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1. INTRODUCTION 

CPLX is a computer program for analysis of 
cross-classified data from complex sample survey 
designs. I t  implements essentially the standard 
maximum likelihood estimation procedures for 
factorial,  hierarchical log-linear models as i f  
the data were obtained under simple random 
sampling, but i t  provides test statist ics and 
standard errors appropriate for a given complex 
design through use of replication methods. The 
program was developed at the Census Bureau by the 
author and has already been employed in a number 
of analytic studies there. 

The purpose of this paper is to explain and 
summarize the principal features of CPLX, with 
the intent of enabling the reader to recognize 
situations in which the methodology implemented 
in this program represents a possible solution to 
otherwise d i f f i cu l t  statist ical problems. The 
general description here is intended to com- 
plement the technical documentation (Fay, 1982) 
available for the program. While the lat ter pro- 
vides the exact instructions for i ts use, the 
purpose here is to suggest the scope and applica- 
tions of the program to the reader. 

The second section of the paper gives a gen- 
eral description of log-linear models, as well as 
the more specific class of models considered by 
CPLX. Log-linear models represent an area of 
considerable statist ical development, especially 
for simple random sampling, and this section 
relies heavily upon citations to some of the wide 
l i terature in this f ield. 

The third section attempts to describe and 
i l lustrate the sorts of situations in which the 
designs may be considered "complex" and more 
suitable for analysis by CPLX than by programs 
and statist ical procedures assuming a simple 
underlying multinomial distribution. This sec- 
tion also discusses how the sources of variation 
in such complex designs can frequently be repre- 
sented by an appropriate series of "replicates." 

The weighted least squares approach offers an 
alternative solution to the problem of drawing 
inferences about log-linear models in the context 
of complex samples. The fourth section of this 
paper compares the scope of CPLX with the 
weighted least squares method. Although in some 
situations researchers may just i f iab ly  prefer the 
weighted least squares approach, this section 
points out that CPLX may be applied to a wide 
class of problems for which the other method is 
inappropriate. 

The f i f t h  section presents the statist ical 
methodology implemented by CPLX in more detail, 
including a somewhat fu l ler  description of the 
replication methods considered in the program. 
The sixth section indicates in a general manner 
how the program may be used and the incorporated 
features. The appendices summarize some of the 
technical details of the implementation. 

2. LOG-LINEAR MODELS CONSIDERED BY CPLX 

In the most general form, the log-linear 
model represents any statement about the expected 
values for a set of frequency data under some 
sampling distribution, in which the logarithms 
of the expected frequencies are given by a model 
that is linear in the parameters. This class 
includes the general problem of logistic regres- 
sion, as well as applications to ful ly cross- 
classified data. 

Discrete variables of two or more levels 
each are assumed to form the cross-classifica- 
tions analyzed by CPLX. To i l lustrate the gen- 
eral ideas here, consider a cross-classification 
based upon four variables. A model of mutual 
statist ical independence for all four variables 
is equivalent to 

In Fi jkl >, + ~I J K - = i + 1\j + A k + A ( 2 . 1 )  

where Fi jkl  gives the expected values for the 

cross-classified cells. The usual restrictions 
on the parameters (in order to insure ident i f i -  
abi l i ty)  are 

~,>I  J ~ K L 
i = ~>~j : ~k : # A l  = 0 (2.2) 

i j l 

In model (2.1), the parameters (except for k) 
each depend on the level of exactly one of the 
variables. One alternative model for the cross- 
classification is given by 

I J K . L .IJ 
In F i j k l  = >,+ A i + Xj + X k + >'l + Ai j  (2.3) 

in which conditions (2.2) apply as well as the 
new conditions 

IJ IJ 
Xij = ~ i j  = 0 (2.4) 

i j 

Model (2.3) differs from (2.1) in allowing the 
relationship between two variables, i and j ,  to 

IJ 
be dependent and governed by new parameters ~ i j ,  

which do not depend upon the levels of the re- 
maining variables Thus, this model represents 
a simple generalization of the model of statis- 
t ical independence, in the sense that (2.3) 
includes (2.1) as a special case. Choosing 
between the two models is a matter of determining 
whether the model of statist ical independence is 
sufficient to explain the observed data or 
whether the departure is in the specific manner 
indicated by model (2.3). 

A frequent application of log-linear models 
arises when one (or more) of the variables may be 
considered "dependent" in the sense often used in 
characterization of linear regression. That is, 
one wishes to build a model to describe, explain, 
or account for the changes in the distribution 
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of th is  var iable in terms of the the remaining 
"independent" variables. For purposes of i l l u s -  
t r a t i on ,  suppose that  the f i r s t  var iable is 
composed of two levels and is considered 
"dependent" for  purposes of the analysis. The 
log- l inear  model 

J K L JK ~JL KL 
In F i j k l  = X+ ~j + Xk + Xl + Ajk + j l  + Xkl 

JKL I XIJ. I~ IL 
+ Xjkl + Xi + iJ + Xi + Xil (2.5) 

with restrictions on the parameters similar to 
those in (2.2) and (2.4), is equivalent to 

IJ IK 
In ( F l j k l / F 2 j k l )  = 2 A + 2 A I j  + 2 AIk + 

IL 
+ 2 ~ i l  (2.6) 

Equation (2.6) is comparable to an equation for  
l inear  regression, where the " l og i t s "  of the 
le f t -hand side of the equation are expressed in 

I 
in terms of a constant term, 2 ~ i ,  and coef- 

IJ 
f i c i e n t s ,  2 ~ i j  etc. In th is  model, nothing is 

asserted about the re lat ionships between the 
las t  three var iables,  while the re la t i ve  
proport ions for  the f i r s t  var iable,  given the 
remaining three, are expressed in (2.6) as sums 
of a constant term plus coef f i c ien ts  that each 
depend on the level of exactly one of the 
independent var iables. 

