximately? How reliable are the estimate and 
the variance estimate? This paper investigates 
some of these problems. 

We consider the problem from several angles. 
We first study the variance and relvariance of 
the simple expansion estimate to see how they de- 
pend on the proportion of subpopulation under 
various circumstances. We then decompose the 
variance into components to see some insight of 
the variance. We also study the variance of the 
variance estimate. A simulation is done to study 
the empirical distributions of the estimate and 
its variance estimate. Due to the limitation of 
the number of pages, the detail of simulation 
study is not reported. 

We found that the simple expansion estimate 
performs well when the coefficient of variation 
per unit in the subpopulation is no less than I. 
The variance is basically proportional to the pro- 
portion under this circumstance; the proportion 
of the subpopulation does not have very much ef- 
fect. But when the coefficient of variation is 
small, the variance is very unstable and is ex- 
tremely large for most value of the proportion. 
In this case a large portion of the variance is 
contributed by factors other than the variation 
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of unit measures in the subpopulation. The simple 
expansion method should be avoided under this cir- 
cum s t anc e. 

From the simulation study, the distribution of 
the estimate seems to be approximately normal when 
the coefficient of variation in the subpopulation 
is small. When the coefficient of variation is 
large (C=4) and when the proportion is small, the 
empirical distribution is skew. Overall, the 
distribution of the estimate when the proportion 
is small seems to behave well; it is not much 
worse than the case when the proportion is close 
to i. 

This paper studies the (unconditional) variance 
of the estimate. It assesses the performance of 
the estimate disregarding the number of units in 
the subpopulation realized in the sample. The 
conditional variance of the estimate will be the 
topic of a separate paper. 
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