A log - l i near  model s imi la r  to (2.5) is given 
by 

I n F i j k l  ~ + ~J 
K L JK JL 

= j + Xk + ~I  + ~ j k  + X j l  + 

KL JKL I IJ IK 
+)~kl + Ajk l  + Ai + Xi j  +A i k  (2.7) 

This model is equivalent to (2.5) except for  the 
omission of the las t  term. The corresponding 
l o g i s t i c  expression of th is  model 

In ( F l j k l / F 2 j k l )  = 2 AI IJ IK I + 2 ~klj + 2 Alk 
(2.8) 

omits a coe f f i c ien t  re la t ing  variable i to var i -  
able I .  Choosing between models (2.5) and (2.7) 
is a matter of determining whether the coe f f i -  
c ient  in (2.5) but excluded from (2.7) is neces- 
sary to describe the data. I f  not, model (2.7) 
or (2.8) posits no d i rect  re la t ionship between 
the f i r s t  and las t  var iables,  once the ef fects  
of the other two variables are considered. 

For purposes of discussion here, there are 
three major questions of s t a t i s t i c a l  inference 
that arise in f i t t i n g  log- l inear  models to sample 
data: 

1. What are appropriate standard errors or 
confidence in terva ls  for  the estimated coe f f i -  
cients of the model? 

2. Does a speci f ic  parameter or group of param- 
eters make a s t a t i s t i c a l l y  s ign i f i can t  contr ibu- 
t ion to a model? 

3. Is there evidence of a s ign i f i can t  overal l  
lack of f i t  of the model? 

Question 1 presupposes an estimation strategy 
for the parameters, of course, but asks a ques- 
t ion that  arises in almost any s i tuat ion of 
model f i t t i n g .  The second question concerns 
choice of model; th is  is i l l u s t r a t e d  in the pre- 
ceding discu}sion by the potent ia l  choice between 
models (2.1) and (2.3),  or (2.5) and (2 .7) ,  as 
a l te rna t i ve  explanations for the same observed 
cross-c lass i f ied  data. 

When the observations have been sampled 
through simple random sampling from an i n f i n i t e  
population, the observed c ross-c lass i f i ca t ion  is 
d is t r ibu ted  according to the multinomial d i s t r i -  
bution. Much of the avai lable theory for the 
log - l i near  model has been developed for  th is  
d i s t r i bu t i on  or other related d is t r ibu t ions  such 
as the product multinomial or Poisson. For these 
d i s t r i bu t i ons ,  standard maximum l i ke l ihood  theory 
provides these answers to the preceding three 
questions: 

1. Standard errors for  the maximum l i ke l ihood 
estimates may be based on general asymptotic 
theory for  maximum l i ke l ihood estimation. (Some 
computer programs implement a l te rnat ive  es t i -  
mators of the standard errors that are sat is-  
factory approximations to the theoret ica l  resul ts 
in most pract ical  appl icat ions. )  

2. Tests of the contr ibut ion of a group of 
parameters to the model are given by the standard 
l i ke l ihood ra t io  chi-square. A s imi la r ,  but less 
recommended test  may be based on the dif ferences 
of Pearson chi-square tests tests under the two 
model s. 

3. Tests of overal l  f i t  are given by the l i ke-  
l ihood ra t io  chi-square test  or the Pearson 
chi-square test .  

The purpose of CPLX is to provide analogous 
answers to these questions when the observed 
data are from a more complex d i s t r i bu t i on .  In 
addi t ion to the requirement that each var iable be 
discrete,  CPLX f i t s  fac to r ia l  models of the type 
i l l u s t r a t e d  by (2.1) ,  (2.3) ,  (2.5) ,  and (2.7).  
The models also must be h ierarch ica l ,  that  is,  
for  each parameter in the model subscripted by a 
set of var iables,  there must be corresponding 
parameters in the model including a l l  subsets of 
the set in question. For example, inclusion of 

IJK 
a parameter ~ i j k  requires inclusion of parameters 

I J K IJ IK JK 
~, Xi ,  Aj ,~k,  ~ i j ,  'kik, and Ajk. The preceding 

models a l l  sa t is fy  th is  property, as do v i r t u a l l y  
a l l  models that  would have pract ical  s igni f icance 
when applied to sample survey data. 

45 



CPLX is also able to provide tests of overall 
f i t  and of the contribution of specific groups 
of parameters in some special applications in 
which a number of specific cells of the table are 
considered structural zeroes or are removed from 
analysis for some other reason. The log-linear 
model is then assumed to apply to the remaining 
cells. 

The other practical l imitations of CPLX are 
discussed more fu l ly  in appendix A.3. I t  is 
important to emphasize from the start, however, 
that the scope of practical application of CPLX 
is not limited to small tables; considerable 
experience has already been acquired in appli- 
cations to tables on the order of 500 cells. 
Further discussion of this point is included in 
section 4. 

As noted earl ier, there is a wide l i terature 
on the log-linear model. Books on the subject 
include Goodman (1977), Bishop, Fienberg, and 
Holland (1975), Fienberg (1977), and Haberman 
(1978, 19 79). Haberman (1974) gives a basic 
source for theoretical foundations, although the 
book cannot be read as an elementary intro- 
duction. Introductory articles of shorter 
length have been given by Fienberg (1970) and 
Madgison (1977). 

3. COMPLEX SAMPLE DESIGNS 

CPLX does not represent an improvement on 
maximum likelihood theory for the case of the 
multinomial distribution; rather, i t  allows 
analysis of data under other sampling d is t r i -  
butions for which maximum likelihood theory, i f  
applied mechanically under an incorrect assump- 
tion of the multinomial distribution, would give 
unacceptable answers. This section attempts to 
give an elementary description of'the sorts of 
situations in which the methodology implemented 
in CPLX is preferable. 

Three basic elements serve to identify the 
complex samples where CPLX may provide a more 
appropriate answer: clustering, s t rat i f icat ion,  
and weighting. Except for some special cases, 
CPLX should be applied when one or more of these 
elements is present in the sampling mechanism 
underlying the observed data. This section 
f i r s t  discusses characteristics of clustering 
separately, since this is sometimes the only 
element of the three found in many instances 
where i ts effect on the properties of maximum 
likelihood theory is nonetheless severe. The 
issues of st rat i f icat ion and weighting are then 
discussed in the following section, since they 
often occur together. 

3.1 Situations Involving Clustering 

Clustering denotes the wide variety of 
situations in which the observations may be 
grouped into sets within which i t  is not possible 
to assume independence. Any of the household 
surveys conducted by the Census Bureau have th is 
property, since groups of neighboring housing 
units are included in the sample together in 

order to reduce the costs of travel. Survey 
designs involving two or more stages of selection, 
in which the universe is divided into primary 
units and a f i r s t  stage of selection of primary 
units is followed by additional stages of 
selection, may be considered to be clustered 
samples as well. Here, the sampled primary units 
form the clusters for purposes of estimating 
sampling var iab l i l i t y .  

The technical descriptions of large sample 
surveys usually remark on the complexities of 
the sample design and would lead the reader to 
recognize the clustering in the design. A number 
of common simpler situations lead to clustering 
as well, and since the clustering is more subtle, 
some of these wi l l  be mentioned here. 

A common situation of clustering occurs in 
otherwise simple random samples when units of the 
sample may contribute more than one observation 
to the cross-classification. For example, i t  
would be possible to take a sample from the phone 
phone book which would represent, for all 
practical purposes, a simple random sample of 
households from this universe. Data collected on 
a household basis could be appropriately analyzed 
as i f  from a multinomial distribution. At the 
same time, collection of data on more than one 
person in the household would lead to a cluster- 
ing effect. For example, very strong clustering 
effects would occur in the collection of infor- 
mation on the public or private school enrollment 
for all of the children in the household. 

Longitudinal or panel surveys often lead to 
instances in which an analyst may wish to con- 
sider including a person in more than one cell of 
a table. I f  the table cross-classifies the 
responses of individuals to the same variable at 
different points in time, the table may count 
each individual only once. I f  several variables 
are involved, however, and time is simply in- 
cluded as a separate variable, each individual 
may contribute a count for for each level of the 
time variable. In these cases, clustering arises 
from the probable correlation in results for the 
same person over time. 

CPLX may also be of interest in the analysis 
of designed experiments, such as experiments on 
human populations, in which the study population 
is recognizably grouped into larger clusters, 
even though the principal analytic interest is 
in a logist ic model for the individual outcomes. 
For example, a number of hospitals or physicians 
participating in a long-term cl inical t r ia l  of 
different medical interventions for the same 
condition may be considered as giving rise to a 
clustered sample, even though the analysis may 
be of survival or health of individual patients 
using a number of risk factors as covariates. 
The possible effects of hospital or practitioner 
lead to dependencies in the observations that are 
frequently ignored. CPLX represents one approach 
to handle such d i f f i cu l t ies  more robustly. 

In short, some sampling situations yield 
exactly or almost exactly a multinomial d is t r i -  
bution for the observed proportions. The number 
of cases in which some clustering is present, 
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however, is probably much larger than is recog- 
nized or accounted for in analysis. CPLX or 
other methods that expl ic i t ly account for such 
dependencies could provide more robust statist ics 
for many of these problems. 

3.2 Strati f ication and Weighting 

St ra t i f i ca t i on  covers a large class of 
circumstances in which some data is known about 
the universe pr ior  to sample selection, the uni- 
verse is grouped into strata on the basis of 
these data, and samples are selected from the 
strata separately. In many appl icat ions, s t r a t i -  
f i ca t ion  actual ly reduces variance re la t ive to 
simple random sampling. 

In one special case, the strata are iden- 
t ica l  to the levels of one of the variables in 
the analysis. As long as multinomial samples are 
selected from each, maximum l ike l ihood theory 
gives generally the same results as for the 
simple multinomial d is t r ibu t ion ,  for most log- 
l inear  models. In other cases, however, s t ra t i -  
f i ca t ion  may have effects on the variance that 
are omitted from the standard maximum l ike l ihood 
analysis. 

On occasion, samples are selected at d i f f e r -  
ent sampling rates from the individual strata.  
A common rat ionale for d i f fe ren t ia l  p robab i l i t ies  
of selection is to increase the r e l i a b i l i t y  for 
special subgroups of the population. In order to 
represent consistently the or ig inal  population, 
weights are typ ica l l y  applied to the observations, 
usually the inverses of the probabi l i t ies  of 
selection or closely related quant i t ies.  D i f fe r -  
ent ial  weights make any of the results from 
maximum l ike l ihood theory for the multinomial 
d is t r ibu t ion  d i f f i c u l t  to in terpret  without 
fur ther  adjustment. Once an appropriate repre- 
sentation of the sample design is found in terms 
of repl icate observations~ weighted data presents 
no addit ional d i f f i c u l t y  to CPLX. 

3.3 Representation of Sampling Var iab i l i t y  
Through Replication 

CPLX evaluates the re l iab i l i t y  of the sample 
estimates from a series of replicates provided by 
the user. The documentation (Fay, 1982) 
describes these requi rements in detail. 
Basically, three replication options are offered: 

i .  Standard jackknife- The total sample is 
divided into a number of clusters which represent 
equivalent estimates of the same population total 
(even though they may be individually highly 
variable). 

2. Half-sample- The estimated cross-classi- 
f i ca t ion  is shown estimated for a series of sub- 
samples of one half  of the or ig inal  data, each 
mimicking the process of sample selection of the 
or ig inal  sample. 

3. Strati f ied jackknife - Again a division of 
the sample into clusters, this time grouped by 

strata. The separate replicates within a stratum 
are assumed equivalent representations of the 
stratum total, but no relationship is presumed 
among the totals for the separate strata. 

The program documentation presents a detailed 
discussion of how to use these strategies effec- 
t ively, and an equally broad discussion is beyond 
the scope of this paper. In short, however, the 
principle is to confine all dependent sources of 
variation within replicates, so that comparisons 
across replicates represent true sources of 
independent variation in the design, upon which 
an inference may be based. As an example, in a 
simple clustered sample, the individual clusters 
could be chosen as replicates for the simple 
jackknife method. The user would tabulate the 
data for each of the clusters for input to CPLX 
and evoke the simple jackknife option. CPLX wil l  
use the variabi l i ty among the cluster results to 
measure the re l iab i l i t y  of the outcome for the 
total sample. On the other hand, CPLX wil l  rely 
on no further assumption about var iabi l i ty within 
the replicates in drawing inferences; con- 
sequently, the dependencies within the clusters 
may be quite complex without affecting the 
validity of the conclusions. (Section 6 of the 
documentation discusses the choice of replication 
method; section 6 of this paper outlines some of 
the different approaches that may be used to 
create the replicate tables for input to CPLX.) 

4. COMPARISON OF THE METHODOLOGY OF CPLX WITH WLS 

Earlier available software for analysis of 
log-linear models in the context of complex 
sample designs appears to have been restricted to 
the weighted least squares (WLS) approach. (Work 
of Scott and Rao (1981) and others on applying 
generalized design effects is omitted here, since 
implementation of their methods by general soft- 
ware has been relatively recent. Their statis- 
tical methodology also does not yet address all 
of the questions of inference treated both by WLS 
and by CPLX.) Grizzle, Starmer, and Koch (1969) 
developed the basic foundation for the WLS 
applied to the analysis of cross-classified data 
for simple sample designs; Koch, Freeman, and 
Freeman (1975) later extended the results to 
complex sampl es. 

Within i ts area of proper application, the 
WLS approach provides all three of the inferen- 
t ia l  components enumerated in section 2: standard 
errors of parameters, tests of overall f i t ,  and 
tests of the contribution of specific groups of 
parameters to the model. WLS has also been suc- 
cessfully implemented and applied to survey 
data. (To cite just some of the relevant l i t e r -  
ature in this area, the GENCAT program (Landis, 
Stanish, and Koch, 1976) represents a standard 
developed by some of the principal stat ist ical 
researchers in this f ield. A more recent paper 
of Lepkowski, Bromberg, and Landis (1982) dis- 
cusses the implementation of the methodology in 
the OSIRIS system of the University of Michigan. 
Cohen and Gridley (1982) have reviewed some of 
the problems and limitations with this type of 
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analysis.) 
As the newcomer in th is area, CPLX draws 

j u s t i f i c a t i o n  for i ts  separate existence on the 
basis of the s ign i f i can t  l im i ta t ions  of WLS in 
t reat ing tables of moderate to large size. This 
l im i ta t ion  of WLS arises from two sources" an 
analogous weakness of WLS re la t ive  to maximum 
l ike l ihood estimation (MLE) in multinomial sam- 
pl ing for an important class of models; and the 
typical d i f f i c u l t y  in estimating a covariance 
matrix for a table of th is size that is neither 
singular or i l l - cond i t ioned for most complex 
survey designs, in which the number of f i r s t  
stage units is generally not too large. The 
remainder of this section elaborates on these two 
weaknesses of WLS with the intent  of enabling the 
reader to recognize si tuat ions in which CPLX 
provides a methodologically superior solut ion. 

4.1 Methodological Limitat ions of WLS Relative 
to MLE for Large Tables 

For multinomial samples, MLE possesses asymp- 
to t i c  advantages over WLS for al l  models except 
the saturated ( ful ly-parameter ized),  in which 
case the two methods agree. For small tables, 
these differences are almost always subtle and, 
for pract ical purposes, ins ign i f i can t .  For large 
tables, however, there is an important class of 
models and applications for which the gap between 
the capabi l i t ies  of the two methodologies widens 
enormously. Haberman (1977) presented an under- 
lying asymptotic theory for MLE for th is class 
of models, and his paper forms the basis for the 
comments here. The models considered by Haberman 
possess the important property that t yp ica l l y  the 
standard errors for al l  of the estimated param- 
eters, or for a spec i f i ca l ly  iden t i f ied  subset 
of the parameters, s t i l l  perform well under the 
MLE procedures, even for large, sparse tables. 
For this same class, l ike l ihood ra t io  chi-square 
tests for the contr ibut ion of specif ic sets of 
parameters are also approximately correct. Even 
though in these si tuat ions tests for overall f i t  
may be unrel iable,  the a b i l i t y  to estimate safely 
speci f ic parameters and the i r  standard errors, 
and to perform tests of signif icance for the i r  
contr ibut ion,  enables a great deal of interpre- 
tat ion of such data. In the same s i tuat ions,  the 
WLS methodology is typ ica l l y  unable to provide 
any useful results. 

Exact description of th is important class of 
models is complex, and Haberman (1977) supplies 
the precise def in i t ions.  For pract ical purposes, 
.however, the examples of section 2 i l l u s t r a t e  the 
models of th is class l i ke ly  to be of most 
interest .  The models fa l l  into two pr incipal  
types: ones l ike models (2.1) and (2.3),  which 
avoid any interact ions of high order, and the 
l og i s t i c  models l ike examples (2.5) and (2.7), 
which include the high-order interact ion of the 
independent variables, but simple relat ionships 
between the dependent and independent variables. 

In models (2.1) and (2.3) of section 2; the 
parameters pertain simply to the levels of one 
of the variables or, in the case of example (2.3), 

to an interact ion between jus t  two variables. In 
many cases, each of the marginal tables f i t t e d  
under the model, including the two-way cross- 
c lass i f i ca t ion  of variables i and 2 in model 
(2.3),  may be well f i l l e d  by observed values, 
even though zeroes and other small values may be 
present in the complete cross-c lass i f ica t ion.  
(This s i tuat ion becomes even more typical when a 
larger number of variables are present in the 
c ross-c lass i f i ca t ion . )  In this case, the MLE 
estimates of al l  of the parameters in these 
models and the i r  estimated standard errors 
approximate standard asymptotic behavior. Like- 
l ihood rat io  test of comparisons of models of 
th is  type, such as the test  of the contr ibut ion 
of the parameters for the interact ion between 
variables I and 2 by comparing the f i t t e d  values 
under models (2.1) and (2.3),  are also re l iab le  
in th is case. Thus, one can study refinements 
on the independence model, such as additions of 
simple relat ionships between pairs of variables, 
even though the test  of overall f i t  suffers in 
such sparse tab les  

In the case of l og is t i c  modeling, as i l l u s -  
trated in section 2, the log- l inear  model 
includes the complete interact ion of al l  
independent variables. Quite often, the corres- 
ponding marginal table (formed by adding across 
the dependent variable or variables, only) w i l l  
contain a number of zero cel ls.  At the same 
time, the typ ica l l y  simpler two- or three-way 
marginal tables corresponding to parameters 
re lat ing the dependent variable(s) to the 
independent variable(s) may be well f i l l e d .  
(This case is more complex than the preceding in 
that some sparse marginal tables, those pertain- 
ing to the independent variables by themselves, 
are involved.) In this case, the parameters 
re lat ing the independent variables to each other 
may be poorly behaved, while at the same time the 
c r i t i ca l  parameters re lat ing the dependent and 
independent variables (corresponding to the coef- 
f i c ien ts  of the l o g i s i t i c  regression) w i l l  be 
well behaved and have re l iab ly  estimated 
standard errors. The tests of signif icance using 
the l i ke l i hood- ra t io  chi-square for the contr i -  
bution of these l a t t e r  parameters (such as the 
comparison of models (2.5) and (2.7) ear l ie r )  
w i l l  also be re l iab le .  

Although the chi-square test  of overall f i t  
may deteriorate in large tables, maximum l ike-  
l ihood theory s t i l l  permits most useful analysis 
to continue through estimation of parameters, 
standard errors, and tests of the contr ibut ion of 
specif ic groups of parameters to the model. WLS, 
on the other hand, may not be safely applied in 
these instances or to any other large table with 
any s ign i f i cant  number of sample zeroes. Thus, 
i t  is essent ia l ly impossible for WLS to be suc- 
cessful in analogous si tuat ions in complex sam- 
ples. CPLX combines the MLE procedures with 
rep l icat ion methods in order to exp lo i t  the 
advantages of MLE while at the same time recog- 
nizing the implications of a complex sample 
design. 
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4.2 Problems in Estimating Covariances in Large 
Tables 

The other fundamental problem with WLS applied 
to moderate to large scale tables is a pract ical  
one. The WLS methodology requires inversion of 
an estimated covariance matrix for the observed 
sample values. At a minimum, therefore,  the 
estimated covariance matrix must be non-singular 
or essent ia l ly  so. (Possible modif icat ions to 
the methodology could recognize the e f fec t  of 
f ixed to ta ls ,  etc. )  Furthermore, s t r i c t  
algebraic non-s ingular i ty  of the estimated 
covariance is not su f f i c i en t ;  i l l - cond i t i oned  
matrices would tend to produce aberrant s ta t i s -  
t i ca l  behavior. Thus, when using the WLS method, 
the cautious p rac t i t i oner  may prefer to employ 
two or three times the number of repl icates as 
ce l ls  in order to insure a stable estimate of 
the covariance. 

When the number of ce l ls  in the table is 
small, these object ives can usually be achieved 
readi ly ,  but as the size of the table grows, so 
too does the problem of obtaining a s u f f i c i e n t l y  
stable estimate of the covariance. In many 
appl icat ions,  the degrees of freedom w i l l  not be 
present in the design to meet these requirements 
for  analysis of large tables,  although in the 
same contexts WLS may be per fect ly  adequate for 
the analysis of much smaller tables. 

4.3 Summary Comparison of WLS and the Methodology 
of CPLX 

The previous comparisons have emphasized the 
di f ference between the two methodologies p r inc i -  
pal ly  in terms of the size of the table under 
analysis. In order to quanti fy the net e f fec t  
of these comparisons, table i ,  at the r isk of 
some over -s imp l i f i ca t ion ,  attempts to convey an 
idea of where these boundaries might be in 
pract ical  appl icat ions.  The three categories 
chosen, 4 to 20, 21 to 80, and 81 to i000, denote 
a range where the WLS methodology is generally 
successful, sometimes successful, and rarely 
successful, respect ively.  Although CPLX also 
does best for the smallest category, the deter i -  
orat ion in performance with table size is much 
less severe. (Even the value of i000 ce l ls  is 
not necessarily the upper l i m i t  of appl icat ion 
of CPLX. ) 

5. METHODOLOGY IMPLEMENTED IN CPLX 

This section summarizes a more complete 
discussion in section 7 of the program 
documentation. 

The program converts the cross-tabulated 
data provided by the user for the f ract ions of 
the sample or the series of half-sample rep l i -  
cates into a common form. Representing the 
c ross -c lass i f i ca t ion  for the tota l  sample as 

Y, a series of repl icates Y + w ( i , j )  is 

considered with 

w( i ,J)  : 0 (5.1) 
j ~  

for  each i ,  and constants b i are determined 
such that 

Cov*(Y) = ~ bi ~ W ( i , j )  (~ w ( i , j )  (5.2) 
i j " " 

i .e .  an appropriately weighted sum of cross- 

products of w ( i , j )  with i t s e l f ,  gives the 

standard unbiased estimate of the covariance 
matrix for the estimate Y. (In fact ,  the compu- 

ta t ion (5.2) is never performed in CPLX, but is 
given here in order to iden t i f y  the b i '  s.) 

As an example of th is  notat ion, in the case 
of the simple jackkni fe,  the user provides a 

series of tables z(J) with 

Y = ~ z(J) (5.3) 

In the general notat ion, i is f ixed at I for  the 
simple jackkni fe option. The program computes, 
i n e f fec t  

W(I , j )  = (n-1)- I  ( Y -  nZ(J)) (5.4) 

and b I = (n - l ) / n .  Although these expressions 

do not give the standard representation of the 
simple jackkni fe,  (5.2) y ie lds the same estimate 
of covariance as usually computed. 

I f  ~(Y) represents an estimated log - l i near  

parameter based on the fu l l  sample, and 

X(Y + I /2 w ( i , j ) )  the corresponding resu l t  for  

for  a modified rep l ica te  table, the program 
computes 

Pi j  = X(Y. + 1/2 W ( i , j ) )  - ~(Y) 

.2 Var*(x) = 4 ~ b i ~ P i j  
i j 

(5.5) 

(5.6) 

and, op t iona l l y ,  a jackkni fed estimate for  the 
parameter as 

,~j = #(Y) - 4 # b i ~_ Pij  (5.7) 
i j 

(The factors of 1/2 and 4 appear in the formulas 
for  related reasons: the factor  of i /2  avoids 
creating rep l icate  tables with addi t ional  zeroes 
not present for  the or ig ina l  c ross -c lass i f i ca t ion ,  
and the factor  of 4 compensates for th is  e f fec t  
in the estimate of the covariances. ) 

When zeroes are present in the f i t t e d  values, 
the ent i re  set of computations are carr ied out by 
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adding small constants to the ce l ls  of the tables 
before f i t t i n g  the models. The computations are 
done in such a way that  any f i r s t - o r d e r  bias 
induced in the estimates is removed in the 
computation (5.7) .  

For tests of overal l  f i t  or of the con t r i -  
bution of spec i f ic  parameters, CPLX computes 
jackkni fed chi-square tests described in Fay 
(1980, 1981). For the jackkni fed tes t  of overal l  

f i t  of a model, i f  X2(y) denotes the Pearson 

chi-square tes t  for  the f u l l  sample, and 

X2(y + w ( i , J ) )  the corresponding tes t  for  each 

rep l i ca te ,  CPLX computes 

Pi j  = X2(Y + w ( i ' J ) ) -  X2(y) (5.8) 

K = ~ b i >~ Pij  (5.9) 
i j 

• .2 ( 5 . 1 0 )  V = ~ b  i ~P i j .  
i j 

(X2(y))1/2 _ (K+)I/2 
Xj = ~ (5.11) 

(V/(8 X2 (y ) ) ) I / 2  

The las t  expression gives the jackkni fed chi- 
square tes t  s t a t i s t i c ,  which may be compared to 
tabulated c r i t i c a l  values provided in e i ther  of 
the previous sources, or to a more extensive set 
included in the program documentation. 

A s imi la r  computation is employed to tes t  
the cont r ibut ion of spec i f ic  parameters to a 

given model. I f  G2(y) represents the l i ke l ihood  

ra t i o  chi-square tes t  s t a t i s t i c  based on the 

ent i re  sample, G2(Y + w ( i , j ) )  the tes t  
A /  ~ .x  

based on a rep l ica te  table for  a model that  ex- 
cludes the set of parameters in question, and 

G2'(Y) denotes the value of the tes t  when the 

parameters are added to the model, CPLX computes 

Pi j  = (G2(y + w ( i ' J ) )  - G2(y)) 

- (G2'(Y + w ( i , j ) )  - G2'(Y)) (5.12) 

and carr ies out the analogous computations (5 .9) ,  
(5.10),  and 

(G2(Y) - G2' (y))1/2 _ (K+)I/2 
Gj = ~ ~ (5.13) 

(V/(8 (G2(y) - G2 ' (Y ) ) ) ) I / 2  

which gives the jackkni fed chi-square tes t  for  
the comparison of two d i f f e ren t  models. This 

tes t  s t a t i s t i c  may then be compared to the same 
table of c r i t i c a l  values as the overal l  tes t  of 
f i t  (5.11).  

6. NOTES ON THE USE OF CPLX 

CPLX reads two input f i l e s  provided by the 
user: a set of control cards providing basic 
information about the table and rep l i ca t ion  
st rategy,  fol lowed by requests for  s t a t i s t i c a l  
operations; and a separate f i l e  containing a 
series of tables whose contents depend upon the 
rep l i ca t ion  method selected• This section w i l l  
describe these two f i l e s  separately• 

6.1 Content of the Control Cards 

The user must provide in the control deck two 
required pieces of information" the dimensions 
of the table and the rep l i ca t ion  method chosen• 
I f  the s t r a t i f i e d  jackkni fe  option is used, the 
number of f rac t ions in each stratum is also 
required. Add i t i ona l l y ,  the user may opt iona l ly  
a f fec t  the analysis,  display of resu l ts ,  or 
computational methods in any order in any of the 
fo l lowing ways: 

• provide labels for  var iables,  levels of var i -  
ables, and/or coe f f i c ien ts  

• change the method of def in ing the parameters 
of the l og - l i nea r  model for  var iables of 
more than two leve ls ,  enabling, for  example, 
tes t ing  of spec i f ic  contrasts 

• change the defaul t  parameters governing the 
convergence c r i t e r i a  used in f i t t i n g  the 
mode I s 

• enter a s ta r t ing  matrix for  the i t e r a t i v e  
proport ional  f i t t i n g  algori thm (ch ie f l y  to 
enter a matrix of l ' s  and O's to exclude 
s t ruc tura l  zero ce l l s  from the model) 

• enter comments in the pr inted output 

• r e s t r i c t  the display of parameters to those 
involv ing one or more declared "dependent" 
var iables,  for  use with l o g i s t i c  regression• 

The basic s t a t i s t i c a l  requests are 

• f i t t i n g  a model to compute jackkni fed chi-  
square tests of the overal l  f i t  and, 
op t i ona l l y ,  display the observed and f i t t e d  
values under tile model 

• compare two models previously f i t t e d  to tes t  
the cont r ibu t ion of the parameters by which 
one d i f f e rs  from the other ( r es t r i c t ed  to 
models in which one of the two implies the 
other) 

• compute and display parameters, with or 
wi thout  the bias correct ion (5 .7) ,  along 
with standard errors.  
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6.2 Replicate F i le  

The other f i l e  is a series of cross-classi-  
f ica t ions,  each of the size specified in the 
control deck, where the cel l  entries vary in 
FORTRAN order. For the jackknife methods, the 
tables are estimates based on the separate 
clusters or fract ions of the design; CPLX sums 
these to derive the table for the total  sample. 
For the half-sample repl icat ion methods, the user 
must provide the table based on the total  sample 
as the f i r s t  table in the f i l e ,  and the remaining 
tables are each interpreted as half-sample 
estimates. 

Actual preparation of a repl icate f i l e  for 
CPLX may be accomplished in a number of ways. 
One is d i rect  tabulation of the required tables 
by a FORTRAN program, followed by output in the 
specif ied format. This method is the only avai l -  
able method to create half-sample or bootstrap 
repl icates known to the author. When the simple 
or s t r a t i f i e d  jackknife options are used, 
however, users may employ systems such as SPSS 
or SAS to manage the i r  data. Either system w i l l  
create output f i l es  summarizing tabulation 
resul ts,  and the program documentation for CPLX 
l i s t s  short FORTRAN programs that may be used to 
interface these results to CPLX. 
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APPENDIX 

A 1 Source Language and Maintenance 

The or iginal version of CPLX is wr i t ten in 
FORTRAN 77 and may be compiled on level 9 or 10 
of Univac ASCII FORTRAN and presumably, by other 
FORTRAN 77 compilers for large mainframe 
computers. The blocked IF-THEN-ELSE structures 
of the language appear extensively in the code. 

The FORTRAN 77 version also contains a small 
number of special comment cards. A separate 
preprocessor program, i t s e l f  in FORTRAN 77, is 
able to in terpret  these comment cards as instruc- 
t ions for conversion to FORTRAN IV. The pre- 
processor reformats and punctuates the CPLX 
source into an intermediate structured FORTRAN 
language, SFOR, developed by Emmett Spiers and 
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Donald Dalzell of the Census Bureau. In turn, 
the SFOR processor produces a Univac FORTRAN V 
source that,  under these circumstances, is com- 
pat ib le with IBM FORTRAN IV. A source generated 
in th is manner compiles and executes correct ly 
under e i ther  FORTRAN G or H at the computing 
f a c i l i t y  of the National Ins t i tu tes  of Health. 
(The derived source also correct ly compiles under 
Univac FORTRAN V at the Census Bureau and may 
also compile on FORTRAN implementations of other 
manufacturers. ) 

FORTRAN 77 represents a current standard 
recognized by the Federal government. The syntax 
of the language f a c i l i t a t e s  a reasonably 
structured coding of the or ig inal  source and 
offers po r tab i l i t y  to other systems supporting 
FORTRAN 77. On the other hand, a FORTRAN IV 
source compatible with an IBM compiler was a 
pract ical necessity, even for some appl icat ions 
wi th in the Census Bureau. The current method of 
deriving the  second set of source code from the 
f i r s t  insures consistent additions of enhance- 
ments and maintenance on both versions simul- 
taneously. 

A.2 Numerical Accuracy 

The requirements for numerical precision by 
CPLX are generally more severe than most appl i -  
cations of log- l inear  models, since comparatively 
subtle changes in chi-square tests and parameter 
values are evaluated over a series of repl icates. 
As a par t ia l  response to this problem of 
numerical accuracy, al l  real ari thmetic and 
storage of results is in double precision. 

The global choice of double precision 
arithmetic represents a sat isfactory solut ion to 
many of the numerical problems that would have 
otherwise been encountered. The most c r i t i c a l  
remaining question, however, is that maximum 
l ike l ihood estimation of many (but not a l l )  log- 
l inear  models by ei ther the Newton-Ralphson 
algorithm or i te ra t i ve  proportional f i t t i n g  does 
not achieve exact convergence af ter  any f i n i t e  
number of steps. Choice of the stopping point, 
therefore, is a potent ia l ly  important numerical 
issue. 

CPLX automatically evaluates the ef fect  of the 
stopping rule on al l  jackknifed chi-square tests 
by conducting al l  computations and report ing al l  
results under two separate stopping rules, in 
para l le l .  The stopping points are defined as 
the allowance for a maximum deviation in any one 
step between the f i t t e d  marginal tables of the 
observed data and the current estimated cel l  
values. Under the default  option of the program, 
these two stopping rules d i f f e r  by a factor of 
i000. Consistent results under the two separate 
rules are a strong assurance that su f f i c ien t  
numerical accuracy is present, whereas 
s ign i f i can t  differences warn the user that 
fur ther  consideration is required. A change of 
stopping points may be accomplished by appro- 
pr iate control cards, i f  more precision is 
required. In the author's experience, however, 
the pair of default  parameters provided with the 

program is su f f i c ien t  to provide a val id test  of 
the numerical precision and to assure, in almost 
a l l  cases, that acceptable numerical precision is 
obtained. 

The computation of standard errors for the 
parameter estimates poses re la t i ve ly  less severe 
numerical problems, and paral le l  computations 
under two d i f fe rent  stopping rules is not auto- 
matical ly provided. (Instead, convergence is 
required to the more str ingent of the two 
c r i t e r i a  in force.) The user concerned about 
th is point could accomplish the same ef fect  of 
paral le l  computations by computing the parameters 
under the default  option, changing the stopping 
points, and then recomputing the parameters. 

A.3 Limitat ions 

The design of the system of control cards 
l im i ts  the number of levels (categories) of any 
one variable to 99 and the number of variables to 
39. The second l i m i t  is beyond any reasonable 
appl icat ion; the f i r s t  l im i ta t ion  may be circum- 
vented by an in t rep id  user through re la t i ve ly  
few modif ications of the source code. 

Specif icat ion of the remaining l im i ta t ions  
of the program is somewhat more d i f f i c u l t  and 
less precise. CPLX in terna l ly  allocates and 
deallocates al l  arrays of variable requirements 
in size from three named common areas, one each 
of integer, double precision, and character. 
The sizes of the integer and double precision 
arrays impose pract ical l im i ta t ions  on the 
applications that may be handled by CPLX. The 
present version assigns i0000 cel ls to the 
integer array and 6000 to the double precision; 
th is space is adequate for complete analysis 
( including estimation of parameters) of most 
tables of up to 500 cel ls and for jackknifed 
chi-square s ta t i s t i cs  of tables up to about I000 
cel ls .  Provided that the space is avai lable, 
larger tables may be analyzed by increasing the 
size of these two arrays as necessary, which 
involves changing a l imi ted number of l ines of 
the source for CPLX. 
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Table i General Comparison of WLS and CPLX for  Tables of D i f f e r i ng  Size 
from Complex Sample Surveys 

Size of Table WLS CPLX 

4 to 20 ce l l s  General ly adequate General ly adequate 

21 to 80 ce l l s  

81 to 1000 
ce l l s  

Increasing 
d i f f i c u l t y :  
sometimes adequate 
but often zero 
cel I s pose 
p rob I eros 

Rarely possible 

Usually adequate• 
A r e l a t i v e l y  large 
number of zero ce l l s  
may impose same 
r e s t r i c t i o n s  as for  
tables of size 81 to 
i000 cel Is 

Occasionally e n t i r e l y  
adequate, more often 
res t r i c t ed  to" 
• tests of con t r ibu t ion  
of spec i f i c  subsets of 
parameters 
• standard errors of 
parameters 
for :  
• l o g i s t i c  models 
• parsimonious models 
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